## LITHIATION OF 3',5'-O-(TETRAISOPROPYLDISILOXANE-1,3-DIYL)-2'-DEOXYURIDINE: SYNTHESIS OF 6-SUBSTITUTED 2'-DEOXYURIDINES

## HIROMICHI TANAKA, HIROYUKI HAYAKAWA, SHUJI IIJIMA, KAZUHIRO HARAGUCHI AND TADASHI MIYASAKA\*

School of Pharmaceutical Sciences, Showa University, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142, Japan

(Received in Japan 13 December 1984)

Abstract—— Synthesis of 6-substituted 2'-deoxyuridines can be effected by lithiation of 3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-2'-deoxyuridine with LDA followed by the reaction of its lithio derivative with electrophiles. This method provides a general, regiospecific and simple route to various types of 6-substituted 2'-deoxyuridines which have, so far, been known to be difficult to prepare.

In the field of nucleoside chemistry, the lithiation reaction has only recently become recognized as a practically useful method for introducing various functionalities to the base moiety. We have already reported the synthesis of 5- and/or 6-substituted uridines and 8substituted purine nucleosides based on the lithiation.<sup>1)</sup> As a part of our program to search for biologically active nucleosides, it was necessary to prepare the title compounds, since some of the 6-substituted uridines previously synthesized exhibited highly promising antileukemic activity.<sup>2</sup>)

Although the condensation reaction of the base and an appropriately protected sugar derivative is frequently used in nucleoside synthesis, this method is not applicable to the preparation of 6-substituted 2'-deoxyuridines due to the production of mixtures of regio- and stereoisomers. For example, the reaction of silylated 6-methyluracil with 1,3,5-tri-O-acetyl-2-deoxyribofuranose in the presence of SbC1<sub>5</sub> afforded the  $\alpha$ - and  $\beta$ -anomers of the corresponding N<sup>1</sup>- and N<sup>3</sup>-ribosylated products.<sup>3,4</sup>)

Thus, the synthesis of the title compounds might be best carried out by using 2'-deoxyuridine as a starting material, which would avoid the concomitant formation of such undesired products. In addition, the lithiation of a 2'-deoxyuridine derivative appears to present the method of choice, as a wide range of electrophiles are available for the reaction with organolithium compounds. To our knowledge, only one report has appeared in the literature on the conversion of 2'-deoxyuridine to 6-substituted derivative by means of lithiation.<sup>5)</sup> These authors reported, however, that following treatment of a lithiated 2'-deoxyuridine derivative with MeI, 6-methyluridine was obtained in a low yield along with thymidine as a main product.

In this paper, we describe a simple and regiospecific method for synthesizing 6-substituted 2'-deoxyuridines, as well as a 6-substituted 2'-deoxy-5fluorouridine on the basis of lithiation.

Since desired 6-substituted products were expected to be rather unstable, hydroxyl groups of the sugar moiety were protected by TIPS (1,1,3,3-tetraisopropyldisiloxane-1,3-diy1) group which was removable by fluoride anion under mild conditions. Treatment of 2'deoxyuridine or 2'-deoxy-5-fluorouridine with 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane<sup>6</sup>) in pyridine gave the



TIPS= 1,1,3,3-tetraisopropyldisiloxane-1,3-diyl

corresponding TIPS derivatives (<u>1a</u> and <u>1b</u>) in almost quantitative yields. The regioselectivity of lithiation was examined by using 2.5 eq of lithiating agent such as BuLi, BuLi/TMEDA or LDA in THF below -70°C. After quenching the lithiated species of <u>1a</u> with  $CD_3OD$ , <sup>1</sup>H-NMR spectrum of the deuterated product was measured.<sup>7</sup>)

In the case of BuLi or BuLi/TMEDA, preferential lithiation at the C-5 was observed. On the other hand, the use of LDA resulted in the exclusive formation of the 6-deuterated product in 20.0% yield. When 5.0 eq of LDA was used in this reaction, the highest deuterium incorporation (52.8%) was accomplished with complete regioselectivity at the C-6 position. The use of 10 eq of LDA, however, resulted in the loss of the regiospecificity to give both C-6 and C-5 deuterated products.

