PICROTOXANE TERPENOIDS FROM PICRODENDRON BACCATUM

KAZUO KOIKE, TAICHI OHMOTO,* TAKATOSHI KAWAI† and TADASHI SATO†

School of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274, Japan; †Tsukuba Research Laboratories, Eisai Co., Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-26, Japan

(Received 15 February 1991)

Key Word Index—Picrodendron baccatum; Simaroubaceae; bark; picrodendrin E; picrodendrin F; picrodendrin I; picrotoxane; X-ray crystallography; CD exiton coupling.

Abstract-Three new picrotoxane type terpenoids, picrodendrins E, F and I, were isolated from the bark of Picrodendron baccatum. The structures were determined by spectroscopic evidence and X-ray crystallographic analysis.

INTRODUCTION

Picrodendron baccatum Klug et Urban, has the common name in the Dominican Republic, 'mata becerro' which means 'calf killer', and it used to kill bed bugs and lice in Dominica. In previous phytochemical studies of the plant collected in Indonesia, we have isolated four new picrotoxane terpenoids [1, 2]. In our continuing studies of this plant, we have now isolated three new picrotoxane terpenoids, picrodendrins E (1), F (2) and I (3).

RESULTS AND DISCUSSION

Picrodendrin F (2), $C_{20}H_{28}O_{10}$, was obtained as prisms. Its IR spectrum showed the presence of hydroxyl $(v_{max} 3450 \text{ cm}^{-1})$ and γ -lactone $(v_{max} 1775 \text{ and} 1765 \text{ cm}^{-1})$ groups. Comparisons of the ¹H and ¹³C NMR spectral data (Tables 1 and 2) of 2 with those of picrodendrin A (4) [1] indicated that 2 has a picrotoxane skeleton. In particular, ¹H and ¹³C NMR signals due to the cyclohexane, cyclopentane and y-lactone systems of 2 resonanced at almost the same frequencies as the corresponding ones in the spectrum of $\dot{4}$, while the remaining ¹H and ¹³C signals of 2 observed at major different positions. The long-range ¹³C-¹H correlation spectroscopy (COSY) study of 2 was examined to clarify the connectivity of each resonance in the spectrum of 2. Thus, the long-range ${}^{13}C-{}^{1}H$ couplings observed between a γ lactone carbonyl carbon (C-17, δ 180.01) and both unequivalent methylene protons (H-14, δ 3.36 and 4.44) and a methine proton (H-18, $\delta 4.71$), between an oxygenbearing carbon (C-16, δ 80.42) and both the methylene protons (H-14) and a methyl protons (H-19, δ 1.61), and between a spiro carbon (C-13, δ 90.31) and the methylene protons (H-18). These correlations were given by the long-range couplings established the spiro y-lactone group of the molecule. Thus, the planar structure 2 is proposed for picrodendrin F. In order to confirm the proposed structure and to determine its stereochemistry, a single crystal X-ray analysis of its 18-p-bromobenzoate

(2a) was conducted. The X-ray crystallographic analysis was carried out on a single crystal obtained from a methanol-water solution. However, the crystal structure is unusual in that the two molecules of the asymmetric unit have different conformations, as shown in Fig. 1. Nevertheless, the relative stereostructure of picrodendrin F (2) has been determined. Secondly, we applied the CD exciton chirality method [3] to the picrodendrin F 16,18di-p-bromobenzoate (2b). The CD spectrum of 2b showed

^{*}Author to whom correspondence should be addressed.

