

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Tandem Regioselective Hydroformylation-Hydrogenation of Internal Alkynes employing a Supramolecular Catalyst

Authors: Bernhard Breit and Weiwei Fang

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201809073 Angew. Chem. 10.1002/ange.201809073

Link to VoR: http://dx.doi.org/10.1002/anie.201809073 http://dx.doi.org/10.1002/ange.201809073

WILEY-VCH

COMMUNICATION

WILEY-VCH

Tandem Regioselective Hydroformylation-Hydrogenation of Internal Alkynes employing a Supramolecular Catalyst

Weiwei Fang,^[a] and Bernhard Breit^{*[a]}

Abstract: New supramolecular ligands containing an acyl guanidine function were designed based on the strategy of increasing the π -acceptor ability of phosphine ligands by introducing electronwithdrawing groups. By applying this novel catalytic system, a general protocol for the Rh-catalyzed hydroformylationhydrogenation of unsymmetrical internal alkynes functionalized with a carboxylic acid was expounded furnishing aliphatic aldehydes in high regio- and chemoselectivities. Control experiments are provided that prove the enzyme-like supramolecular catalyst mode of action.

Natural enzymes efficiently combine molecular recognition and catalysis in one functional assembly, which offers significantly higher rate constants and selectivities than corresponding bimolecular reactions due to the formation of enzyme-substrate complexes resulting in a transition state stabilization.^[1] Inspired by this, supramolecular catalysis has been a long-term objective for chemists, with the ultimate goal to construct catalytic systems capable of mimicking natural enzymes.^[2,3] Simple hydrogen bonding interactions between the substrate and functional groups of catalyst have shown to greatly improve the selectivity of transition metal catalysis.^[4-9] In this context we recently reported on acyl guanidinium-functionalized phosphines^[5,6], exhibiting excellent activities and regioselectivities in the Rhcatalyzed hydroformylation (HF) of vinylacetic acid^[5a] and its analogues^[5b], which furnished aliphatic aldehydes in good regioselectivities (Scheme 1a). However, limitations of this catalyst system became apparent when we attempted to use internal alkenes. Hence, only a methyl-substituted Z-configured substrate could be utilized which sets narrow synthetic limitations. Since a Z-configured alkene is generally obtained from an internal alkyne through cis-hydrogenation employing a Lindlar-type catalyst, we envisioned whether we could employ internal alkynes directly. With an appropriate supramolecular catalyst, a corresponding tandem regioselective HFhydrogenation might furnish the same type of products with a largely extended substrate scope.

In the past decades, the HF of unsymmetrical internal alkynes has been widely neglected to date and only very few examples were reported with rather low regioselectivity.^[10] In 2013, we introduced a Rh/self-assembling ligand system for chemoselective HF of symmetrical and terminal alkynes with excellent stereoselectivity.^[11g] Therefore, the design of new types of phosphine ligands for highly regioselective HF of unsymmetrical internal alkynes is a great challenge in this area at current stage.

In continuation of our long-standing research interests in developing supramolecular concepts for homogeneous catalysis ^[5,6,11], we herein report on new appropriately designed electron-

 [a] W. Fang, Prof. Dr. B. Breit Institut f
ür Organische Chemie, Albert-Ludwigs-Universit
ät Freiburg, Germany
 E-mail: bernhard.breit@chemie.uni-freiburg.de

Supporting information for this article is given via a link at the end of the document.

poor phosphine ligands equipped with an acyl guanidine functionality. Using this new supramolecular catalyst system, tandem Rh-catalyzed HF-hydrogenation of unsymmetrical internal alkynes functionalized with carboxylic acid was realized in high regio- and chemoselectivity providing facile access to aliphatic aldehydes (Scheme 1b).

