34 Communications synthesis

The Preparation of N-Alkyl-O-arenesulfonylhydroxylamines

Robert V. HOFFMAN*, Edward L. BELFOURE

Department of Chemistry, Box 3 C, New Mexico State University, Las Cruces, New Mexico 88003, U.S.A.

While unsubstituted *O*-arylsulfonylhydroxylamines (1; R^1 , $R^2 = H$) are useful and well-known reagents¹, reports of the corresponding *N*-substituted compounds (1; $R^1 = H$, $R^2 = alkyl$; R^1 , $R^2 = alkyl$) are rare². Only one report of their isolation is available³.

$$R^{1}$$
 N-0-SO₂-Ar

In connection with our studies of amine oxidations with sulfonyl peroxides⁴, we have developed a new, general method for the preparation and isolation of these materials (Scheme A).

When primary amines 2 (2 equiv.) are treated with arylsulfonyl peroxides 5 3 at $-78\,^{\circ}$ C in ether, dichloromethane, or ethyl acetate, immediate precipitation of the ammonium arenesulfonate salt 4 commences. After being stirred for 2 h, the solution is filtered, and evaporated at low temperature. Low temperature chromatography ($-20\,^{\circ}$ C) on silica gel gives the crystalline hydroxylamine derivatives 1 in high yields (Table). It is necessary to use two equivalents of the starting amine, one of which forms the adduct 1 the other of which forms the salt 4. If more than two equivalents of the amine are used, base-promoted elimination in 1 leads to decreased yields.

The products 1 were shown to be homogeneous by T.L.C. and were characterized by $^1\text{H-N.M.R.}$ spectroscopy at low temperature ($-40\,^{\circ}\text{C}$). The results are reported in the Table. In addition to a four proton aromatic sulfonate multiplet, the products 1 all have a broad one proton singlet at $\delta = 4.8\text{-}5.2$ ppm (exchangeable with $D_2\text{O}$) assigned to the N—H proton, and have alkyl group resonances different in chemical shift than either the starting amine 2 or the ammonium salt 4, but with the same multiplicities. The instability of these materials precluded other spectral characterization and microanalysis. They can, however, be stored for several days at $-20\,^{\circ}\text{C}$ without extensive decomposition.

The chemical behavior of products 1 is in accord with their structure. Thus, the benzylamine product 1aa undergoes base-promoted elimination to benzaldimine (5) and thence benzaldehyde⁶ (6) in 83% yield (Scheme B), and the second order rate constant for elimination using the isolated products and benzylamine as the promoting base, 8.10×10^{-3} M⁻¹ s⁻¹, is the same as for 1aa generated and studied *in situ*, 8.6×10^{-3} M⁻¹ s⁻¹.

$$CH_2-NH-O-SO_2 \xrightarrow{B}$$
1 aa
$$CH=NH \xrightarrow{H_3O^{\oplus}} CH=CH=CH$$
Scheme B
5
6 (83 %)

The *t*-butylamine products **1ba** and **1bb** in chloroform solution at room temperature rearrange to N-isopropylidenemethylamine and then give acetone by hydrolysis⁸ (Scheme C). This is similar to the Stieglitz rearrangement of N-arylsulfonyloxy compounds reported earlier¹⁰.

$$t-C_4H_9-NH-0-SO_2-Ar$$

$$\xrightarrow{H_3C}C=N-CH_3$$

$$\xrightarrow{H_2O}$$

$$\xrightarrow{H_2O}C=O$$

Scheme C

This new method offers two distinct advantages in the preparation of N-alkyl-O-arylsulfonylhydroxylamines, 1. The first is that amines are converted directly to these derivatives; the corresponding hydroxylamine is not a required precursor^{2,3}. Secondly, a wide range of arylsulfonate groups can be attached to nitrogen including the more reactive ones (p-NO₂, m-CF₃) not heretofore possible. Thus, it is potentially possible to convert any amine to an active aminating agent by this method.

N-t-Butyl-O-m-trifluoromethylbenzenesulfonylhydroxylamine, (1bb) Typical Procedure:

A solution of 3b (0.995 g, 2.2 mmol)⁵ in ether (40 ml) is flushed with nitrogen, sealed with a serum stopper, and cooled to $-78\,^{\circ}$ C in a Dry Ice bath. t-Butylamine (2b; 0.3220 g, 4.4 mmol) is added via a syringe and precipitation of the ammonium salt starts immediately. After stirring for 2 h, the mixture is filtered and the solvent removed under vacuum at $-40\,^{\circ}$ C. The pale yellow residue is dissolved in chloroform (20 ml) and chromatographed on a silica gel column (1.5 × 20 cm) with chloroform. The column is maintained at $-20\,^{\circ}$ C by a cooled jacket. The first 50 ml of eluate contains the product 1bb as determined by the T.L.C. (Eastman silica gel plates, chloroform eluent). Removal of solvent gives 1bb as a white solid; yield: 0.52 g (90%); m.p. 105-108 °C (dec).

