THE PREPARATION AND SYNTHETIC VALUE OF fac-[M(CO)₃(NCR)₃]⁺ CATIONS (M = Mn or Re; R = Et, Pr OR PhCH₂)

D. A. EDWARDS and J. MARSHALSEA

School of Chemistry, University of Bath, Bath, BA2 7AY, England

(Received 28 July 1983; accepted 10 August 1983)

Abstract—Treatment of MBr(CO)₅ (M = Mn or Re) with AgClO₄ and an organonitrile in a suitable solvent affords the complexes fac-[M(CO)₃(NCR)₃][ClO₄], (R = Et, Pr or PhCH₂). The use of these complexes as synthetic precursors has been illustrated by the preparation of fac-[M(CO)₃L₃][ClO₄], (M = Mn, L = NH₃ or L₃ = dien; M = Re, L₃ = triphos). Pure fac-[Re(CO)₃(NH₃)₃][ClO₄] could not be prepared using this nitrile displacement route, but may be isolated, as the PF₆⁻ salt, from the reaction of [Re(CO)₃(toluene)][PF₆] and ammonia in chloroform.

In a recent publication¹ Kubas illustrated the use of the complexes fac-W(CO)₃(NCR)₃, (R = Et or Pr), as starting materials for the synthesis of several polyolefin- and phosphine-substituted tungsten carbonyls. These nitrile complexes were preferred to the commonly employed fac-W(CO)₃(NCMe)₃ because not only were they formed more rapidly than the acetonitrile complex from W(CO)₆ but they also possessed higher solubilities in solvents of synthetic utility. Subsequent nitrile substitution reactions could therefore be achieved more effectively. Kubas also suggested that the use of higher nitriles as ligands should be encouraged, rather few complexes containing these ligands having been explored.

We are therefore prompted to report the preparation, characterization and use of the complexes fac-[M(CO)₃(NCR)₃][ClO₄] (M = Mn or Re; R = Et, Pr or PhCH₂), the rhenium cations with R = Et or Pr being isoelectronic and isostructural with fac-W(CO)₃(NCR)₃ reported by Kubas.¹

EXPERIMENTAL

All reactions were performed under dry nitrogen using anhydrous, deoxygenated solvents. IR spectra were recorded using Perkin-Elmer 597 and 599B spectrometers. The ¹H NMR spectra were recorded as CDCl₃ solutions using a Jeol PS 100 spectrometer with tetramethylsilane as internal standard. Preparation of $fac-[Mn(CO)_3(NCR)_3][ClO_4]$, (R = Et, Pr or PhCH₂)

A solution of MnBr(CO)₅ (0.55 g, 2.00 mmol), AgClO₄ (0.42 g, 2.03 mmol) and EtCN (0.36 g, 6.50 mmol) in 30 cm³ of chloroform was refluxed for 5 hr. The AgBr formed was filtered off and the filtrate evaporated to low bulk. Addition of diethyl ether afforded an orange precipitate of [Mn(CO)₃(NCEt)₃][ClO₄], (0.71 g, 88%; ¹H NMR in CDCl₃: δ , 1.43 (3), 2.86 (2)). Found: C, 35.1; H, 4.1; N, 10.6. C₁₂H₁₅ClMnN₃O₇ calc.: C, 35.7; H, 3.8; N, 10.4.

The PrCN complex was prepared in a similar fashion, except that PrCN (0.45 g, 6.50 mmol) was used with a reflux time of 16 hr. The product, isolated as a yellow oil which could not be induced to crystallize, was freed from excess PrCN by high vacuum pumping. Yield, 0.79 g (89%). ¹H NMR in CDCl₃: δ , 1.10 (3), 1.82 (2), 2.83 (2). Found: C, 39.2; H, 4.8; N, 9.2. C₁₅H₂₁ClMnN₃O₇ calc.: C, 40.4; H, 4.8; N, 9.4.