The reactions of the C-6 lithiated species (2) with various electrophiles

were next carried out. Treatment of 2 with 1.5 eq of diphenyl disulfide below -70°C for 2 h produced a protected 6phenylthio-2'-deoxyuridine (4) in 54.6% yield after silica gel column chromatography. Since disulfides are recommended as "label reactants" in the case of lithiation with lithium dialkylamides where substitution by deuterium may be low.<sup>8)</sup> we believe that the actual extent of this lithiation should be estimated at 54.6%. When MeI was employed in this reaction, the TIPS derivative could not be isolated in a pure form, therefore it was further deprotected by Bu,NF in THF to give 6-methy1-2'-deoxyuridine (5)<sup>5,9</sup> in 33.2% yield. The formation of 6ethy1-2'-deoxyuridine (6: 1.8%) was also observed as was anticipated from the acidic nature of the 6-methyl protons.



The results with other carbon-electrophiles such as  $C1CO_2Me$ , PhCHO or  $HCO_2Et$ leading to the corresponding 6-substituted TIPS-2'-deoxyuridines are summarized in <u>Table 1</u>. 6-Formy1-TIPS-2'deoxyuridine resulting from initial reaction of <u>2</u> with  $HCO_2Et$  was reduced by NaBH<sub>4</sub> in a one-pot manner to furnish 6hydroxymethyl derivative (<u>9</u>) in 45.7% yield. The preparation of carbon-halogen bond at the C-6 position is illustrated by the formation of 6-iodo-TIPS-2'-deoxyuridine which was formed through



| electrophile<br>MeI  | <u>R^1</u><br>H | R <sup>2</sup><br>Me | yield (%) |      |           |       |
|----------------------|-----------------|----------------------|-----------|------|-----------|-------|
|                      |                 |                      |           |      | 5         | 33.2* |
|                      | Н               | Et                   |           |      | <u>6</u>  | 1.8*  |
| (PhS) <sub>2</sub>   | н               | SPh                  | <u>4</u>  | 54.6 | <u>12</u> | 41.6  |
| C1C0 <sub>2</sub> Me | Н               | CO <sub>2</sub> Me   | <u>7</u>  | 44.0 | <u>13</u> | 52.9  |
| PhCHO                | Н               | CH (OH) Ph           | <u>8</u>  | 51.5 | <u>14</u> | 65.0  |
| HCO <sub>2</sub> Et  | Н               | Сн,ОН                | <u>9</u>  | 45.7 | <u>15</u> | 61.0  |
| Ĩ,                   | Н               | I                    | 10        | 51.0 |           |       |
| (PhS),               | F               | SPh                  | 11        | 58.4 | 16        | 55.8  |

\* overall yield from <u>la</u>

the reaction of 2 with  $I_2$ .

To demonstrate the applicability of this method, <u>lb</u> was converted to its 6phenylthio derivative (<u>ll</u>) in a similar manner. This is the first example of the modification at C-6 of 5-fluoro-2'deoxyuridine, a biologically active nucleoside.

Finally deprotection of 6-substituted TIPS-2'-deoxyuridines was investigated. The TIPS derivative was treated with Bu<sub>4</sub>NF in THF at room temperature. In the case of <u>10</u>, 6-iodo-2'-deoxyuridine could not be detected in any appreciable amount on TLC (CHCl<sub>3</sub>:EtOH = 15:1). The glycosidic bond of <u>10</u> appeared to be extremely labile toward nucleophilic reaction even under neutral conditions. For example, in refluxing EtOH, <u>10</u> was completely converted to 6-iodouracil within 2 h. As seen in <u>Table 1</u>, other 6-substituted 2'-deoxyuridines were isolated in



reasonable yields by column chromatography on magnesium silicate. It should be noted that, in the cases of 4, 7 and 11, the use of silica gel decreased the isolated yields of products.

