TERT-BUTANOLYSIS OF LICHEN DEPSIDES*

SIEGFRIED HUNECK

Institute of Plant Biochemistry, Research Centre for Molecular Biology and Medicine of the Academy of Sciences of the GDR, GDR-401 Halle/Saale, Weinberg, German Democratic Republic

(Received 24 January 1984)

Key Word Index—Depsides tert-butanolysis

Abstract—The scope and limit of the tert-butanolysis of 12 lichen depsides is described Neither 2-O-methylated nor 2-O-acetylated compounds are cleaved by heating with tert-butanol

INTRODUCTION

The structural elucidation of a depside includes the cleavage of the ester bond as a main step In 1979 and 1981 Bachelor *et al* [1] and Meyyappan *et al* [2] described the *tert*-butanolysis of atranorin and lecanoric acid, respectively, and Huneck [3] applied this method successfully to the structural elucidation of the new depsides pseudo-cyphellarin A and B

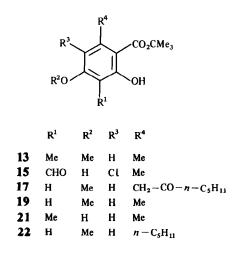
To analyse the scope and limit of the *tert*-butanolysis of lichen depsides the reaction of the following compounds with *tert*-butanol was investigated barbatic acid (1), chloroatranorin (2), confluentic acid (3), methyl evernate (4), 4-O-demethylbarbatic acid (5), perlatolic acid (6), sphaerophorin (7), methyl tri-O-methyllecanorate (8), tri-O-methylpseudocyphellarin A (9), tri-O-acetyllecanoric acid (10), nephroarctin (11) and barbatolic acid (12)

RESULTS AND DISCUSSION

The depsides 1–7 yielded the corresponding tert-butyl esters and phenolics, namely 1 tert-butyl rhizonate (13) and β -orcinolcarboxylic acid (14), 2 tert-butyl 5-chlorohaematommate (15) and methyl β -orcinolcarboxylate (16), 3 tert-butyl 4-O-methylolivetonate (17) and 2-Omethyl olivetolcarboxylic acid (18), 4 tert-butyl everninate (19) and methyl orsellinate (20), 5 tert-butyl β orcinolcarboxylate (21) and 14, 6 tert-butyl 4-Omethylolivetolcarboxylate (22) and olivetolcarboxylic acid (23), 7 19 and sphaerophorolcarboxylic acid (24) All new compounds were identified by their ¹H NMR spectra Neither the 2-O-methylated compounds 8 and 9 nor tri-O-acetyllecanoric acid (10) were cleaved by prolonged heating with tert-butanol Although nephroarctin (11) has a free hydroxyl group at C-2 only traces of cleavage products could be detected by TLC after heating with tert-butanol for 30 hr Alectorialic and barbatolic acids are the only known depsides where the S-part is connected to the A-part via a benzylic group Only 3% of 12 was cleaved after heating with tert-butanol for 20 hr

The following conclusions can be drawn from these results (1) A free 2-hydroxyl group seems to be essential

for the *tert*-butanolysis of depsides, (2) an aldehyde group at position 5 prevents the cleavage, and (3) the rate of the cleavage of benzylic depsides like barbatolic acid is much slower than that of normal depsides


EXPERIMENTAL

Tert-butanolysis The depside (100–200 mg) was refluxed with tert-BuOH (50–100 ml) for 20–40 hr, after removal of solvent the residue was chromatographed on silica gel (with 5% H₂O) using C₆H₆ and C₆H₆-Et₂O gradients

