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Protonation of hydrido complexes is one of the important
synthetic methods in the chemistry of these interesting
systems.[1–5] However, this methodology has been applied
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sparsely in the preparation of other types of mononuclear s
complexes.[6] We have explored the coordination chemistry of
BH3·PMe3 and reported base-stabilized boryl complexes
(e.g., [Cp*M(CO)3(BH2·PMe3)] (M=Mo, W[7]) and
[Cp*M(CO)2(BH2·PMe3)] (M=Fe, Ru[8])) and borane s

complexes (e.g., [M(CO)5(h1-BH3·PMe3)] (M=Cr, Mo,
W[9]) and [CpMn(CO)2(h1-BH3·PMe3)][10]). Herein, we
report new manganese–boryl complexes,
[Mn(CO)4(PR3)(BH2·PMe3)] (1) and their protonation to
produce cationic borane s complexes, [Mn(CO)4(PR3)(h1-
BH3·PMe3)]+ (2). Heterolytic cleavage of the metal-coordi-
nated B�H bond of 2 is also described here.

Photolysis of [MnMe(CO)4(PR3)] with BH3·PMe3 resulted
in the evolution of methane and gave an orange solution, from
which boryl complexes [Mn(CO)4(PR3)(BH2·PMe3)] (1a :
PR3=PMe2Ph; 1b : PR3=PEt3) were isolated as pale
yellow crystals in moderate yields (Scheme 1). The
11B NMR spectra of complexes 1a and 1b display a boryl
signal at lower field (d=�29.4 and �29.6 ppm, respectively)
than that of BH3·PMe3 (d=�37.0 ppm). The IR spectra of 1
show carbonyl bands shifted to lower energy in comparison to
those of the precursor [MnMe(CO)4(PR3)]. These observa-
tions indicate polarization of the Mn�B bond in a Mn(�)�
B(þ) fashion and a resultant increase of electron density on
the metal center. Similar polarization of the M�B bond has
been found in phosphane-coordinated primary boryl com-
plexes of Group 6 and 8 metals.[7,8] The solid-state structure of
1a (Figure 1)[11] shows that this molecule adopts a highly
distorted octahedral geometry. The phosphane ligand is
located cis to the boryl group. The manganese–boron bond
length (2.314(2) =) is substantially longer than that in
the catecholboryl complex [Mn(CO)5{B(1,2-O2C6H4)}]
(2.108(6) =)[12] because of the absence of a vacant p orbital
on the boron center that can be utilized for p interaction with
the metal center. Two of the cis-carbonyl groups significantly
tilt toward the boryl group. The C(2)-Mn-C(3) bond angle is
154.62(6)8. Owing to the pronounced Mn(�)�B(þ) polar-
ization mentioned above, the nature of compounds 1 closely
resembles a contact ion pair composed of [Mn(CO)4(PR3)]�

and [BH2·PMe3]+; the anion-like manganese moiety is iso-
electronic with Fe(CO)5. Consequently, the geometry of the
[Mn(CO)4(PR3)] moiety approaches a trigonal bipyramid,

and the Mn�B bond becomes longer. Note that more p-acidic
ligands prefer to be located at equatorial positions in trigonal-
bipyramidal complexes. In the [Mn(CO)4(PR3)] fragment, p-
acidic carbonyl ligands occupy the equatorial positions, and a
less p-acidic phosphane ligand is situated at an apical position,
which is cis to the boryl group in 1.