The instability of some 6-substituted 2'-deoxyuridines might be generally explicable in terms of electron-withdrawing nature of the introduced substituent which increases leaving ability of the base moiety.

In conclusion, the present method provides a general, regiospecific and simple access to 6-substituted or 5,6disubstituted 2'-deoxyuridines which have, so far, been known to be difficult to synthesize.

Further work is in progress to evaluate biological activities of the compounds prepared in this study.

## EXPERIMENTAL

Melting points were determined with a Yanagimoto micro melting point apparatus and are uncorrected. <sup>1</sup>H-NMR spectra were measured with an appropriate internal standard of tetramethylsilane (TMS) or sodium-2,2-dimethyl-2silapentane 5-sulfonate (DSS), with a JEOL JNM-FX 100 NMR spectrometer. The abbreviations used are as follows: s, singlet; d, doublet; dd, double doublet ; t, triplet; m, multiplet; br, broad. Mass spectra were taken on a JEOL JMS-D 300 spectrometer. UV spectra were recorded on a Shimadzu UV-240 spectrophotometer. Reactions at low temperature were performed using a CryoCool CC-100 (NESLAB Instrument, Inc.). 3',5'-O-(Tetraisopropyldisiloxane-1, 3-diyl)-2'-deoxyuridine (1a) — To a solution of 2'-deoxyuridine (10.0 g, 43.8 mmol) in pyridine (130 ml), 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (15.3 g, 48.5 mmol) was added. The reaction mixture was stirred at room temperature for 2.5 h and partitioned between CHC1, and H<sub>2</sub>O. The organic layer was separated, dried (MgSO<sub>4</sub>) and evaporated to dryness. The residue was chromatographed on a silica gel column (1% EtOH in CHC1<sub>5</sub>) to give 1a (19.0 g, 91.5%) which was crystallized from EtOH-H<sub>2</sub>O (mp 119 $\circ$ 120°C).

Physical data of <u>1a</u> are as follows. Anal. Calcd. for  $C_{21}H_{9,0}N_2O_6Si_2$ : C,53.46; H, 8.13; N, 5.77. Found: C, 53.52; H, 8.13; N, 5.95. MS m/z: 471 (M+1), 427 (M-iso-Pr), 112 (B+1). UV absorption in MeOH: max 263 nm ( $\epsilon$  10900), min 231 nm ( $\epsilon$  3100). <sup>1</sup>H-NMR (CDC1<sub>3</sub>)  $\delta$ : 1.01 (28H, m, iso-Pr), 2.21 $\sim$ 2.54 (2H, m, H-2'), 3.71 $\sim$ 3.80 (1H, m, H-4'), 4.04 $\sim$ 4.07 (2H, m, CH<sub>2</sub>-5'), 4.10 $\sim$ 4.50 (1H, m, H-3'), 5.69 (1H, dd, H-5), 6.02 (1H, dd, H-1'), 7.76 (1H, d, H-6), 8.57 (1H, br, NH).

 $\frac{5-Fluoro-3',5'-0-(tetraisopropyldi$  $siloxane-1,3-diyl)-2'-deoxyuridine (1b)}{---Compound 1b was prepared from 5$ fluoro-2'-deoxyuridine (7.1 g, 28.84mmol) by a similar method as above.Crystallization from EtOH-H<sub>2</sub>O gave an $analytical sample (mp 76<math>^{77}$ °C). <u>Anal</u>. Calcd. for C<sub>21</sub>H<sub>37</sub>N<sub>2</sub>O<sub>6</sub>FSi<sub>2</sub>: C, 51.64; H, 7.64; N, 5.74. Found: C, 51.45; H,7.72; N, 5.54. MS m/z: 445 (M-iso-Pr), 130 (B+1). UV absorption in MeOH: max 269nm ( $\epsilon$  8900), min 235 nm ( $\epsilon$  2800). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.01 $^{11}$ .10 (28H, m, iso-Pr), 2.13 $^{2}$ C69 (2H, m, H-2'), 3.69 $^{3}$ .82 (1H, m, H-4'), 3.91 $^{4}$ .26 (2H, m, CH<sub>2</sub>-5'), 4.26 $^{4}$ .58 (1H, m, H-3'), 6.01 (1H, d, H-1'), 7.89 (1H, d, H-6), 9.00 (1H, br, NH).