Tert-butyl rhizonate (13) Prismatic plates of mp 68–70° (from n-hexane) $C_{14}H_{20}O_4$ (252 3) IR v_{max}^{KBr} cm⁻¹ 830, 854, 968, 1000, 1030, 1060, 1130, 1156, 1180, 1228, 1248, 1300, 1370, 1402, 1446, 1460, 1498, 1572, 1616, 1638, 2950, 3300 ¹H NMR (100 MHz, CDCl₃) δ 1 59 (s, 9H, CMe₃), 2 04 (s, 3H, Me), 2 48 (s, 3H, Me), 3 80 (s, 3H, OMe), 6 19 (s, 1H, arom H), 11 90 (s, 1H, OH) MS m/z (rel int) 252 [M]⁺ (34), 197 [M – C(Me)₂ = CH]⁺ (83), 178 (100), 150 (91), 135 (18), 122 (21), 107 (27)

Tert-butyl 5-chlorohaematommate (15) Needles of mp 108-109° (from n-hexane) $C_{12}H_{15}ClO_5$ (274 7) IR v_{max}^{KBr} cm⁻¹ 716, 850, 1048, 1164, 1208, 1262, 1340, 1390, 1410, 1440, 1590, 1648, 2800, 3030, 3500 ¹H NMR (100 MHz, CDCl₃) δ 1 60 (s, 9H, CMe₃), 2 63 (s, 3H, Me), 10 25 (s, 1H, CHO), 12 5-13 1 (br s, 2H, 2 × OH)

Tert-butyl 4-O-methylolwetonate (17) Oil $C_{19}H_{28}O_5$ (3364) IR v_{max}^{film} cm⁻¹ 754, 820, 850, 960, 1046, 1114, 1154, 1198, 1266,

^{*}Part 142 in the series "Lichen Substances" For part 141 see Connolly, J D, Freer, A A, Kalb, K and Huneck, S (1984) *Phytochemistry* 23, 857

1304, 1334, 1374, 1428, 1464, 1572, 1610, 1640, 1708, 2990, 3400 ¹H NMR (100 MHz, CDCl₃) $\delta 0 80$ (*t*, 3H, CH₂–<u>Me</u>), 1 20 (*m*, 6H, (C<u>H₂)₃–Me</u>), 1 50 (*s*, 9H, CMe₃), 2 34 (*t*, 2H, CO–C<u>H₂–CH₂</u>) 3 72 (*s*, 3H, OMe), 3 93 (*s*, 2H, benzyl CH₂), 6 13, 6 32 (2 × *d*, 2H, 3-H, 5-H), 11 64 (*s*, 1H, OH)

Tert-butyl everninate (19) Crystals, mp 28° (from *n*-pentane) C₁₃H₁₈O₄ (238 3) IR $v_{\text{MBr}}^{\text{MBr}}$ cm⁻¹ 700, 758, 818, 850, 952, 992, 1040, 1062, 1118, 1160, 1200, 1262, 1300, 1330, 1370, 1420, 1450, 1576, 1610, 1640, 3000, 3450 ¹H NMR (200 MHz, CDCl₃) δ 2 80 (s, 9H, CMe₃), 3 45 (s, 3H, Me), 4 45 (s, 3H, OMe), 6 39, 6 45 (2 × d, 2H, 3-H, 5-H), 10 80 (s, 1H, OH)

Tert-butyl β-orcinolcarboxylate (21) Prisms, mp 128–130° (from Et₂O–*n*-hexane) $C_{14}H_{18}O_4$ (250 3) IR $\nu \frac{KBr}{max}$ cm⁻¹ 730, 842, 966, 1024, 1058, 1100, 1140, 1158, 1248, 1300, 1368, 1394, 1430, 1450, 1590, 1620, 1640, 3000, 3480 ¹H NMR (100 MHz, CDCl₃) 1 55 (s, 9H, CMe₃), 2 04 (s, 3H, 3-Me), 2 36 (s, 3H, 6-Me), 5 50 (br s, 1H, 4-OH), 12 18 (s, 1H, 2-OH)

Tert-butyl 4-O-methylolivetolcarboxylate (22) Oil $C_{17}H_{26}O_4$ (294 4) IR $v_{max}^{flm} cm^{-1}$ 710, 754, 780, 820, 832, 850, 960, 1042, 1110, 1154, 1194, 1260, 1300, 1330, 1370, 1422, 1462, 1570, 1606, 1636, 2970, 3400 ¹H NMR (100 MHz, CDCl₃) $\delta 0$ 83 (t, 3H, CH₂-Me), 1 28 (m, (CH₂)₃-Me), 1 56 (s, 9H, CMe₃), 2 80 (t, 2H, benzyl CH₂), 6 17, 6 23 (2 × d, 2H, 3-H, 5-H), 11 84 (s, 1H, OH)