The boryl complexes were protonated by treating 1 in
[D2]dichloromethane with the Brønsted acid
[H(OEt2)2](TFPB) (TFPB= [B{3,5-C6H3(CF3)2}4]), which
has a weakly coordinating anion.[13] The resulting pale
yellow solutions showed a broad BH resonance signal
around d=�4.5 ppm in the 1H NMR spectra. The 11B NMR
spectrum of the product displayed a doublet of quartets at
higher field (d=�40.3 to �40.4 ppm) than that of free

BH3·PMe3. The appearance of these signals clearly
shows the formation of borane s complexes
[Mn(CO)4(PR3)(h1-BH3·PMe3)](TFPB) (2, see
Scheme 1). The value of the chemical shift of the 11B
NMR signal falls in the range of those for s complexes
of BH3·PMe3.[9, 10] The 1H NMR signal around d=

�4.5 ppm is assigned to the BH resonance; the 1H
NMR signals of the metal-coordinated and terminal BH
protons are averaged through fast site-exchange. This
process was not frozen out even at �80 8C. Similar
fluxional behavior has been found in other complexes of
phosphaneboranes.[9,10,14,15] Complexes 2 were also
generated by methyl abstraction from [MnMe-
(CO)4(PR3)] using [H(OEt2)2](TFPB), followed by
addition of BH3·PMe3. These complexes have a lifetime
of a few days, and can be observed by spectroscopy;
however, they could not be isolated in pure forms.Scheme 1. Syntheses of complexes 1 and 2.

Figure 1. Structure of 1a (ORTEP diagram; thermal ellipsoids at the
30% probability level). Selected interatomic distances [?] and angles
[8]: Mn-B 2.314(2), Mn-P(1) 2.302(1), B-P(2) 1.901(2), B-H(B1) 1.08(2),
B-H(B2) 1.12(2), Mn-C(1) 1.792(2), Mn-C(2) 1.811(1), Mn-C(3)
1.814(1), Mn-C(4) 1.801(1); C(2)-Mn-C(3) 154.62(6), C(4)-Mn-B
171.76(6), Mn-B-P(2) 114.99(9).
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Figure 2 shows the DFT-optimized structure of the model
compound [Mn(CO)4(PH3)(h1-BH3·PMe3)]+ (2c).[16, 17] It
resembles the structure of [M(CO)5(h1-BH3·PMe3)] (M=Cr,
W) except for the metal-coordinated phosphane ligand. The
Mn···B interatomic distance (2.780 =) is far longer than that
of 1a, and the Mn-H-B bond angle is 133.448. Thus, the mode
of coordination for the borane ligand is essentially end-on.
The B�H(1) bond length is 1.270 =, and the B�H s bond is
elongated by about 6% on coordination.

Borane s complexes 2 are formally the conjugate acids of
1. However, deprotonation from 2 did not occur even when
they were treated with bases such as NaH and diazabicy-
cloundecene. On the other hand, a solution of 2 decomposed
in a few days at room temperature to give a mixture
containing [MnH(CO)4(PR3)] and [BH2·2PMe3]+, although
the decomposition process was not very clean. This suggests
the coordinated B�H s bond of complexes 2 cleaves hetero-
lytically into H� and “[BH2·PMe3]+”.[18] Recently, Kubas and
co-workers reported similar heterolytic cleavage of H2 and
silanes on the cationic manganese or rhenium fragments
[M(CO)5�n(PR3)n]+ (M=Mn, Re, n= 1, 2).[19] The electron-
deficient metal centers undergo strong s donation from the
H–H, Si–H, as well as B–H s orbitals, but backdonation into
the corresponding s* orbitals hardly occurs. Therefore, the
electron density of these s ligands is significantly reduced and
the metal-coordinated s bond is activated heterolytically. The
natural bond orbital (NBO) analysis based on the aforemen-
tioned DFT calculations on 2c shows that the bridging
hydrogen atom of the borane ligand becomes more hydridic
on coordination to the cationic manganese center.[20] Its
natural charge is �0.034, whereas that of the B–H hydrogen

atom of free BH3·PMe3 is + 0.002. At the same time, that of
the “BH2·PMe3” group increases from �0.002 to þ0.311
(Scheme 2). The electron density of the BH3·PMe3 ligand is
thus withdrawn toward the bridging hydrogen by the highly
electrophilic [Mn(CO)4(PR3)]+ ion in the cationic borane
complexes.