6-Phenylthio-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl-2'-deoxyuridine (4)— LDA (31.5 mmol) in THF (35 ml) was placed in a three-necked flask equipped with a gas inlet adaptor, thermometer and rubber septum. To this, a solution of <u>la</u> (2.96 g, 6.30 mmol) in THF (35 ml) was added, under positive pressure of dry argon, at a rate such that the temperature did not exceed -70°. After the mixture was stirred for 1 h, diphenyl disulfide (2.06 g, 9.45 mmol) in THF (15 ml) was added, while maintaining the temperature below -70°. The mixture was stirred for 2 h below -70°, quenched with AcOH, and evaporated. The residue was partitioned between CHCl<sub>3</sub> and aqueous NaHCO<sub>3</sub>. The organic layer was separated, dried with Na<sub>2</sub>SO<sub>4</sub> and chromatographed on a silica gel column (CHCl<sub>3</sub>) to give 4 (1.98 g, 54.6%). MS m/z: 535 (M-iso-Pr), 220 (B+1). UV absorption in MeOH: max 282 nm, min 244 nm. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 1.05 (28H, s, iso-Pr), 2.20 $\times$ 2.57 and 2.75 $\times$ 3.11 (2H, each as m, H-2'), 3.81 $\times$ 3.86 (1H, m, H-4'), 3.91 $\times$ 4.07 (2H, m, CH<sub>2</sub>-5'), 4.87 $\times$  5.11 (1H, m, H-3'), 4.97 (1H, s, H-5), 6.34 (1H, dd, H-1'), 7.51 (5H, s, Ph), 8.29 (1H, br, NH).

<u>6-Methyl-2'-deoxyuridine (5) and 6-</u> ethyl-2'-deoxyuridine (6) The following amounts of reagents and 2.35 g (5.0 mmol) of 1a in THF (30 ml) were employed: 25.0 mmol of LDA in THF (30 ml), 0.47 ml (7.50 mmol) of freshly distilled MeI. The reaction was continued for 2 h. Chromatographic purification on a silica gel column (CHCl<sub>3</sub>) gave a mixture of TIPS derivatives (1.51 g). The whole mixture was treated with Bu<sub>4</sub>NF (1.90 g) in THF (22.5 ml) at room temperature for 1 h. After being evaporated, the residue was purified through a Florisil column (5% EtOH in CHCl<sub>3</sub>) which gave 5 (402 mg, 33.2%) and 6 (23 mg, 1.8%). Compound 5 was crystallized from EtOH (mp 164 $\sim$ 165°C). For physical data of 5, see references 5 and 9. <sup>1</sup>H-NMR data of 6 (D<sub>2</sub>O, DSS) are as follows.  $\delta$ : 1.22 (3H, t, CH<sub>2</sub>CH<sub>3</sub>), 2.11 $\sim$ 2.39 and 2.87 $\sim$ 3.09 (2H, each as m, H-2'), 2.68 (2H, q, CH<sub>2</sub>CH<sub>3</sub>), 3.62 $\sim$ 4.01 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.43 $\sim$ 4.63 (1H, m, H-3'), 5.77 (1H, s, H-5), 6.18 (1H, dd, H-1').