The PhCH₂CN analogue was also prepared in the above manner as an orange oil using PhCH₂CN (0.70 g, 6.00 mmol) and a reflux time of 4 hr. Yield, 0.91 g (77%). ¹H NMR in CDCl₃: δ , 4.23 (2), 7.33 (5). Found: C, 54.8; H, 3.5; N, 6.9. C₂₇H₂₁ClMnN₃O₇ calc.: C, 55.0; H, 3.6; N, 7.1.

Preparation of fac-[Re(CO)₃(NCEt)₃][ClO₄]. A mixture of ReBr(CO)₅ (1.00 g, 2.50 mmol), AgClO₄ (0.52 g, 2.51 mmol) and EtCN (25 cm³) was refluxed for 16 hr. After removal of the AgBr, diethyl ether (70 cm³) was added to the filtrate to give colourless crystals on standing. These were washed with diethyl ether and dried *in vacuo*. Yield, 0.86 g (65%). ¹H NMR in CDCl₃: δ , 1.44 (3),

^{*}Author to whom correspondence should be addressed.

2.96 (2). Found: C, 26.8; H, 2.8; N, 7.9. $C_{12}H_{15}ClN_3O_7Re$ calc.: C, 26.9; H, 2.8; N, 7.9.

Preparation of fac-[Re(CO)₃(NCCH₂Ph)₃][ClO₄]. A mixture of ReBr(CO)₅ (0.50 g, 1.25 mmol), AgClO₄ (0.25 g, 1.21 mmol), PhCH₂CN (0.43 g, 3.69 mmol) and di-isopropyl ether (20 cm³) was refluxed for 20 hr. Decantation of the solvent left a brown solid which was partly soluble in 20 cm³ of chloroform leaving a residue of AgBr. Removal of the chloroform left a viscous liquid which crystallized after standing for a few days at room temperature. Yield, 0.73 g (82%). ¹H NMR in CDCl₃: δ , 4.30 (2), 7.33 (5). Found: C, 44.6; H, 3.1; N, 5.6. C₂₇H₂₁ClN₃O₇Re calc.: C, 45.0; H, 2.9; N, 5.8.

Preparation of fac-[Mn(CO)₃(NH₃)₃][ClO₄]. Ammonia gas was passed for 1 hr into solutions of fac-[Mn(CO)₃(NCR)₃][ClO₄], (0.25 g; R = Et, Pr or PhCH₂) in 10 cm³ of chloroform. The creamyellow products were filtered, washed with chloroform and dried *in vacuo*. Yields at least 80%. Found: C, 12.5; H, 3.3; N, 14.5. C₃H₉ClMnN₃O₇ calc.: C, 12.5; H, 3.1; N, 14.5.

Preparation of fac-[Mn(CO)₃(dien)][ClO₄]. A mixture of fac-[Mn(CO)₃(NCR)₃][ClO₄], (1.00 mmol; R = Et, Pr or PhCH₂), diethylenetriamine (0.11 g, 1.10 mmol) and chloroform (10 cm³) was refluxed for 0.5 hr. The pale yellow products were filtered, washed with chloroform and dried *in vacuo*. Yields at least 90%. Found: C, 25.1; H, 3.9; N, 12.5. C₇H₁₃ClMnN₃O₇ calc.: C, 24.6; H, 3.8; N, 12.3.

Preparation of fac-[Re(CO)₃(triphos)][ClO₄]. A mixture of fac-[Re(CO)₃(NCEt₃)][ClO₄], (0.26 g, 0.50 mmol), 1,1,1-tris(diphenylphosphinomethyl) ethane (0.34 g, 0.55 mmol) and acetone (20 cm^3) was refluxed for 2 hr. Removal of the acetone left a creamy-white residue which was redissolved in acetone, the solution filtered and the product precipitated by addition of light petroleum. Yield (65%). С, H, 0.32 g Found: 52.8; 3.9. C₄₄H₃₉ClO₇P₃Re calc.: C, 53.1; H, 4.0.

