Facile Synthesis of 4-Hydroxycoumarins by Sulfur-Assisted Carbonylation of 2'-Hydroxyacetophenones with Carbon Monoxide

Takumi Mizuno,** Ikuzo Nishiguchi,* Tsuneaki Hirashima,* Akiya Ogawa,* Nobuaki Kambe,* Noboru Sonoda*

Osaka Municipal Technical Research Institute, 1-6-50, Morinomiya, Jyoto-ku, Osaka 536, Japan

b Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

4-Hydroxycoumarins (4-hydroxy-2-oxo-2*H*-1-benzopyrans) were synthesized in good to excellent yields by C-carbonylation of 2'-hydroxyacetophenones with carbon monoxide in the presence of sulfur and bases. This is the first example of sulfur-assisted C-Carbonylation with carbon monoxide.

Carbon monoxide has been lately recognized to have considerable importance as a reducing agent or a source of carbon in organic syntheses. For the utilization of carbon monoxide, numerous of studies¹ have been carried out, which have provided many useful synthetic methods. However, with regard to C-C bond formation using carbon monoxide, most of the studies have been focused on carbonylation using a transition metal catalyst. Only a few types of C-carbonylation with carbon monoxide have been reported besides the transition metal-catalyzed reactions: (1) carbonylation through organic boron compounds,² (2) acid catalyzed C-carbonylation (Koch reaction),³ (3) reaction of carbanion with carbon monoxide.⁴ and (4) selenium-assisted carbonylation.⁵

We recently reported that selenium could assist the carbonylation of alkyl aryl ketone with carbon monoxide in the presence of base to effectively afford coumarin derivatives in excellent yields.⁵

Table 1. Effects of Bases and Reaction Temperature in the Preparation of 4-Hydroxycoumarin (2a)^a

Run	Base	(mmol)	Temp. (°C)	Yield ^b (%)	
1	DBU°	30	120		
2	DBU^d	30	120	78	
3	DBN ^e	30	120	30	
4	DABCOf	30	120	0	
5	$1-CH_3(NC_4H_8)^g$	30	120	0	
6	K ₂ CO ₃	30	120	0	
7	NaOH	30	120	0	
8	none		120	0	
9	DBU	30	140	32	
10	DBU	30	100	93	
11	DBU	30	90	89	
12	DBU	30	80	95	
13	DBU	30	70	69	
14	DBU	30	60	71	

^a 1a (10 mmol), sulfur (30 mmol), Et₃N (30 mmol), THF (20 mL), CO (10 kg/cm²), 4 h.

b Isolated yields based on 1a used.

^c 1,8-Diazabicyclo[5.4.0] undec-7-ene.

d In the absence of triethylamine.

 ^{1,5-}Diazabicyclo[4.3.0]non-5-ene.
1,4-Diazabicyclo[2.2.2]octane.

g 1-Methylpyrrolidine.

Table 2. 4-Hydroxycoumarins 2a-e Prepared

Prod- uct	\mathbb{R}^1	R ²	R ³	Yield ^a (%)	mp (°C) ^b (solvent)	Lit. mp (°C)	IR (KBr) ^c v (cm ⁻¹)	1 H-NMR (DMSO- d_{6} /TMS) d δ	MS (70 eV) ^e m/z (%)
2a	Н	Н	Н	95	205.1 (AcOEt/ C ₆ H ₆ , 1:1)	2068	2400-3700, 1710, 1615	5.66 (s, 1H); 7.20–8.00 (m, 4H); 12.48 (br s, 1H)	162 (M ⁺ , 99); 120 (100)
2b	Н	Н	CH ₃	84	229.5 (AcOEt/ C ₆ H ₆ , 2:1)	2309	2850-3700, 1665, 1615	2.08 (s, 3H); 7.20-8.04 (m, 4H); 11.12 (br s, 1H)	176 (M ⁺ , 100); 121 (90)
2e	CH ₃	Н	Н	92	255.7 (MeOH)	258 ¹⁰	2500~3600, 1685, 1610	2.36 (s, 3H); 5.60 (s, 1H); 7.20–7.68 (m, 3H); 12.40 (br s, 1H)	176 (M ⁺ , 78); 134 (100)
2d	Н	CH ₃ O	Н	96	253.5 (MeOH)	25611	2400-3600, 1690, 1610	3.84 (s, 3 H); 5.50 (s, 1 H); 6.80-7.04 (m, 2 H); 7.60-7.84 (m, 1 H); 12.36 (br s, 1 H)	192 (M ⁺ , 100); 150 (91)
2e	Н	ОН	Н	46	264.0 (MeOH/ C ₆ H ₆ , 1:1)	265 ⁹	2400-3700, 1660, 1595	5.44 (s, 1H); 6.68–6.92 (m, 2H); 7.60–7.80 (m, 1H); 10.52 (br s, 1H); 12.16 (br s, 1H)	178 (M ⁺ , 100); 136 (83)

- a Isolated yield based on 1a-e used.
- b Uncorrected, measured with a Mettler-FP5 apparatus.
- c Recorded on a JASCO A-3 Infrared spectrophotometer.
- ^d Measured using a JEOL FX90Q spectrometer.
- e Recorded on a JEOL HX-100 spectrometer.

In this study, we wish to report the sulfur-assisted C-carbonylation of 2'-hydroxyacetophenones 1, which provides a facile method for synthesis of 4-hydroxycoumarins 2.

Sulfur-assisted carbonylation of 2'-hydroxyacetophenones proceeded under milder reaction conditions (80 °C, 10 kg/cm²) than those for selenium-assisted carbonylation, 6 and afforded 4-hydroxycoumarins in good to excellent yields. This is the first example of C-carbonylation with carbon monoxide assisted by sulfur to our knowledge.