<u>6-Methoxycarbonyl-3',5'-0-(tetraiso-propyldisiloxane-1,3-diyl)-2'-deoxy-uridine (7)</u>— The following amounts of reagents and 2.35 g (5.0 mmol) of <u>la</u> in THF (30 ml) were employed: 25.0 mmol) of <u>the</u> LDA in THF (30 ml), 0.58 ml (7.50 mmol) of freshly distilled ClCO<sub>2</sub>Me. The reaction was continued for 2 h. Chromatographic purification on a silica gel column (benzene:AcOEt = 10:1) gave 7 (1.16 g, 44.0%). MS m/z: 485 (M-iso-Pr), 170 (B+1). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) &: 1.00 $\times$ 1.13 (28H, m, iso-Pr), 2.29 $\times$ 2.56 and 2.71 $\times$  2.99 (2H, each as m, H-2'), 3.72 $\times$ 4.04 (3H, m, CH<sub>2</sub>-5' and H-4'), 3.92 (3H, s, CO<sub>2</sub>Me), 4.64 (1H, m, H-3'), 5.92 (1H, d, H-5'), 5.97 (1H, dd, H-1'), 8.66 (1H, br, NH).

<u>6-Phenylhydroxymethyl-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)-2'-deoxyuridine (8)</u>— The following amounts of reagents and 2.35 g (5.0 mmol) of <u>la</u> in THF (30 ml) were employed: 25.0 mmol of LDA in THF (30 ml), 0.76 ml (7.50 mmol) of freshly distilled PhCHO. The reaction was continued for 2 h. Chromatographic purification on a silica gel column (1% EtOH in CHCl<sub>3</sub>) gave <u>8</u> (1.48 g, 51.5%) as an epimeric mixture. MS m/z: 533 (M-iso-Pr). <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 0.97 $\sim$ 1.26 (28H, m, iso-Pr), 1.59 $\sim$ 1.92 and 2.44 $\sim$ 2.67 (2H, each as m, H-2'), 3.61 $\sim$ 3.74 (1H, m, H-4'), 3.91 $\sim$ 3.98 (2H, m, CH<sub>2</sub>-5'), 4.76 $\sim$ 4.99 (1H, m, H-3'), 5.60∿6.15 (3H, m, H-5, H-1' and Ph<u>CH</u>OH), 7.38 (5H, s, Ph).

 $\frac{6-Hydroxymethyl-3',5'-O-(tetraiso$ propyldisiloxane-1,3-diyl)-2'-deoxyuridine (9)— The following amounts ofreagents and 2.35 g (5.0 mmol) of 1a inTHF (30 ml) were employed: 25.0 mmol ofLDA in THF (30 ml) and freshly distilled HCO<sub>2</sub>Et. The reaction was continuedfor 2 h. After being quenched with AcOH,the mixture was diluted with EtOH (50ml) and reduced by NaBH, (600 mg). Excess of NaBH<sub>4</sub> was decomposed by addingAcOH. The mixture was then evaporatedand partitioned between CHCl<sub>3</sub> and aqueous NaHCO<sub>3</sub>. The organic layer was separated, dried (Na<sub>2</sub>SO<sub>4</sub>) and chromatographed on a silica gel column (4% EtOHin CHCl<sub>3</sub>) to give 9 (1.15 g, 45.7%). MS $m/z: 457 (M-iso-PT). <sup>1</sup>H-NMR (CDCl<sub>3</sub>) <math>\delta$ : 1.00 $\wedge$ 1.13 (28H, m, iso-Pr), 2.15 $\sim$ 2.52 and 2.73 $\sim$ 3.01 (2H, each as m, H-2'), 3.68 $\approx$ 3.85 (1H, m, H-4'), 3.98 $\approx$ 4.06 (2H, m, CH<sub>2</sub>-5'), 4.50 (2H, br, <u>CH<sub>2</sub>OH</u>), 4.83 $\sim$ 5.05 (1H, m, H-3'), 5.80 (1H, s, H-5), 5.98 (1H, dd, H-1'), 8.77 (1H, br, NH).