Scheme 1. Rh-catalyzed HF-hydrogenation of unsymmetrical internal alkynes using a supramolecular ligand

We commenced our investigation by designing new phosphine ligands with enhanced π -acceptor ability.^[11g] We reckoned that the introduction of additional electron-withdrawing groups such as CF₃ and F to the aryl substituents at the phosphine scaffold could enhance the coordination ability of the catalyst to alkynes while simultaneously facilitating CO dissociation, resulting in higher catalytic activity (Scheme 2a). Moreover, the installation of the acyl guanidinium group (as a recognition unit for carboxylic acid) in the *meta* position with respect to the phosphine unit would allow for two-point binding and thus conformational orientation of the substrate via hydrogen bonding interactions.^[5a]

Scheme 2. Ligand synthesis: 1) *n*BuLi, -78 $^{\circ}$ C, DCM; Ar₂PCI. 2) *n*BuLi, -78 $^{\circ}$ C, DCM; CO₂. 3) Boc-guanidine, N-methyl morphine, BOP, DMF and 4) TFA, 1,3-dimethoxybenzene; Na₂CO₃.

The general synthetic protocol for accessing the respective ligands L1-3 is depicted in Scheme 2. Compounds A1-3 were easily formed by coupling of the corresponding chloro diarylphosphines with mono-lithiated 2,6-dibromopyridine. Bromine lithium exchange of A1-3 followed by quenching with CO_2 furnished the carboxylic acids B1-3. The coupling reaction between B1-3 and mono-Boc-protected guanidine led to C1-3.

COMMUNICATION

Subsequent deprotection and neutralization furnished pure ligands L1-3 as colorless solids.

To evaluate catalytic performances of the new ligands in regioselective HF-hydrogenation of unsymmetrical internal alkynes, 3-pentynoic acid S1 was selected as a model substrate (Table 1). When the reaction was performed in toluene at 55 °C with 1 mol% of [Rh(CO)2 acac] and 5 mol% of L1 under 6 bar of CO/H₂ (1:1), low conversion (11%) was obtained and an α , β unsaturated aldehyde 1a was obtained as the main product in excellent regioselectivity (γ/β >25) (Entry 1). In consideration of complete protonation of the acyl guanidinium function to incease the hydrogen bonding interaction between the ligand and substrate^[6a], 5 mol% TsOH was added. Gladly, the conversion of S1 increased to 79% and the main product was changed to the aliphatic aldehyde **1c**, however the ratio of γ/β decreased (Table S1). Other solvents such as DCE, CH₂Cl₂ and THF were examined with DCE providing the most promising result (Entry 2). Furthermore, the addition of acid co-catalysts showed a significant effect on the reaction results: stronger acids such as TFA and CSA led to 1c in a higher yield with excellent regioselectivity (Entries 4 and 5), and similar results to that of TsOH were obtained when TfOH, MsOH and PhSO₃H were used. Conversely, using much weaker acids such as AcOH and H_3PO_4 only resulted in very poor results (Table S3). For operational simplicity, crystalline CSA was chosen for further optimization of reaction conditions. Decreasing the amount of CSA from 5 to 2.5 mol% resulted in a lower conversion and chemoselectivity of 1c (96% vs. 26%), but the regioselectivity remained unaffected (γ/β >25, Table S4, for reaction temperature effect see Table S5). The reaction time could be shortened to 12 h with similar results (Entries 5 and 7). As expected, the electron withdrawing groups of ligands showed a significant effect on the activity and selectivity of the supramolecular catalyst systems. L1 with the strongest electron withdrawing ability proved to be the best ligand, which clearly confirmed our initial strategy used in the ligand design (Entries 7-13). The parent diphenylphosphine-substituted ligand L5 did not show any catalytic activity at all (Entry 11).

With the optimized conditions in hand, we sought to examine the general scope of the supramolecular catalytic protocol. As shown in Table 2, a variety of unsymmetrical internal alkynes underwent efficient HF-hydrogenation processes, affording corresponding aliphatic aldehydes in good to excellent yields with outstanding chemo- and regioselectivity. The chain length of the R group (1c-6c) hardly affected the efficiency and selectivity, and the desired aldehydes were obtained in 90-94% yields with regioselectivity up to 25:1. However, a bulkier substituent secondary alkyl decreased chemoand regioselectivity (2c vs. 7c) but still favored the formation of the γ product with a quite remarkable selectivity of 7:1. Substrates with functional groups such as PMB ethers and even unprotected hydroxyl groups were well tolerated and products with good regioselectivity were observed, but in slightly lower yield (8c and 9). Unexpectedly, when 6-hydroxy-3-hexynoic acid S9 was used, the butenolide 9a' was formed, which has shown to have interesting hepatoprotective properties.^[12] Its formation might involve attack of the free hydroxyl group at the rhodiumacyl intermediate