REFERENCES

- 1 Bachelor, F W, Cheriyan, U O and Wong, J D (1979) Phytochemistry 18, 487
- 2 Meyyappan, A, Neelakantan, S and Ramesh, P (1981) Curr Sci 50, 1028
- 3 Huneck, S (1984) Phytochemistry 23, 431

Phytochemistry, Vol 23, No 11, pp 2698-2700, 1984 Printed in Great Britain 0031-9422/84 \$3 00 + 0 00 Pergamon Press Ltd

FLAVONOIDS FROM ACHYROCLINE FLACCIDA

C NORBEDO, G FERRARO and J D COUSSIO

Cátedra de Farmacognosia, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA (Instituto de la Química y Metabolismo del Fármaco), CONICET Junín 956 (1113), Buenos Aires, Argentina

(Revised received 12 March 1984)

Key Word Index—Achyrocline flaccida, Compositae, Inuleae, aerial parts, prenylated flavonoids, flavonoids, caffeic acid derivatives

Abstract—Three new flavonoids 5-hydroxy-7-(3-methyl-2,3-epoxybutoxy)flavanone, 5-hydroxy-3,8-dimethoxy 7-(3-methyl-2,3-epoxybutoxy)flavone and 4'-hydroxy-5-methoxy-7-(3-methyl-2,3-epoxybutoxy)flavone were isolated and identified from the aerial parts of *Achyrocline flaccida* Tamarixetin, gnaphaliin, isognaphaliin, 5,7,8-trihydroxy-3-methoxyflavone, chrysoeriol, galangin 3-methyl ether, naringenin 5-methyl ether, caffeic acid, chlorogenic acid and isochlorogenic acid were also isolated

INTRODUCTION

In continuation of our chemosystematic search of the tribe Inuleae (Compositae), we have now investigated Achyrocline flaccida (Weinm) DC, a shrub, widely distributed in the North of Argentina and the South of Brazil In a previous paper we reported the identification of galangin, galangin 3-methyl ether, quercetin 3-methyl ether and two esters of calleryanin (3,4-dihydroxybenzyl alcohol 4-glucoside) with caffeic acid and protocatechuic acid from Achryrocline satureioides [4] Investigation of the acetone extract of A flaccida resulted in the isolation and determination of the structure of 7,4'-dihydroxy-5-methoxyflavanone and the corresponding 4,2'4'-trihydroxy-6-methoxychalcone [5]

The most characteristic features distinguishing members of the Inuleae from those of other Compositae tribes is the presence of flavonols lacking B ring hydroxylation, 6 and/or 8 hydroxyflavonols and their methyl ethers [6] In the present report we describe the occurrence of such typical flavonoids, together with the identification of three new prenylated flavonoids

RESULTS AND DISCUSSION

The hexane extract of the aerial parts of A flaccida was subjected to silica gel CC affording three new flavonoids The first of these, compound 1 showed a brown colour in UV (365 nm) and a yellow-green colour with methanolic ferric chloride Its UV spectrum exhibited maxima at 272 and 280 (sh) nm characteristic of a flavanone The shifts induced in the UV spectra by aluminium chloride, sodium acetate and sodium methoxide led us to conclude that there is only one free hydroxyl attached to C-5 The ¹H NMR spectrum (in CDCl₃) showed a multiplet at $\delta 7 6$ characteristic of an unsubstituted aromatic ring (B ring), $\delta 6 2$ and 58 signals from protons H-6 and H-8 $\delta 53$ corresponding to H-2 and $\delta 2 6$ (multiplet) to H-3 *trans* and H-3 *cis* The aliphatic chain showed the gem-dimethyl