Preparation of fac-[Re(CO)₃(NH₃)₃][PF₆] from [Re(CO)₃(η -C₆H₅Me)][PF₆]. Ammonia gas was slowly passed for 6 hr through a suspension of [Re(CO)₃(η -C₆H₅Me)][PF₆]² (0.05 g) in chloroform (15 cm³). The white solid produced was filtered, washed with diethyl ether and dried *in vacuo*. Yield, 0.038 g (82%). Found: C, 7.8; H, 2.0; N, 9.1. C₃H₉F₆N₃O₃PRe calc.: C, 7.8; H, 1.9; N, 9.0.

RESULTS AND DISCUSSION

High yields of the complexes $fac-[M(CO)_3(NCR)_3][CIO_4]$, $(M = Mn, R = Et, Pr \text{ or } PhCH_2$; $M = Re, R = Et \text{ or } PhCH_2$) have been

isolated from the reactions of MBr(CO)₅ with RCN in the presence of $AgClO_4$. This method has previously been employed for the syntheses of the acetonitrile analogues.^{3,4} The fac-[Mn(CO)₃ $(NCR)_{3}[ClO_{4}]$ (R = Pr or PhCH₂) complexes were isolated as non-crystallizable viscous oils. The related fac-[Mn(CO)₃L₃][ClO₄] (L = acetone or tetrahydrofuran) complexes are also known as oils.⁵ IR data for the nitrile complexes are presented in Table 1 and are, not unexpectedly, similar to those of the acetonitrile analogues.⁴ Two v(CO) bands $(A_1 + E)$ are observed in the solution spectra, the lower frequency band being of greater half width. The presence of the T₂ v(ClO) and δ (OClO) bands at ca. 1095 and ca. 625 cm^{-1} coupled with the absence of A₁ v(ClO) bands at *ca*. 935 cm⁻¹ are indicative of ionic perchlorate and an increase in v(CN) from that of the free nitrile is typical of N-bonded nitrile. The ¹H NMR spectra are given in the Experimental section, the observation of a single set of resonances for each cation being further support for facial configurations.

As illustrations of the synthetic value of these nitrile complexes, we have prepared the complexes $fac - [M(CO)_3L_3][ClO_4]$ (M = Mn, L = NH₃ or $L_3 = dien; M = Re, L_3 = triphos)$ in excellent yields simple nitrile displacement by reactions. Significant IR bands are listed in Table 1, fac- $[Re(CO)_3(triphos)][ClO_4]$ showing three v(CO)bands rather than the expected two due to solid Although state Ε mode splitting. fac- $[Mn(CO)_3(NH_3)_3][ClO_4]$ has not been reported previously, the corresponding chloride has been prepared⁶ by a high pressure reaction of MnCl(CO)₅ with anhydrous liquid ammonia, and the $[Mn(CO)_5]^-$ salt by photolysis of a solution of $Mn_2(CO)_{10}$ in the presence of ammonia.⁷ Clearly the present route offers a simple alternative. The complex fac-[Mn(CO)₃(triphos)][Mn(CO)₅] has been prepared⁸ by a similar disproportionation of $Mn_2(CO)_{10}$ using triphos, but the analogous cation fac-[Re(CO)₃(triphos)]⁺, isolated here as its perchlorate salt, appears not to have been reported before.

Surprisingly, in view of the simplicity of the above reactions, we were unable to obtain pure samples of fac-[Re(CO)₃(NH₃)₃][ClO₄] from reactions of solutions of fac-[Re(CO)₃(NCR)₃][ClO₄] with ammonia gas. However, fac-[Re(CO)₃(NCR)₃]][PF₆] was successfully isolated by displacement of arene from [Re(CO)₃(η -C₆H₅Me)][PF₆]. The trisammine cation has previously been prepared as its chloride by high pressure reactions of either Re₂(CO)₁₀ or Re(CO)₅H with a solution of ammonium chloride in liquid ammonia,⁹ and as the phosphinate R₂PO₂⁻ (R = Me or Ph) salts from