Table 1. Reaction optimization^[a]

но	le [Rh], L H₂/CO, A,		HO _{+ HO} CHO Me +		O M
S1	DCE	10	16	10	1d

01		Ia				
Entry	L	A	Yields/% (1a/1b/1c/1d)	Select. 1 c /%	Ratio (γ/β)	Conv. /%
1 ^[b]	L1	1	10/<1/0/0	0	>25	11
2	L1	TsOH	1/<1/87/11	85	7	99
3	L1	TfOH	36/<1/46/1	53	>25	94
4	L1	TFA	0/0/96/3	96	28	100
5	L1	CSA	0/0/96(90)/4	96	25	100
6	L1	MsOH	1/2/72/22	68	3	96
7 ^[c]	L1	CSA	0/<1/95(92)/4	95	22	100
8 ^[c]	L2	CSA	3/1/5/2	20	3	35
9 ^[c]	L3	CSA	1/1/1/1	8	2	11
10 ^[c]	L4	CSA	0/0/0/0	0	١	84
11 ^[c]	L5	CSA	0/0/0/0	0	١	12
12 ^[c]	L6	CSA	0/0/0/0	0	١	44
13 ^[c]	L7	CSA	0/0/0/0	0	١	34

[a] [Rh(CO)₂acac]/L/additive/**S1** = 1:5:5:100, c(**S1**) = 0.5 M, DCE (2 mL), CO/H₂ (1:1, 6 bar), 55 °C, 20 h. Yield was determined by NMR spectroscopy using 1,3,5-trimethoxybenzene (TMB) as the internal standard and isolated yield was shown in parentheses. Selectivity (Select.), ratio of γ/β [n(a+c)/n(b+d)] and conversion (conv.) were determined by analysis of the reaction mixture by NMR spectroscopy. [b] Toluene was used. [c] 12 h. DCE = 1,2-dichloroethane, TsOH = *p*-toluenesulfonic acid, TfOH = trifluoromethanesulfonic acid, CSA = camphorsulfonic acid, MsOH = methanesulfonic acid. PhSO₃H = benzenesulfonic acid. AcOH = acetic acid

followed by a double bond isomerization forming the butenolide, which is a structural key element of a multitude of pharmaceuticals.^[13]

Next, we turned our attention to the HF-hydrogenation of unsymmetrical internal aryl alkynes. For these substrates a higher pressure of syngas (10 bar) was necessary to achieve high yields and chemoselectivity. 4-Phenyl-3-butynoic acid **S10** furnished the desired aldehyde **10c** in 79% yield with good chemo- and regioselectivity (95%, γ/β up to 25:1). For substituted aryls, the relative position of the substituent on the phenyl ring affected the chemoselectivity (**11c** vs. **12c** and **13c**), but excellent regioselectivity was maintained throughout all substitution patterns (γ/β up to 25:1). Substrates with electron withdrawing groups (such F and CF₃) revealed higher chemoselectivity rather than those having an electron donating group (OMe) (96% and 95% vs. 90%, **15c** and **16c** vs. **14c**) and

WILEY-VCH

all displayed high γ -regioselectivity. Polyaromatic- and heterocyclic substituents were also well tolerated (**17c** and **18c**).

Table 2. Substrate scope.[a]

[a] [Rh(CO)₂acac]/L1/CSA/S = 1:5:5:100, c(S) = 0.5 M. Isolated yield. Selectivity (Select.), ratio of γ/β [n(a+c)/n(b+d)] and conversion (conv.) were determined by analysis of the reaction mixture by NMR spectroscopy. [b] CO/H₂ (1:1, 16 bar) and the yield was determined by NMR spectroscopy using TMB as the internal standard. PMB = 4-methoxybenzyl.

