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1H and 19F Pulsed Gradient Spin Echo (PGSE) diffusion
data, together with 1H, 19F-HOESY results are shown to
distinguish between different types of anion/cation inter-
actions in chiral dihydrido-P,N-complexes of Ir(III); in
CD2Cl2 the diffusion coefficients, D, for the BArF and the
Ir-cation suggest ion-pairing whereas the D-values for PF6

2

reveal independent motion; the PF6
2 approaches the cation

via a specific pathway; the combined PGSE/HOESY ap-
proach offers a unique opportunity for exploring anion
effects in organometallic/catalytic chemistry.

It is not unusual to find that both the structure and reactivity of
a transition metal cationic salt depend upon the anion, since
anions may be either weakly or strongly co-ordinating. In
several homogeneously catalysed reactions1,2 one finds that the
anion plays a significant role, e.g. reaction rates may be
excellent or only modest.

We have recently suggested3 that Pulsed Gradient Spin Echo
(PGSE4,5) diffusion data can be useful in determining molecular
volume. If the complex possesses a fluorine containing salt
(BF4

2 or PF6 etc.) one can use PGSE data from both 1H (for the
cation) and 19F (for the anion) to obtain a measure of the ion-
pairing,6,7 e.g. for 1 and 2 the 19F diffusion data reveal that these

anions move at ca. the same rate as their respective larger
cations in CDCl3 solution.5 Consequently, these salts exist as
ion-pairs.

Recently, a dependence of the reactivity on the anion in Ir-
catalysed hydrogenation, shown in eqn. (1), has been observed.7

(1)

Using the P,N ‘PHOX’ ligand, 3,7 shown complexed to Ir, Aryl
= o-tolyl, the rate of hydrogenation is faster with the anion
BArF than with PF6

2. We show here that 1H and 19F PGSE and
HOESY measurements on the model compounds 4–9, anion =
PF6
2 or BArF, reveal marked differences in how these two

anions interact with the corresponding cations.
The model complexes IrH2(chelate)(3), 6–9, were prepared

by standard procedures.8 Table 1 gives PGSE data from 48
different measurements,9 including those for the four-coor-

dinate Ir(I) models [Ir(1,5-COD)(3)](anion), 4 and [Ir(CNt-
Bu)(3)](anion), 5. The diffusion results confirm that the cations
move slower with increasing molecular size, but that the PF6

2

anion moves much faster and thus independently of the cation
(see Fig. 1). In a direct comparison, e.g. [Ir(CNtBu)(3)]PF6, 5a
vs. [Ir(CNtBu)(3)]BArF, 5b or the P(m-tolyl)3 compounds 8a
vs. 8b, the two cations show almost identical diffusion
constants, but the two anions move at very different rates. The
data for the BArF anion in 6b and 9b suggest ion-pairs;10

however, in 4b, 5b, 7b and 8b it is likely that the BArF anion is
moving independently.10 In the two four-co-ordinate BArF
complexes, 4b and 5b, we observe HOESY contacts from the
BArF to the cation. Therefore, even though 4b and 5b are not
ion-paired, the BArF is close-by. There are no close contacts

† Electronic supplementary information (ESI) available: spectroscopic data
for 6b. See http://www.rsc.org/suppdata/cc/b1/b110066c/

Table 1 Diffusion data for 4–9

Compound Nucleus Fragment
10210 D/m2

s21

Ir(COD)(3)PF6 4a 1H Cation 9.92(6)
19F PF6

2 13.78(6)
Ir(COD)(3)BArF 4b 1H Cation 9.73(6)

1H BArF 8.90(6)
Ir(CNtBu)(3)PF6 5a 1H Cation 9.14(6)

19F PF6
2 13.84(6)

Ir(CNtBu)(3)BArF 5b 1H Cation 9.09 (6)
1H BArF 8.92(6)

IrH2(Mebipy)(3)PF6 6a 1H Cation 9.05 (6)
19F PF6

2 13.65(6)
IrH2(Mebipy)(3)BArF 6b 1H Cation 8.09(6)

1H BArF 7.93(6)
IrH2(TMEDA)(3)PF6 7a 1H cation 9.67(6)

19F PF6
2 13.18(6)

IrH2(TMEDA)(3)BArF 7b 1H cation 9.43(6)
1H BArF 8.55(6)

IrH2(PAr3)2(3)PF6 8a 1H cation 7.70(6)
19F PF6

2 13.43(6)
IrH2(PAr3)2(3)BArF 8b 1H Cation 7.87(6)

1H BArF 8.13(6)
IrH2(TROPPh2)(3)PF6 9a 1H cation 8.54(6)

19F PF6
2 14.27(6)

IrH2(TROPPh2)(3)BArF 9b 1H cation 7.96(6)
1H BArF 8.24(6)
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between the BArF and the dihydro Ir(III)-cations in any of these
complexes. The 1H, 19F-HOESY data, e.g. in Fig. 2, for the
PF6
2 anion indicate a specific interaction with the cation, i.e. in

4a–7a the PF6
2 anion does not make a random approach (see

10) but rather moves toward the cation via the oxazoline ring.11

For 8 and 9 the large phosphine ligands12 block this PF6
2

approach completely. This regiospecific approach is interesting
but need not be of catalytic relevance.

We assume that the catalytically active Ir-species are
deactivated via trimerization to bridging hydrides.13 For the
cation/PF6

2 combination, the cation is more available for
intermolecular reaction in that the anion is often further away
from the metal. For the cation/BArF pair, ion-pairing is
possible, although it may be sufficient for the large BArF to be

close enough to slow the intermolecular attack leading to the
bridging hydride. We believe this combined diffusion/HOESY
approach to anion effects in catalysis to be unique. The results
do not directly explain the observed differences in catalytic
activity since we employed model compounds; however, the
data from this approach offer a new and more direct way of
studying this type of problem.

We thank Dr Massimiliano Valentini both for the measure-
ments on the 1,5-COD complexes and for his leadership. P. S. P.
thanks the Swiss National Science Foundation and the ETH
Zurich for support. We also thank Johnson Matthey for precious
metal salts.
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Fig. 1 PGSE diffusion data for 6a showing that the PF6
2 anion (8) moves

much faster than the slower Ir-cation (2).

Fig. 2 HOESY spectrum of 6a. There are three types of contacts, one weak
and two strong, to: (a) oxazoline methine H-4, trans to the tBu group; (b) the
bipyridyl methyls H-29 and H-35 and (c) the NCH H-30 and H-33 from the
bipyridyl moiety. The PF6

2 has no contacts to the hydride ligands (400
MHz, CD2Cl2).
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