Н	1	2	4	3	5
2	4.38 br s	3.78 br s	3.70 s	5.14 d (5.5)*	4.20 d (4.4)*
3	5.24 br d (4.0)	5.19 br s	5.15 d (1.1)	5.15 br s	5.00 d (1.1)
4	2.81 t (4.0)				
5	3.39 d (4.0)	3.47 d (1.1)	3.47 d (1.1)	3.21 dd (3.1, 0.9)	3.12 dd (3.1, 1.1)
6	. ,			3.43 d (3.1)	2.69 d (3.1)
7	1.76 s	1.94 s	1.89 s	4.57 dd (11.0, 4.0)*	1.89 s
				4.84 dd (11.0, 4.0)*	
8		2.78 sept (6.6)	2.74 sept (6.2)	2.92 sept (6.7)	2.04 sept (6.8)
9	1.54 s	1.50 d (6.6)	1.48 d (6.2)	1.19 d (6.7)	1.18 d (6.8)
10	1.47 s	1.25 d (6.6)	1.21 d (6.2)	1.11 d (6.7)	$1.08 \ d \ (6.8)$
11	4.17 d (2.8)	4.17 d (2.9)	4.18 d (2.9)	4.14 d (2.9)	4.07 d (2.9)
12	4.11 d (2.8)	4.77 d (2.9)	3.66 d (2.9)	3.62 d (2.9)	3.56 d (2.9)
14α	4.17 dd (14.0, 12.0)	4.44 d (14.7)	4.74 d (17.2)	4.84 d (6.2)	4.80 d (6.2)
14β	2.63 dd (14.0, 7.0)	3.36 d (14.7)	3.34 d (17.2)	3.11 d (6.2)	3.11 d (6.2)
16	3.14 m				
18	4.27 m	4.71 g (6.2)			
19	1.63 d (6.4)	1.61 d (6.2)	5.29 dd (13.2, 4.0)*		
			5.37 dd (13.2, 4.0)*		
OMe-2	3.37 s	3.41 s	3.96 s		
OMe-18			3.31 s		
OH-2				7.53 d (5.5)*	7.43 d (4.4)*
OH-7				7.04 t (4.0)*	
OH-18	6.73 d (4.0)*			· •	
OH-19			7.35 d (4.0)*		

Table 1. ¹H NMR spectral data of compounds 1-5 (in pyridine- d_5)

Figures in parentheses are coupling constants in Hz.

*The coupling disappeared on addition of D_2O .

r,									
с	1	2	4	3	5				
1	55.49	53.84	52.99	46.44	40.83				
2	85.29	87.76	87.89	68.66	76.22				
3	77.89	82.88	83.15	90.34	89.44				
4	54.75	82.27	82.21	81.14	80.94				
5	49.52	57.82	57.82	51.42	51.48				
6	77.21	78.08	78.17	38.49	45.16				
7	24.40	25.23	25.12	63.61	27.70				
8	68.12	31.03	31.03	27.76	27.70				
9	30.48	18.26	18.24	16.32	16.52				
10	28.65	15.64	15.63	15.35	15.27				
11	63.53	63.02	62.85	58.03	57.18				
12	62.43	63.66	63.17	60.91	60.83				
13	91.50	90.31	89.33	66.33	67.28				
14	33.07	37.51	34.25	50.60	52.04				
15	174.72	175.77	175.83	178.12	177.63				
16	48.25	80.42	104.27						
17	177.13	180.01	170.09						
18	68.25	70.16	166.34						
19	21.02	18.15	53.63						
OMe-	2 59.19	58.77	59.08						
OMe-18			55.75						

Table 2. ¹³CNMR spectral data of compounds 1-5 (in pyridine- d_5)

a pair of typical exciton split Cotton effects with opposite signals centred upon the UV absorption of the *p*-bromobenzoate chromophore: $\Delta \varepsilon + 15.4$ at 254 nm and $\Delta \varepsilon - 8.6$ at 236 nm. The chirality of the vicinal *p*-bromobenzoyl groups was determined as positive. Thus, the absolute configuration at C-18 has been confirmed as R. From the above results, the absolute stereostructure of picrodendrin F was determined to be 2.

Picrodendrin E(1), $C_{20}H_{28}O_9$, was obtained as prisms. The IR spectrum showed the presence of hydroxyl

Fig. 1. Computer-generated drawings of the final X-ray model for the p-bromobenzoate 2a.

 $(v_{\text{max}} 3450 \text{ cm}^{-1})$ and γ -lactone $(v_{\text{max}} 1790)$ and 1750 cm^{-1}) groups. The M, of 1 was 16 mass units lower than that of 2, suggesting one less hydroxyl group than that of 2. The ¹H and ¹³C NMR spectra of 1 were very similar to those of 2, except that an isopropyl group in 2 was replaced by a hydroxyisopropyl group. The ¹H-¹H COSY suggested the presence of two isolated structure units, $\blacksquare -C(2)H-C(3)H-C(4)H-C(5)H-\blacksquare$ and $\blacksquare -C(14)H_2 -C(16)H -C(18)H(OH) -C(19)H_3$ in the formula. The ¹H NMR spectrum of the acetyl derivative 1a, H-5, H-11 and H-18 gave clear downfield shifts ($\Delta\delta$ =0.87, 0.87 and 1.07 ppm, respectively), thus revealing that the remaining two of three hydroxyl groups were located at C-6 and C-18. The stereochemistry of 1 was determined by NOE measurements (See Experimental). These observations indicated that all chiral centres are compatible with those of picrodendrin F (2). Thus, the structure of picrodendrin E is 1.