To clarify the role of ligand L1 in the course of this HFhydrogenation reaction, control experiments were undertaken as depicted in Table 3. Using a rhodium catalyst derived from a monodentate ligand, L8, gave no product 1c and only a mixture of unsaturated aldehydes 1a and 1b was observed in very low yields with rather poor regioselectivity, and the presence of CSA

hardly affected the outcome of the reactions using ligand L8, further indicating that CSA serves to protonate the guanidine function.^[6a] Similar to the result of L5, no formation of any aldehydes was observed when using triphenylphospine (Table S12). As expected, very inferior results were obtained when MeOH was used as the solvent, because its presence would disturb hydrogen bonding interaction of the ligand and substrate. Under the same reaction condition, the L1-derived catalyst showed no activity towards a terminal alkyne, 3-butynoic acid S19 and similar results were also obtained using L8 (Table S12). Lower activity and worse selectivity were found when 4-hexynoic acid S20 and 5-heptynoic acid S21 were involved, which indicated that the distance between the carboxylic acid functionality and the reactive alkyne group has a dramatic impact. Further evidence came from the fact that methyl ester S22, lacking the complementary functionality, reacted slowly and with low selectivity. Similar results were observed for the internal aryl substrate S10 and its methyl ester S23 (Table S12), and it provided a solid support that the substrate preorientation via the hydrogen bonding interactions elegantly controlled the selectivity and enhanced the activity of catalysts.

Table 3. Control experiments^[a]

$R^{1}O$ M_{n} R^{2} \rightarrow		0+ R ¹ 0 HO		R ² + R ¹ 0 HO R ²
s	R ² a	b	c CH	O d

Entry		S	Yields/% (a/b/c/d)	Select. c /%	Ratio (γ/β)	Conv. /%
1	L8	S1	4/11/0/0	0	<1	23
2 ^[b]	L8	S1	10/10/1/1	4	1	28
3 ^[c]	L1	S1	3/2/0/0	0	1	16
4 ^[d]	L1	S19	0/0/0/0	0	١	27
5 ^[e]	L1	S20	21/5/15/0	34	4	40
6 ^[f]	L1	S21	3/3/2/0	20	1	10
7	L1	S22	<1/1/<1/0	32	2	43

[a] [Rh(CO)₂acac]/L/CSA/**S** = 1:5:5:100, c(**S**) = 0.5 M, DCE (2 mL), CO/H₂ (1:1, 6 bar), 55 °C, 12 h. Yield was determined by NMR spectroscopy using TMB as the internal standard. Selectivity (Select.), ratio of γ/β [n(**a**+**c**)/n(**b**+**d**)] and conversion (conv.) were determined by analysis of the reaction mixture by NMR spectroscopy. [b] Without of CSA. [c] MeOH was used. [d] TsOH was used. [e] ratio (δ/γ). [f] ratio (ϵ/δ).

COMMUNICATION

Figure 1. Rh-catalyzed HF-hydrogenation of S1 as a function of reaction time.

This new method involves two catalytic reactions: HF and hydrogenation. The formation of the main product of 9a', containing the $\alpha,\beta\text{-unsaturated}$ $\gamma\text{-lactone}$ moiety, indicated that the HF could be the first step, then followed by hydrogenation. So control experiments for detecting the possible intermediate in the reaction of S1 at different reaction times were carried out. The α , β -unsaturated aldehyde **1a** was produced in 18% yield after 1 h, and in line with the increasing reaction time, its amount initially increased, reaching its maximum percentage at 40% before levelling off to zero (Figure 1). At the same time, the amount of 1c as well as its chemoselectivity were always increasing during the process, and a yield of 95% was achieved after 12 h. Notably, the regioselectivity was well maintained at a high level (y/β up to 22:1, Table S9). Based on these studies, it can be reasoned that the HF of alkynes occurs first, forming the enal 1a, which was further subsequently hydrogenated under the reaction conditions, releasing the final saturated aldehyde 1c. Based on our previous report^[5a], (Z)-pent-3-enoic acid (Z-S24) which would be the product in case an alkyne hydrogenation occurs first and which could also possibly be transferred into 1c using the catalyst derived from ligand L5. However, no traces of Z-S24 could be detected during the course of this new tandem reaction. Furthermore, reaction results with low activity and selectivity were obtained when Z- and E-S24 were studied in this new catalytic system (Table S12).