Experimental Section
1a : A mixture of [MnMe(CO)4(PMe2Ph)] (247 mg, 0.75 mmol) and
BH3·PMe3 (203 mg, 2.28 mmol) in hexane (10 mL) was photolyzed at
3 8C for 90 min using a 450 W medium-pressure Hg arc lamp. The
resulting solution was evaporated and evacuated for 1 h to remove
excess BH3·PMe3. Recrystallization of the solid residue from hexane
at �80 8C provided pale yellow crystals of 1a (90 mg, 31%).
Compound 1b was obtained in an analogous manner in 15% yield.

Data for 1a : 1H NMR (500 MHz, [D6]benzene, 23 8C, TMS): d=
0.88 (d, 2J(P,H)= 10.0 Hz, 9H; PMe3), 1.49 (d, 2J(P,H)= 8.5 Hz, 6H;
PMe2Ph), 7.02, 7.09, 7.36 ppm (m, 5H; PMe2Ph), the BH proton
signals were too broad to be observed; 11B NMR (160.4 MHz,
[D6]benzene, 23 8C, BF3·OEt2): d=�29.4 ppm (dt, 1J(B,H)=
105.3 Hz, 1J(B,P)= 73.5 Hz); 31P NMR (202.4 MHz, [D6]benzene,
23 8C, 85% H3PO4): d= 27.3 (br; PMe2Ph), 0.9 ppm (br; PMe3);
13C NMR (125.7 MHz, [D6]benzene, 23 8C, TMS): d= 13.0 (d,
1J(C,P)= 36.7 Hz; PMe3), 16.6 (d, 1J(C,P)= 29.3 Hz; PMe2Ph),
129.0, 129.4 (d, 1J(C,P)= 7.3 Hz), 140.7 (d, 1J(C,P)= 38.1 Hz) (Ph),
219.9, 226.8, 227.9 ppm (CO); IR (KBr): ñ= 1893.8 (vs), 1906.3 (vs),
1925.6 (vs), 2008.5 (s) (C¼O), 2357 (w) (BH) cm�1; MS (EI, 70 eV):
m/z (%): 394 (12) [M+], 366 (89) [M+�CO], 338 (24) [M+�2CO], 320
(60) [M+�PMe3], 310 (30) [M+�3CO], 282 (100) [M+�4CO];
elemental analysis (%) calcd for C15H22BMnO4P2: C 45.72, H 5.63;
found: C 45.64; H, 5.57.

Data for 1b : 1H NMR (500 MHz, [D6]benzene, 23 8C, TMS): d=
0.91 (dt, 3J(H,H)= 7.5 Hz, 3J(P,H)= 15.5 Hz, 9H; P(CH2CH3)3), 0.92
(d, 2J(P,H)= 10.5 Hz, 9H; PMe3), 1.59 ppm (dq, 3J(H,H)� 2J(P,H)=
7.5 Hz, 6H; P(CH2CH3)3), the BH proton signals were too broad to be
observed; 11B NMR (160.4 MHz, [D6]benzene, 23 8C, BF3·OEt2): d=
�29.6 ppm (dt, 1J(B,H)= 106.3 Hz, 1J(B,P)= 71.2 Hz); 31P NMR
(202.4 MHz, [D6]benzene, 23 8C, 85% H3PO4): d= 43.0 (br; PEt3),
0.7 ppm (br; PMe3); 13C NMR (125.7 MHz, [D6]benzene, 23 8C,
TMS): d= 7.5 (P(CH2CH3)3), 12.9 (d, 1J(C,P)= 37.1 Hz; PMe3), 19.0
(d, 1J(C,P)= 24.6 Hz; P(CH2CH3)3), 129.0, 129.4 (d, 1J(C,P)= 7.3 Hz),
140.7 (d, 1J(C,P)= 38.1 Hz) (Ph), 220.5, 227.8, 228.0 ppm (br; CO); IR
(KBr): ñ= 1889 (vs), 1910 (vs), 2004 (vs) (C¼O), 2357 (w) (BH) cm�1;
MS (EI, 70 eV): m/z (%): 374 (5) [M+], 346 (24) [M+�CO], 318 (5)
[M+�2CO], 290 (3) [M+�3CO], 262 (100) [M+�4CO], 173 (27)
[Mn(PEt3)+], 144 (60) [Mn(BH2·PMe3)+]; elemental analysis (%)
calcd for C13H26BMnO4P2: C 41.74, H 7.01; found: C 41.57, H 6.85.