Picrodendrin I (3) was obtained as plates. Its IR spectrum showed the presence of hydroxyl $(v_{\text{max}} 3495 \text{ cm}^{-1})$ and γ -lactone $(v_{\text{max}} 1760 \text{ cm}^{-1})$ groups. From the mass spectral and elementary analysis, the molecular formula was concluded to be $C_{15}H_{20}O_7$, suggesting that it has one more hydroxyl group than that of picrodendrin D (5) [2]. Comparisons of the ¹H and ¹³CNMR spectral data with those of 5 indicated that a methyl group at C-1 in 5 was replaced by a hydroxymethyl group in 3. By exchanging the hydrogen of the hydroxyl group at δ 7.04 (1H, J = 4.0 Hz) with D₂O, each doublet of doublets of the unequivalent methylene protons of the hydroxymethyl group at $\delta 4.57$ and 4.84(each 1H, dd, J = 11.0 and 4.0 Hz) was transformed into each doublet (J=11.0 Hz). Therefore, the structure of picrodendrin I is 3. The stereochemistry of 3 was determined by NOE measurements (see Experimental). These observations indicated that all chiral centres are compatible with those of picrodendrin D (5). Thus, the structure of picrodendrin I is 3.

EXPERIMENTAL

General. Mps: uncorr. ¹H and ¹³C NMR (400 and 100 MHz, respectively) chemical shifts are given as δ (ppm) with TMS as int. standard. Silica gel (BW-820 MH, Fuji Davison) and Diaion-HP20 (Mitsubishi Kasei) were used for CC and silica gel (CQ-3, 24 mm i.d. × 320 mm, Fuji Gel) was used for low-pressure LC.

Extraction. Dried bark (8 kg) of Picrodendron baccatum collected in Indonesia, in September, 1986 was extracted with MeOH (491) at room temp. The MeOH extract was concd under red. pres. to give a residue (1.9 kg), to which an equal vol. of H_2O was added. The aq. soln was extracted successively with CHCl₃, EtOAc and *n*-BuOH. Each fr. was concd to give CHCl₃ (80 g), EtOAc (260 g), *n*-BuOH (300 g) and H_2O -soluble (1260 g) frs. The EtOAc fr. (260 g) was chromatographed on Diaion HP-20 (2 kg) and eluted with H_2O , H_2O -MeOH and MeOH. The crude picrotoxane terpenoids frs were obtained by eluting with H_2O -MeOH (5:1) and further purified by low-pressure LC (silica gel CQ-3, solvent system C_6H_6 -EtOAc, 9:1) to afford picrodendrins E (1, 150 mg), F (2, 40 mg) and I (3, 30 mg).

Picrodendrin E (1). Prisms (MeOH-H₂O), mp 245°, $[\alpha]_D^{24}$ - 36.3° (pyridine; c 2.2). IR v^{KBr} cm⁻¹: 3450, 3300, 3000, 1790, 1750, 1640, 1270, 1120, 1010, 905. MS m/z (rel. int.): 413 ([M +H]⁺, 28), 394 (8), 368 (3), 350 (4), 318 (2), 292 (17), 277 (36), 263 (5), 241 (8), 227 (17), 59 (100). ¹H and ¹³C NMR: Tables 1 and 2, respectively. HR-MS m/z 413.1817 (calcd for C₂₀H₂₉O₉ [M+H]⁺, 413.1812). ¹H NOE difference spectra: irradiated proton → observed proton (NOE enhancement %); δ1.76 (H-7)→δ4.38 (H-3, 11) and 5.24 (H-3, 5); δ1.54 (H-10)→δ5.24 (H-3, 7) and 3.39 (H-5, 6); δ4.17 (H-11)→δ3.39 (H-5, 13), δ4.17 (H-11)→δ3.39 (H-5, 13) and 4.11 (H-12, 5); δ2.63 (Hβ-14)→δ4.11 (H-12, 17), 4.17 (Hα-14, 29) and 4.27 (H-18, 5).