On the basis of the above results and the generally accepted mechanism of HF catalyzed by Rh-triarylphosphine complexes, we propose a mechanism consisting of four consecutive steps, which is reminiscent of the working mode of enzymes.^[14] a) The presence of CSA would protonate the functional guanidine group of ligand L1, forming an intermediate A with a guanidinium salt. b) A could efficiently bind the substrate via hydrogen bonding interaction in a way that the substrate is well preoriented closely to the Rh center and activated by forming an intermediate B. c) y-Selective HF within the supramolecular substrate-catalyst B occurred resulting in a complex C, consisted of α , β -unsaturated aldehyde 1a and catalyst. d) Further hydrogenation within complex C would furnish the desired product 1c, and regenerates the catalyst A. However, at this stage we cannot exclude a mechanism by which two guanidinium ligands interact with the carboxylic acid function, as has been found previously for a related HF of β , γ -unsaturated alkenes.^[5c]

Scheme 3. Proposed reaction mechanism.

To conclude, we have designed and synthesized a series of new supramolecular ligands, containing a functional guanidine group with increasing π -acceptor ability of the phosphine donor ligands. A protocol for a tandem Rh-catalyzed HF-hydrogenation of unsymmetrical internal alkynes functionalized with carboxylic acid in highly regio- and chemoselectivity was successfully established, which yielded aliphatic aldehydes as desired products. This study further highlighted the unique advantages of supramolecular catalysis mimicking natural enzymes and an investigation of corresponding rationally designed chiral ligands are being undertaken in our lab.

Acknowledgements

We thank the Alexander von Humboldt Foundation (W.F.) for a postdoctoral fellowship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: alkynes • enzyme mimics • ligand design • regioselective hydroformylation • supramolecular catalysis

- [1] T. C. Bruice, F. C. Lightstone, Acc. Chem. Res. 1999, 32, 127-136.
- [2] a) J. Meeuwissen, J. N. H. Reek, *Nat. Chem.* **2010**, *2*, 615-621; b) M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. van Leeuwen, *Chem. Soc. Rev.* **2014**, *43*, 1660-1733; c) M. Raynal, P. Ballester, A. Vidal-Ferran, P. W. van Leeuwen, *Chem. Soc. Rev.* **2014**, *43*, 1734-1787.
- [3] a) B. Breit, Angew. Chem. Int. Ed. 2005, 44, 6816-6825; b) S. Carboni, C. Gennari, L. Pignataro, U. Piarulli, Dalton Trans. 2011, 40, 4355-4373; c) P. Dydio, J. N. H. Reek, Chem. Sci. 2014, 5, 2135-2145; d) H. J. Davis, R. J. Phipps, Chem. Sci. 2017, 8, 864–877; e) S. S. Nurttila, P. R. Linnebank, T. Krachko, J. N. H. Reek, ACS Catal 2018, 8, 3469-3488.
- [4] S. Das, C. D. Incarvito, R. H. Crabtree, G. W. Brudvig, Science 2006, 312, 1941-1943.
- [5] a) T. Smejkal, B. Breit, Angew. Chem. Int. Ed. 2008, 47, 311-315; b) T. Smejkal, B. Breit, Angew. Chem. Int. Ed. 2008, 47, 3946-3949; c) T.

Smejkal, D. Gribkov, J. Geier, M. Keller, B. Breit, *Chem. Eur. J.* 2010, *16*, 2470-2478.