 $\frac{5 - Fluoro - 6 - phenylthio - 3', 5' - 0 - (tetraisopropyldisiloxane - 1, 3 - diyl) - 2' - deoxyuridine (11) ---- The following a-mounts of reagents and 2.44g (5.0 mmol) of 1b were employed: 25.0 mmol of LDA in THF (30 ml), 1.64 g (7.5 mmol) of diphenyl disulfide. The reaction was continued for 2 h. Chromatographic purification on a silica gel column (CHCl<sub>s</sub>) gave 11 (1.74 g, 58.4%). MS m/z: 553 (M-iso-Pr), 238 (B+1). <sup>1</sup>H-NMR (CDCl<sub>s</sub>) &: 0.98 \lambda 1.05 (28H, m, iso-Pr), 1.95 \lambda 2.25 and 2.56 \lambda 2.66 \lambda 2.83 (2H, each as m, H-2'), 3.58 \lambda 3.82 (1H, m, H-4'), 3.95 \lambda 3.99 (2H, m, CH<sub>2</sub>-5'), 4.80 \lambda 5.02 (1H, m, H-3'), 6.61 (1H, dd, H-1'), 7.37 (5H, s, Ph).$ 

6-Phenylthio-2'-deoxyuridine (12) Compound 4 (697 mg, 1.20 mmo1) was treated with Bu<sub>4</sub>NF (757 mg) in THF (15 ml) at room temperature for 1 h. The solvent was evaporated and the whole residue was chromatographed on a Florisil column (5% EtOH in CHCl<sub>5</sub>) to give 12 (168 mg, 41.6%) which was crystallized from EtOH (mp 270~271°C). Anal. Calcd. for  $C_{15}H_{16}N_2O_5S$ : C, 53.56; H, 4.79; N, 8.33. Found: C, 53.86; H,4.76; N, 8.22. MS m/z: 220 (B+1). UV absorption in MeOH: max 284 nm ( $\epsilon$  10800), min 246 nm ( $\varepsilon$  5900). <sup>1</sup>H-NMR (DMSO-d<sub>s</sub>)  $\delta$ : 1.85 $\circ$ 2.12 and 2.70 $\circ$ 3.08 (2H, each as m, H-2'), 3.62 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.27 (1H, m, H-3'), 4.66 (1H, t, 5'-OH), 4.72 (1H, d, H-5), 5.16 (1H, d, 3'-OH), 6.31 (1H, dd, H-1'), 7.60 (5H, s, Ph), 11.32 (1H, br, NH).

 $\frac{6-Methoxycarbony1-2'-deoxyuridine}{(13)} ---- Compound 7 (754 mg, 1.38 mmol)}$  $was treated with Eu_NF (871 mg) in THF$ (15 ml) at room temperature for 1 h.The solvent was evaporated and thewhole residue was chromatographed on aFlorisil column (5% EtOH in CHCl<sub>3</sub>) togive 13 (208 mg, 52.9%). MS m/z: 269(M+1-H<sub>2</sub>O), 170 (B+1). UV absorption inMeOH: max 285 nm, min 239 nm. <sup>1</sup>H-NMR $(DMSO-d<sub>6</sub>) <math>\delta$ 1.95 $\sim$ 2.66 (2H, m, H-2'), 3.32 $\sim$ 3.76 (3H, m, CH<sub>2</sub>-5' and H-4'), 3.85 (3H, s, CO<sub>2</sub>Me), 4.10 (1H, m, H-3'), 4.78 (1H, t, 5'-OH), 5.17 (1H, d, 3'-OH), 5.86 (1H, t, H-1'), 6.05 (1H, s, H-5), 11.39 (1H, br, NH). Compound 13 was converted to its diacetate, whose high resolution MS was measured. High resolution MS m/z: 370.1005 (M) Calcd. for C<sub>1</sub>H<sub>1</sub>sN<sub>2</sub>O<sub>9</sub> 370.1010. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 2.09 (6H, s, Ac), 2.33 $\sim$ 2.54 and 2.87 $\sim$ 3.16 (2H, each as m, H-2'), 3.92 (3H, s, CO<sub>2</sub>Me), 4.12 $\sim$ 4.45 (3H, m, CH<sub>2</sub>-5' and H-4'), 5.18 $\sim$ 5.33 (1H, m, H-3'), 6.01 (1H, s, H-5), 6.08 (1H, t, H-1'), 8.93 (1H, br, NH).