Table. N-Alkyl-O-arenesulfonylhydroxylamines 1

Produc No.	et R	Ar	Yield ^a [%]	m.p. (dec) [°C]	Molecular formula ^h	1 H-N.M.R. (CDCl ₃ /TMS, -40° C) δ [ppm]
1ab	C ₆ H ₅ CH ₂	3-F ₃ C—C ₆ H ₄	83	40-43°	C ₁₄ H ₁₂ F ₃ NO ₃ S (331.3)	4.98 (s, 2 H); 5.3 (br. s, 1 H); 7.2 (m, 5 H _{arom}); 8.2 (m, 4 H _{arom}) ^c
1ba	t-C ₄ H ₉	$4-O_2N-C_6H_4$	87	112-115°	$C_{10}H_{14}N_2O_5S$ (274.3)	0.96 (s, 9 H); 4.8 (br. s, 1 H); 8.19, 8.40 (AB q, 4 H _{arym} , J=6 Hz)
1bb	t-C ₄ H ₉	3-F ₃ C-C ₆ H ₄	90	105-108°	$C_{11}H_{14}F_3NO_3S$ (297.3)	0.95 (s, 9 H); 4.5 (br. s, 1 H); 8.2 (m, 4 H _{urom})
1ca	H ₃ C	4-O ₂ NC ₆ H ₄	96	83-85°	$C_7H_8N_2O_5S$ (232.2)	2.80 (s, 3 H); 4.8 (br. s, 1 H); 8.18, 8.40 (AB q, $4 H_{aron}$, $J = 6$ Hz)
1da	$3-CI-C_6H_4CH_2$	4-O ₂ N—C ₆ H ₄	63	d	$C_{13}H_{11}CIN_2O_5S$ (342.8)	4.22 (s, 2 H); 5.2 (br. s, 1 H); 7.8 (m, 4 H _{arom}); 8.19, 8.40 (AB q, 4 H _{arom} , J =6 Hz)

Yield of product isolated by chromatography. In all cases the ammonium salt 4 was isolated in ~100% yield and identified by comparison with an authentic sample.

This work was supported by the Donors of the Petroleum Research Fund administered by the American Chemical Society.

> Received: April 29, 1982 (Revised form: August 4, 1982)

0039-7881/83/0132-0035-03 \$ 03.00

All products are new, microanalyses could not be obtained due to instability.

^c In acetone- d_6 .

d This material was stable at −20 °C for short periods but began to decompose at 25 °C, so no melting point could be measured.

Y. Tamura, J. Minamikawa, M. Ikeda, Synthesis 1977, 1.

For attempts to prepare these materials see:

A. Y. Berlin, M. N. Shchukina, E. D. Sayonova, Zh. Obshch. Khim. 14, 249 (1944).

P. G. Gassman, G. D. Hartman, J. Am. Chem. Soc. 95, 449

³ G. Boche, N. Mayer, M. Bernheim, K. Wagner, Angew. Chem. 90, 733 (1978); Angew. Chem. Int. Ed. Engl. 17, 687 (1978).

R. V. Hoffman, E. L. Belfoure, J. Am. Chem. Soc. 104, 2183 (1982) and references therein.

Arylsulfonyl peroxides were prepared as follows:

³b: R. L. Dannley, P. K. Tornstorm, J. Org. Chem. 40, 2278 (1975).

³a: R. L. Dannley, J. E. Gagen, O. J. Stewart, J. Org. Chem. 35,

Benzaldehyde was quantitated by gas chromatography (2 m, QF-1, 80 °C) and identified by conversion to its 2,4-DNP derivative; m.p. 234-236 °C (Ref. 7, m.p. 237 °C).

R. L. Shriner, R. C. Fuson, D. Y. Curtin, The Systematic Identification of Organic Compounds, John Wiley & Sons, New York, 1964,

Acetone was identified by conversion to its 2,4-DNP derivative; m.p. 123-124 °C (Ref.⁹, m.p. 126 °C).

Ref.⁷, p. 362.

¹⁰ R. V. Hoffman, D. J. Poelker, J. Org. Chem. 44, 2464 (1979).