2a : Compound 1a (41 mg, 0.10 mmol) and [H(OEt2)2](TFPB)
(362 mg, 0.36 mmol) were combined in dichloromethane (10 mL)
under vacuum. After the mixture had been stirred for 3 h, volatiles
were evaporated to dryness. The 1H, 11B, and 31P NMR spectra of the
resulting yellow residue indicated complete consumption of 1a and

Figure 2. DFT-optimized structure of 2c. Selected interatomic distan-
ces [?] and angles [8]: Mn···B 2.780, Mn-H(1) 1.753, B-H(1) 1.270,
B-H(2) 1.200, B-H(3) 1.200, B-P(2) 1.950, Mn-P(1) 2.380, Mn-C(1)
1.840, Mn-C(2) 1.880, Mn-C(3) 1.880, Mn-C(4) 1.840; Mn-H(1)-B
133.44, P(1)-Mn-C(1) 176.80.

Scheme 2. NBO charge distribution in free BH3·PMe3 (left) and 2c
(right).
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displayed new signals assignable to 2a. Alternatively, 2a was cleanly
generated by addition of BH3·PMe3 to a solution of [Mn(CO)4(PMe2-
Ph)(OEt2)]+, which was produced by the reaction of [MnMe(CO)4(P-
Me2Ph)] with [H(OEt2)2](TFPB) in diethyl ether. The PEt3 derivative
2b was prepared by similar methods.

Data for 2a : 1H NMR (500 MHz, [D2]dichloromethane, 23 8C,
TMS): d=�4.48 (br, 3H; BH), 1.32 (d, 2J(P,H)= 11.5 Hz, 9H; PMe3),
1.98 (d, 2J(P,H)= 9.0 Hz, 6H; PMe2Ph), 7.57, 7.72 ppm (s, 1H, 2H;
[B{C6H3(CF3)2}4]); 11B NMR (160.4 MHz, [D2]dichloromethane,
23 8C, BF3·OEt2): d=�40.4 (dq, 1J(B,H)= 81 Hz, 1J(B,P)= 70 Hz;
BH2·PMe3), �6.7 ppm (s; TFPB); 31P NMR (202.4 MHz,
[D2]dichloromethane, 23 8C, 85% H3PO4): d=�4.0 (br; PMe3),
15.0 ppm (br; PMe2Ph); MS (FAB, sulfolane): m/z (%): 367 (10)
[M+�CO], 193 (100) [Mn(PMe2Ph)+], 139 (43) [PHMe2Ph+].

Data for 2b : 1H NMR (500 MHz, [D2]dichloromethane, 23 8C,
TMS): d=�4.43 (br, 3H; BH), 1.10–1.22 (m, 9H; P(CH2CH3)3), 1.35
(d, 2J(P,H)= 11.5 Hz, 9H; PMe3), 1.72–1.80 (m, 6H; P(CH2CH3)3),
7.57, 7.72 ppm (s, 1H, 2H; [B{C6H3(CF3)2}4]); 11B NMR (160.4 MHz,
[D2]dichloromethane, 23 8C, BF3·OEt2): d=�40.3 (br), �6.7 ppm (s;
TFPB); 31P NMR (202.4 MHz, [D2]dichloromethane, 23 8C, 85%
H3PO4): d=�5.3 (br; PMe3), 48.7 ppm (br; PEt3); MS (FAB,
sulfolane): m/z (%): 173 (100) [Mn(PEt3)+], 120 (28) [PHEt3+].
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