 $\frac{6-\text{Phenylhydroxymethyl-2'-deoxy-}{\text{uridine (14)}} - \text{Compound 8 (1.48 g, 2.57 mmol) was treated with Bu_NF (1.62 g) in THF (22.5 ml) at room temperature for 1 h. The solvent was evaporated and the whole residue was chromatographed on a Florisil column (<math>3^{58}$  EtOH in CHCl<sub>3</sub>) to give <u>14</u> (559 mg, 65.0%) as an epimeric mixture. UV absorption in MeOH: max 260 nm, min 232 nm. <sup>1</sup>H-NMR (DMSO-d<sub>6</sub>) & 0.84 $\times$ 1.31 and 2.22 $\times$ 2.54 (2H, each as m, H-2'), 3.37 $\times$ 3.57 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.17 (1H, m, H-3'), 4.47 (1H, m, 5'-OH), 4.87 and 4.90 (1H, each as d, 3'-OH), 5.59 $\wedge$ 6.11 (3H, m, H-5, H-1' and PhCHOH), 6.47 and 6.76 (1H, each as d, PhCHOH), 7.38 (5H, s, Ph), 11.29 (1H, br, NH). Compound <u>14</u> was converted to its

Compound <u>14</u> was converted to its tri-acetate, whose high resolution MS was measured. High resolution MS m/z: 460.1449 (M') Calcd. for  $C_{22}H_{24}N_2O_9$ 460.1479. <sup>1</sup>H-NMR (CDCl<sub>3</sub>)  $\delta$ : 2.01 (3H, s, Ac), 2.05 (3H, s, Ac), 2.16 and 2.25 (3H, each as s, PhCHOAC), 1.26 $\sim$ 1.53 and 2.65 $\sim$ 2.98 (2H, each as m, H-2'), 3.99 $\sim$ 4.45 (3H, m, CH<sub>2</sub>-5' and H-4'), 5.19 $\sim$ 5.43 (1H, m, H-3'), 5.72 $\sim$ 5.92 (1H, m, H-1'), 6.05 (1H, s, H-5), 6.75 and 6.89 (1H, each as s, PhCHOAC), 7.32 $\sim$ 7.40 (5H, m, Ph), 9.55 (TH, br, NH).

<u>6-Hydroxymethyl-2'-deoxyuridine (15)</u> <u>Compound 9 (1.15 g, 2.29 mmol) was</u> treated with Bu,NF (1.45 g) in THF (22.5 ml) at room temperature for 1 h. The solvent was evaporated and the whole residue was chromatographed on a Florisil column ( $5\sim10$ % EtOH in CHCl<sub>3</sub>) to give 15 (364 mg, 61.0%). UV absorption in H<sub>2</sub>O: max 259 nm, min 228 nm. 'H-NMR (D<sub>2</sub>O)  $\delta$ : 2.11 $\vee$ 2.39 and 2.79 $\vee$ 3.07 (2H, each as m, H-2'), 3.63 $\vee$ 4.01 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.43 $\vee$ 4.51 (1H, m, H-3'), 4.59 (2H, s, <u>CH<sub>2</sub>OH</u>), 5.93 (1H, s, H-5), 6.04 (1H, dd, H-1'). Compound <u>15</u> was converted to its triacetate, whose high resolution MS was measured High resolution MS m/2:

Compound 15 was converted to its triacetate, whose high resolution MS was measured. High resolution MS m/z: 384.1187 (M) Calcd. for  $C_{16}H_{20}N_{2}O_{9}$ 384.1169. 'H-NMR (CDC1<sub>3</sub>) &: 2.08 (3H, s, Ac), 2.09 (3H, s, Ac), 2.18 (3H, s, Ac), 2.24 $\vee$ 2.43 and 2.98 $\vee$ 3.26 (2H, each as m, H-2'), 4.07 $\vee$ 4.55 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.95 and 5.11 (2H, each as d, <u>CH<sub>2</sub>-</u> OAC), 5.32 $\vee$ 5.50 (1H, m, H-3'), 5.97 (1H, t, H-1'), 5.83 (1H, s, H-5), 10.09 (1H, br, NH).