In a study of reaction conditions using 2'-hydroxyacetophenone (1a) as model, it was found that bases were indispensable and considerably influenced the yields of 4-hydroxycoumarin (2a). Various sorts of bases were examined (Table 1).

As seen in Table 1, a mixture of DBU (1,8-diazabyciclo[5.4.0] undec-7-ene) and triethylamine was suitable for this carbonylation (run 1). Reaction temperature also affected the yield of 4-hydroxycoumarin (2a). For example, 2a was obtained at 80°C in almost quantitative yield (95%; run 12), while considerable decrease in yield was observed at 140°C (32%; run 9) or 70°C (69%; run 13).

Scheme A

Several substituted 4-hydroxycoumarin (2b-e) were prepared by the carbonylation of 2'-hydroxyacetophenones with carbon monoxide and sulfur in the presence of DBU and triethylamine at 80°C and 10 kg/cm² (Table 2).

Generally the 4-hydroxycoumarin derivatives were formed selectively in good to excellent yields, while only the reaction of 1e resulted in low yield of 2e.

A suggested reaction path is illustrated in Scheme A.

The acetophenone is initially transformed into carbanion 3 by base (DBU); then intermediate 4 is formed by electrophilic attack of carbon oxide sulfide, generated *in situ*, to the enolate anion of 3. Subsequent condensation with elimination of hydrogen sulfide gives 4-hydroxycoumarin 2a. This mechanism seems to be plausible from analogy with the selenium-assisted carbonylation of 2'-hydroxyacetophenone with carbon monoxide.⁵

4-Hydroxycoumarin (2a); Typical Procedure:

In a 100 mL stainless steel autoclave, 2'-hydroxyacetophenone (1a; 1.20 mL, 10 mmol), powdered sulfur (0.96 g, 30 mmol) (4.5 mL, 30 mmol), Et₃N (4.2 mL, 30 mmol), and THF (20 mL) are placed with a magnetic stirring bar under nitrogen atmosphere. The autoclave is then flushed several times with CO and finally charged with carbon monoxide at 10 kg/cm² at room temperature. The carbonylation of 1a was carried out 80 °C for 4 h with vigorous stirring. The reaction mixture is then poured into aq. 1 N HCl (100 mL), and extracted by Et₂O (100, $^2\times 50$ mL). The extract is dried (MgSO₄) and the solvent is evaporated. The resulting solid is washed by benzene (50 mL) and dried in vacuum. Recrystallization from AcOEt/benzene (1:1) gives 2a; yield: 1.54 g (95%) (see Table 2).

We thank the Ministry of Education, Science and Culture of Japan for a Grant-in-Aid to Special Project Research (No. 62101008).

Received: 8 July 1987; revised: 19 October 1987

(1) Falbe, J. New Syntheses with Carbon Monoxide, Springer-Verlag, Berlin, 1980.

Ford, P.C. Catalytic Activation of Carbon Monoxide, ACS Symp. Ser. 152, Washington, D.C. 1981.

Keim, W. Catalysis in C₁ Chemistry, D. Reidel, Dordrecht, 1983. Narayana, C., Periasamy, M. Synthesis 1985, 253.

(2) Hubbard, J.L., Smith, K. J. Organomet. Chem. 1984, 276, C 41. Kabalka, G. W., Delgado, M. C., Sastry, U., Sastry, K. A. R. J. Chem. Soc. Chem. Commun. 1982, 1273. (3) Farcasiu, D., Schlosberg, R.H. J. Org. Chem. 1982, 47, 151. Yoneda, N., Sato, H., Fukuhara, T., Takahashi, Y., Suzuki, A. Chem. Lett. 1983, 19.

Communications

- (4) Seyferth, D., Weinstein, R.M., Wang, W.-L. J. Org. Chem. 1983, 48, 1144.
 - Seyferth, D., Weinstein, R.M., Wang, W.-L., Hui, R.C. Tetrahedron Lett. 1983, 24, 4907.
 - Seyferth, D., Weinstein, R.M. J. Am. Chem. Soc. 1982, 104, 5534. Nudelman, N.S., Outumuro, P. J. Org. Chem. 1982, 47, 4347.
 - Seyferth, D., Hui, R.C. Tetrahedron Lett. 1984, 25, 2623.
 - Seyferth, D., Hui, R.C. Organometallics 1984, 3, 327.
 - Seyferth, D., Hui, R.C. *Tetrahedron Lett.* **1984**, 25, 5251. Murai, S., Ryu, I., Iriguchi, J., Sonoda, N. *J. Am. Chem. Soc.* **1984**, 106, 2440.
- (5) Ogawa, A., Kondo, K., Murai, S., Sonoda, N. J. Chem. Soc. Chem. Commun. 1982, 1283. Ogawa, A., Kambe, N., Murai, S., Sonoda, N. Tetrahedron 1985, 41, 4813.
- (6) The synthetic utility of the present sulfur-assisted carbonylation should prove to be higher than that of the similar reaction assisted by selenium: selenium is more expensive than sulfur and troublesome because of its toxicity.
- (7) The use of triethylamine caused easier dissolution of elemental sulfur, which could have resulted in the higher yields observed.
- (8) Anschütz, R. Liebigs Ann. Chem. 1909, 367, 196.
- (9) Heilbron, I.M., Hill, D.W. J. Chem. Soc. 1927, 1705.
- (10) Garden, J.F., Hayes, H.F., Thomson, R.H. J. Chem. Soc. 1956,
- (11) Sonn, A. Ber. Dtsch. Chem. Ges. 1917, 50, 1292.