Acetylation of compound 1. Compound 1 (20 mg) was treated with Ac₂O and pyridine at room temp. for 10 hr, and the reaction mixt. worked-up as usual and then recrystallized from MeOH to give diacetate (1a, 20 mg) as prisms, mp 199°, $[\alpha]_D^{25} + 24.8$ (pyridine; c 1.9). IR v^{KBr}_{max} cm⁻¹: 3560, 2970, 1780, 1740, 1240, 1205, 1170, 1105, 1080, 1005, 980, 815. MS m/z (rel. int.): 497 ([M + H]⁺, 4), 436 (17), 419 (22), 391 (7), 359 (11), 59 (100). ¹H NMR (C₅D₅N): δ 1.35 (3H, s, H-9), 1.49 (3H, s, H-10), 1.50 (3H, d, J = 6.7 Hz, H-19), 1.78 (3H, s, H-7), 1.92, 2.12 (each 3H, s, Ac-6, Ac-18), 2.31 (1H, dd, J = 14.5, 8.0 Hz, H-14 β), 2.80 (1H, t, J = 4.4 Hz, H-4), 3.35 (1H, m, H-16), 3.36 (3H, s, H-20), 3.90 (1H, d, J = 2.5 Hz, H-12), 4.08 (1H, dd, J = 14.5, 11.2 Hz, H-14 α), 4.26 (1H, d, J = 4.4 Hz, H-5), 4.56 (1H, br s, H-2), 5.04 (1H, d, J = 2.5 Hz, H-11), 5.31 (1H, br d, J = 4.4 Hz, H-3), 5.34 (1H, m, H-18).

Picrodendrin-F (2). Prisms (MeOH-H₂O), mp 165-167°, $[\alpha]_{1^{b}}^{p_{b}}$ - 29.0° (pyridine; c 0.6). IR v^{KBr}_{max} cm⁻¹: 3450, 1775, 1765, 1245, 1080, 990. MS m/z (rel. int.): 429 ([M + H]⁺, (2), 384 (28), 348 (23), 320 (57), 295 (13), 253 (87), 71 (73), 43 (100). ¹H and ¹³C NMR: Tables 1 and 2, respectively. HR-MS m/z 429.1796 (Calcd for C₂₀H₂₉O₁₀ [M + H]⁺, 429.1761).

p-Bromobenzoylation of compound 2. A soln of 2 (20 mg) in dry pyridine (2 ml) was treated with p-bromobenzoylchloride (50 mg). The whole mixt. was stirred at 80° for 6 hr. The reaction mix, was then partitioned into a mixt, of CHCl₃ and H₂O, and the organic layer was taken, washed with a satd aq. NaHCO3 soln and brine, dried over MgSO₄, and then evapd in vacuo. The crude product (35 mg) was purified by MPLC (silica gel CQ-3, CH₂Cl₂-MeOH (9:1), detect 254 nm) to give the 18-p-bromobenzoate (2a, 20 mg). Compound 2a: prisms (MeOH-H₂O), mp 109-110°. IR v^{KBr}_{max} cm⁻¹: 3420 (br), 1760, 1750, 1285, 1260, 1245, 1150. FAB-MS m/z 613, 611. ¹H NMR (pyridine-d₅): δ1.22 (3H, d, J = 6.6 Hz, H-9), 1.49 (3H, d, J = 6.6 Hz, H-10), 1.71 (3H, d, J = 6.2 Hz, H-19), 1.94 (3H, s, H-7), 2.76 (1H, sept, J = 6.6 Hz, H-8), $3.31 (1H, d, J = 15.1 \text{ Hz}, \text{H}-14\beta), 3.40 (3H, s, OMe-2), 3.51 (1H, d, J)$ J = 1.0 Hz, H-5), 3.78 (1H, br s, H-2), 4.28 (1H, d, J = 2.9 Hz, H-11), 4.32 (1H, d, J = 2.9 Hz, H-12), 4.60 (1H, d, J = 15.1 Hz, H-14 β), 5.20 (1H, br s, H-3), 5.93 (1H, q, J = 6.2 Hz, H-18), 7.50, 7.87 (each 2H, d, J=8.4 Hz, H-1', H-2', H-4' and H-5').