 $\frac{5-Fluoro-6-phenylthio-2'-deoxy-uridine (16)}{2.33 mmol)} compound 11 (1.39 g,$  $2.33 mmol) was treated with Bu_NF (1.47 g) in THF (22.5 ml) at room temperature for 1 h. The solvent was evaporated and the whole residue was chromatographed on a Florisil column (5% EtOH in CHCl_s) to give 16 (461 mg, 55.8%). UV absorption in MeOH: max 296 nm, min 257nm, shoulder 235 nm. 'H-NMR (DMSO-d_s) &: 1.55<math>\sim$ 1.73 and 2.47 $\sim$ 2.66 (2H, each as m, H-2'), 3.45 $\sim$ 3.65 (3H, m, CH<sub>2</sub>-5' and H-4'), 4.13 $\sim$ 4.21 (1H, m, H-3'), 4.57 (1H, t, 5'-OH), 5.04 (1H, d, 3'-OH), 6.44 (1H, dd, H-1'), 7.32 $\sim$ 7.57 (5H, m, Ph). Compound 16 was converted to its diacetate, whose high resolution MS was measured. High resolution MS m/z: 438.0925 (M) Calcd. for C19H19N207FS 438.0897. 'H-NMR (CDCl\_s) &: 2.06 (3H, s, Ac), 2.08 (3H, s, Ac), 1.64 $\sim$ 1.91 and 2.71 $\sim$ 3.07 (2H, m, H-2'), 4.02 $\sim$ 4.45 (3H, m, CH<sub>2</sub>-5' and H-4'), 6.66 (1H, dd, H-1'), 7.38 (5H, s, Ph), 7.55 (1H, br, NH).

## REFERENCES AND NOTES

- H. Tanaka, H. Hayakawa and T. Miyasaka, <u>Tetrahedron</u>, <u>38</u>, 2635 (1982);
  H. Hayakawa, H. Tanaka and T. Miyasaka, <u>Chem. Pharm. Bull.</u>, <u>30</u>, 4589 (1982); H. Tanaka, Y. Uchida, M. Shinozaki, H. Hayakawa, A. Matsuda, and T. Miyasaka, <u>Chem. Pharm. Bull.</u>, <u>31</u>, 787 (1983).
- H. Tanaka, A. Matsuda, S. Iijima, H. Hayakawa, and T. Miyasaka, <u>Chem.</u> <u>Pharm. Bull.</u>, <u>31</u>, 2164 (1983).
- 3) J. Cadet, J. Carbohydr. Nucleosides Nucleotides, 2, 459 (1975).

- 4) Recently, a highly selective method for synthesizing β-anomer of 2'deoxyuridine derivatives was reported. However, no example is shown for 6-substituted 2'-deoxyuridines: A. J. Hubbard, A. S. Jones and R. T. Walker, <u>Nucleic Acids Res.</u>, <u>12</u>, 6287 (1984).
- L. Pichat, J. Godbillon and M. Herbert, <u>Bull. Soc. Chim. France</u>, 2715 (1973).
- W. T. Markiewicz, <u>J. Chem. Res. (M)</u>, 181 (1979).
- The extent of deuterium incorporation was quantitated by using the anomeric proton as a standard.
- H. W. Gschwend and H. R. Rodriguez, "Organic Reactions", Vol. 26, ed. by W. G. Dauben, John Wiley and Sons, Inc., New York, Chichester, Brisbane, and Toronto, 1979, pp. 1∿ 360.
- 9) L. Pichat, B. Massé, J. Deschampts, and P. Dufay, <u>Bull. Soc. Chim.</u> <u>France</u>, 2102 (1971); A. Holý, <u>Col-</u> <u>lection Czechoslov. Chem. Commun.</u>, <u>38</u>, 3912 (1973).