- a) L. Diab, T. Smejkal, J. Geier, B. Breit, *Angew. Chem. Int. Ed.* 2009, *48*, 8022-8026; b) D. Fuchs, G. Rousseau, L. Diab, U. Gellrich, B. Breit, *Angew. Chem. Int. Ed.* 2012, *51*, 2178-2182; c) L. Diab, U. Gellrich, B. Breit, *Chem. Commun.* 2013, *49*, 9737-9739.
- [7] Selected examples: a) P. Dydio, W. I. Dzik, M. Lutz, B. de Bruin, J. N. Reek, Angew. Chem. Int. Ed. 2011, 50, 396-400; b) P. Dydio, J. N. Reek, Angew. Chem. Int. Ed. 2013, 52, 3878-3882; c) P. Dydio, J. N. H. Reek, Angew. Chem. Int. Ed. 2013, 3878 –3882; d) P. Dydio, R. J. Detz, B. de Bruin, J. N. Reek, J. Am. Chem. Soc. 2014, 136, 8418-8429.
- [8] Selected examples: a) P. Fackler, C. Berthold, F. Voss, T. Bach, J. Am. Chem. Soc. 2010, 132, 15911-15913; b) J. R. Frost, S. M. Huber, S. Breitenlechner, C. Bannwarth, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 691-695; c) F. Burg, M. Gicquel, S. Breitenlechner, A. Pothig, T. Bach, Angew. Chem. Int. Ed. 2018, 57, 2953-2957.
- [9] Selected examples: a) Q. Zhao, J. Wen, R. Tan, K. Huang, P. Metola, R. Wang, E. V. Anslyn, X. Zhang, *Angew. Chem. Int. Ed.* 2014, *53*, 8467-8470; b) Z. Han, P. Li, Z. Zhang, C. Chen, Q. Wang, X.-Q. Dong, X. Zhang, *ACS Catalysis* 2016, 6, 6214-6218; c) X. L, C. You, Y. Yang, Y. Yang, P. Li, G. Gu, L. W. Chung, H. Lv, X. Zhang, *Chem. Sci.* 2018, *9*, 1919-1924.
- [10] a) B. G. V. d. Hoven, H. Alper, J. Org. Chem. 1999, 64, 9640-9645; b) B.
 G. V. d. Hoven, H. Alper, J. Org. Chem. 1999, 64, 3964-3968; c) X. Fang,

M. Zhang, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* **2013**, *52*, 4645-4649; d) X. Fang, R. Jackstell, M. Beller, *Chem. Eur. J.* **2014**, *20*, 7939-7942; e) Z. Zhang, Q. Wang, C. Chen, Z. Han, X. Q. Dong, X. Zhang, *Org. Lett.* **2016**, *18*, 3290-3293.

- [11] Selected examples a) B. Breit, W. Seiche, J. Am. Chem. Soc. 2003, 125, 6608-6609; b) B. Breit, W. Seiche, Angew. Chem. Int. Ed. 2005, 44, 1640-1643; c) C. Waloch, J. Wieland, M. Keller, B. Breit, Angew. Chem. Int. Ed. 2007, 46, 3037-3039; d) M. de Greef, B. Breit, Angew. Chem. Int. Ed. 2009, 48, 551-554; e) J. Wieland, B. Breit, Nat. Chem. 2010, 2, 832-837; f) V. Agabekov, W. Seiche, B. Breit, Chem. Sci. 2013, 4, 2418-2422; g) K. M. Wenz, G. Leonhardt-Lutterbeck, B. Breit, Angew. Chem. Int. Ed. 2017, 57, 5100-5104.
- [12] Y. Itoh, H. Shimura, M. Ito, N. Watanabe, M. Yamagishi, M. Tamai, K. A. Hanada, J. Antibiot. (Tokyo) 1991, 44, 832-837.
- [13] a) G. Le Goff, M. T. Martin, C. Servy, S. Cortial, P. Lopes, A. Bialecki, J. Smadja, J. Ouazzani, *J. Nat. Prod.* **2012**, *75*, 915-919; b) G. Le Goff, M. T. Martin, B. I. lorga, E. Adelin, C. Servy, S. Cortial, J. Ouazzani, *J. Nat. Prod.* **2013**, *76*, 142-149; c) R. Tello-Aburto, A. N. Lucero, S. Rogelj, *Tetrahedron Lett.* **2014**, *55*, 6266-6268.
- [14] N. Sträter, W. N. Lipscomb, T. Klabunde, B. Krebs, Angew. Chem. Int. Ed. 1996, 35, 2024-2055.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

COMMUNICATION

A new supramolecular catalyst enables a tandem Rh-catalyzed hydroformylationhydrogenation of unsymmetrical internal alkynes functionalized with carboxylic acids in β -position gave access to aliphatic aldehydes in high regio- and chemoselectivity. Control experiments prove enzyme-like catalyst behavior. Weiwei Fang, Bernhard Breit*

Page No. – Page No.

Tandem Regioselective Hydroformylation-Hydrogenation of Internal Alkynes employing a Supramolecular Catalyst