Di-p-bromobenzoylation of compound 2. A soln of 2 (10 mg) in dry pyridine (2 ml) was treated with p-bromobenzoylchloride (30 mg) and N,N-dimethylaminopyridine (15 mg). The whole mixt. was stirred at 80° for 8 hr. The reaction mixt. was then partitioned into a mixt. of CHCl₃ and H₂O, and the organic layer was taken, washed with a satd aq. NaHCO₃ soln and brine, dried over MgSO₄, and then evapd *in vacuo*. The crude product (25 mg) was purified by MPLC [silica gel CQ-3, CH₂Cl₂-MeOH (50: 1), detect 254 nm] to give the 16,18-di-p-bromobenzoate 2b (10 mg). Compound 2b: amorphous powder. IR $v_{max}^{\rm KB}$ cm⁻¹: 3420 (br), 1760, 1750, 1285, 1260, 1245, 1150. UV $\lambda_{max}^{\rm MEOH}$ nm (e): 244 (41 100). CD (MeOH) $\Delta \varepsilon$: +15.4 at 254 nm, -8.6 at 236 nm. FAB-MS m/z 795, 793. ¹H NMR (pyridine-d₅): δ 1.20 (3H, d, J = 6.6 Hz, H-9), 1.44 (3H, d, J = 6.6 Hz, H-10), 1.78 (3H, d, J = 6.2 Hz, H-19), 1.97 (3H, s, H-7), 2.78 (1H, sept, J = 6.6 Hz, H-8), 3.48 (1H, d, J = 15.0 Hz, H-14 β), 3.43 (1H, d, J = 1.0 Hz, H-5), 3.54 (3H, s, OMe-2), 3.79 (1H, br s, H-2), 4.22 (1H, d, J = 2.9 Hz, H-11), 4.32 (1H, d, J = 2.9 Hz, H-12), 4.85 (1H, d, J = 15.0 Hz, H-14 β), 5.10 (1H, br s, H-3), 6.25 (1H, q, J = 6.2 Hz, H-18), 7.62, 7.65, 8.03 and 8.19 (each 2H, d, J = 8.4 Hz, H-2', H-3', H-5', H-6', H-2'', H-3'', H-5'' and H-6'').

Crystallographic analysis of picrodendrin F 16-p-bromobenzoate (2a). Crystal data: $C_{27}H_{31}O_{11}$ Br; M_r 611.445; orthorhombic, space group $P2_{1}2_{1}2_{1}$ (No. 19), a=15.259 (5), b=24.876 (5), c=15.029 (4) Å, V=5704.9 Å³, Z=8, $D_{cale}=1.42$ g cm⁻³. A crystal of approximate dimensions $0.3 \times 0.2 \times 0.1$ mm, recrystallized from aq. MeOH. The cell dimension and intensities were measured on an Enraf-Nonius CAD4 diffractometer using monochromated CuK_x radiation with ω -2 θ scan mode within $4 < 2\theta < 130^{\circ}$. A total of 5400 independent reflections were collected, among with 4139 reflections $[I > 3\alpha(I)]$ were stored as observed. The structure was solved by the direct method and refined by the full-matrix least-squares method. No hydrogen atoms were included in the structure factor calculation. The final R value was 0.156. The relative molecular structure was determined as shown in Fig. 1.

Picrodendrin-I (3). Prisms (MeOH), mp 270–271°, $[\alpha]_D^{27}$ -24.3° (pyridine; c 1.3). IR v^{B0}_{max} cm⁻¹: 3495, 1760, 1180, 1045, 995, 865. MS m/z (rel. int.): 312 [M]⁺ (17), 294 (12), 247 (8), 221 (21), 193 (11), 155 (35), 91 (100). ¹H NMR and ¹³C NMR: data are given in Tables 1 and 2, respectively. Anal. calcd C₁₅H₂₀O₇: C, 57.69; H, 6.45. Found: C, 57.50; H, 6.47. NOE difference spectra: irradiated proton→observed proton (NOE enhancement %); $\delta 4.58$ (H-7)→ $\delta 5.14$ (H-2, 7) and 5.15 (H-3, 4); $\delta 1.19$ (H-10)→ $\delta 5.14$ (H-2, 3) and 5.15 (H-3, 7), $\delta 1.11$ (H-9)→3.21 (H-5, 7); $\delta 4.14$ (H-11, 10)→ $\delta 3.21$ (H-5, 10) and 3.43 (H-6, 6) and 3.62 (H-12, 15); $\delta 3.12$ (H-12)→ $\delta 3.11$ (H β -14, 5) and 4.14 (H-11, 7).

Acknowledgements—We are grateful to Prof. Michio Takido and Dr Susumu Kitanaka (Nihon University) for measurement of CD spectrum and P. T. Indonesia Eisai Co., Ltd, for their kind supply of the plant material.

REFERENCES

- Ohmoto, T., Koike, K., Fukuda, H. Mitsunaga, K., Kagei, K., Kawai, T. and Sato, T. (1989) Chem. Pharm. Bull. 37, 1805.
- Ohmoto, T., Koike, K., Fukuda, H., Mitsunaga, K., Ogata, K. and Kagei, K. (1989). Chem. Pharm. Bull. 37, 2988.
- Harada, N. and Nakanishi, K. (1982) Circular Dichroic Spectroscopy Exciton Coupling Chemistry. Tokyo Kagaku Dojin, Tokyo.