Table 1. IR frequencies (cm⁻¹)^a

Compound	v(CO)	v(CN) ^d	v(C10) ^d	δ(OC10) ^{d,f}	$v(NH)^{d}$
[Mn(CO) ₃ (NCEt) ₃][C10 ₄]	2050, 1972 ^b	2293 w	1099 br	623	
[Mn(CO) ₃ (NCPr) ₃][ClO ₄]	2048, 1966 ^b	2290 w	1097 br	627	· · · · · · · · · · · · · · · · · · ·
[Mn(CO) ₃ (NCCH ₂ Ph) ₃][C10 ₄]	2045, 1965 ^b	2285 w	1092 br	625	
[Re(CO) ₃ (NCEt) ₃][C10 ₄]	2045, 1935 ^b	2297 w	1093 br	625	
[Re(CO) ₃ (NCCH ₂ Ph) ₃][C10 ₄]	2052, 1950 ^b	2300 w	1096 br	626	
[Mn(CO) ₃ (NH ₃) ₃][C10 ₄]	2043, 1919 [°]		1096 br	627	3358 m, 3296 w
[Mn(CO) ₃ (dien)][Cl0 ₄]	2035, 1923 [°]		1090 br	626	3340 m, 3298 m
[Re(CO) ₃ (triphos)][C10 ₄]	2035, 1967, 1948 ^d		1098 br	626	
[Re(CO) ₃ (NH ₃) ₃][PF ₆]	2028, 1902 ^b		840 br ^ë	560 ^g	3370 m, 3300 m

 a All bands strong unless otherwise indicated. b CHCl $_3$ solution. c MeCN solution.

^d Nujol mull. ^e v_3 , PF₆⁻. ^f Strong δ (MCO) bands also found between 700-600 cm⁻¹. ^g v_2 , PF₂⁻.

 $[\text{Re}(\text{CO})_3(\mu-\text{O}_2\text{PR}_2)(\text{THF})]_n$ and liquid ammonia.¹⁰ Again the route suggested here represents an attractive alternative. The complex *fac*-[Re(CO)₃ (triphos)][PF₆] may also be prepared by a similar displacement reaction from [Re(CO)₃(η -C₆H₅Me)] [PF₆].

Acknowledgement—We thank the University of Bath Research Fund for partial support of this work.

REFERENCES

- 1. G. J. Kubas, Inorg. Chem. 1983, 22, 692.
- L. A. P. Kane-Maguire and D. A. Sweigart, *Inorg. Chem.* 1979, 18, 700.
- R. H. Reimann and E. Singleton, J. Organomet. Chem. 1973, 59, C 24; J. Chem. Soc., Dalton Trans. 1974, 808.

- D. A. Edwards and J. Marshalsea, J. Organomet. Chem. 1977, 131, 73.
- D. Drew, D. J. Darensbourg and M. Y. Darensbourg, *Inorg. Chem.* 1975, 14, 1579; R. Uson, V. Riera, J. Gimeno, M. Laguna and M. P. Gamasa, *J. Chem. Soc., Dalton Trans.* 1979, 996.
- 6. H. Behrens, E. Ruyter and H. Wakamatsu, Z. Anorg. Allg. Chem. 1967, 349, 241.
- M. Herberhold, F. Wehrmann, D. Neugebauer and G. Huttner, J. Orgamomet. Chem. 1978, 152, 329.
- J. Ellermann and H. A. Lindner, Z. Naturforsch., B; Anorg. Chem., Org. Chem. 1976, 31B, 1350.
- H. Behrens and P. Pässler, Z. Anorg. Allg. Chem. 1969, 365, 128.
- E. Lindner, S. Trad, S. Hoehne and H.-H. Oetjen, Z. Naturforsch., B; Anorg. Chem., Org. Chem., 1979, 34B, 1203.