Synthesis of 5-Deoxy-3-O-methyl-5-phenylphosphinyl-L-fucopyranoses.

The First P-in-Ring Sugar Analogs of L-Fucose Type

Tadashi HANAYA, Takeshi OHMAE, Heizan KAWAMOTO, and Hiroshi YAMAMOTO*

Department of Chemistry, Okayama University, Tsushima, Okayama 700

Starting from 1,2:5,6-di-O-isopropylidene- β -D-altrofuranose, 5,6-dideoxy-1,2-O-isopropylidene-5-[(methoxy)phenylphosphinyl]-3-O-methyl- β -D-arabino-hexofuranose was prepared in a 6 step sequence (13% overall yield). It was converted into the title compounds, which were characterized as the 1,2,4-triacetates.

Sugar analogs having a phosphorus atom in the hemiacetal ring have been prepared in recent years; $^{1)}$ e.g., those corresponding to D-ribofuranoses $1^{2)}$ and D-glucopyranoses $2.^{3)}$ These compounds are of interest in view of their physico-chemical properties and potential biological activity. Meanwhile, 1,5-imino-L-fucitol (3) $^{4)}$ and 5-thio-L-fucose (4) $^{5)}$ were

 synthesized and both compounds have been shown to inhibit L-fucosidase. We describe here a convenient synthesis of the first P-in-ring sugar analogs with L-fucose type structure having a phenylphosphinyl as a model functional group.

Thus, D-altrofuranose 5^6 was converted into the key intermediate 5,6-dideoxy-5-[(methoxy)phenylphosphinyl] derivative 9 by sequence of $5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$ (6 steps, 13% overall yield) as illustrated in Scheme 1.⁷) Then, 9 was reduced with sodium dihydrobis (2-methoxyethoxy) aluminate (SDMA), followed by acid hydrolysis, affording 5,6-dideoxy-

Scheme 1. Reagents: i, MeI-NaH/DME, 98% yield; ii, 80% aq AcOH, 78%; iii, TsCl/Py, 76%; iv, PCC, 95%; v, PhPH(=O)OMe-DBU/DME, 55%; vi, H_2 /Raney-Ni, 44%; vii, SDMA; viii, aq HCl-EtOH; ix, Ac_2O -Py.

5-phenylphosphinyl-D-arabino-hexopyranoses (10), which were converted into their triacetate (11) by the usual method (Scheme 1). Chromatography of 11 over silica gel with ethyl acetate-hexane afforded pure 1,2,4-tri-O-acetyl-5-deoxy-3-O-methyl-5-[(R)-phenylphosphinyl]- α -L-fucopyranose (11a) (colorless needles, mp 259-261 O C, 13% overall yield from 9) and its 5-[(S)]-epimer 11b (syrup, 7% yield), together with a minor proportion of 5,6-dideoxy-5-[(S)-phenylphosphinyl]- β -D-altropyranose 11c (9%) and its α -anomer 11d (2%). The configuration of ${\bf 11a-d}$, predominantly in the ${}^1{\bf C}_4({\bf L})$ or ${}^4{\bf C}_1({\bf D})$ conformation (Scheme 1), was established by analysis of their 500-MHz 1 H NMR spectra (see Table 1), 9 by taking into account the known parameters of structurally related compounds obtained before. $^{1,3)}$ These NMR data are considered to be highly versatile in determining the structures of other 5deoxy-5-phosphinyl-L-fucopyranoses, preparation of which is currently under investigation.

Table 1. ¹ H NMR (500 MHz) Parameters for 11a-d in CDCl ₃ ^{a)}												
Chemical shifts (δ)												
Compd	H-1	H-2	H-3	H-4	H - 5	н3-6	MeO-3	Ac-1,2	2,4	Ph (0)	Ph (m)	Ph(p)
11a	5.77	5.85	3.68	5.87	2.61	1.19	3.46	2.23,	2.00, 1,95	7.75	7.75	7.59
11b	6.17	5.57	3.74	5.61	2.73	1.28	3.43	2.24,	2.11, 2.06	7.76	7.51	7.58
11c	5.69	5.77	3.85	5.64	2.70	1.10	3.61	2.23,	2.13, 1.94	7.76	7.51	7.57
_11d	5.37	5.49	3.80	5.60	3.02	1.16	3.60	2.18,	2.09, 1.96	7.80	7.51	7.59
	Coupling constants / Hz											
	J _{1,2}	J ₁ ,	P 2	^J 2,3	J _{2,P}	J _{3,4}	J _{3,P}	J4,5	J4,P	J _{5,6}	J5,P	J _{6,P}
11a	2.9	11.	8 1	LO.4	Ô	3.8	0	2.7	27.9	7.3	6.7	14.8
11b	3.1	8.	6	9.8	4.2	2.8	0	2.9	29.6	7.3	21.2	14.6
11c	3.5	0.	5	5.2	24.9	2.3	1.8	12.0	4.1	7.2	4.1	14.8

References

9.6

4.7

20.1

11d

1) For reviews, see H. Yamamoto and T. Hanaya, "Studies in Natural Products Chemistry," ed by T. I. Atta-ur-Rahman, Elsevier, Amsterdam (1990), Vol. 6, pp. 351-384; H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 42, 135 (1984).

2) T. Hanaya and H. Yamamoto, Bull. Chem. Soc. Jpn., 62, 2320 (1989); H. Yamamoto, Y.

1.0

11.5

- Nakamura, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, J. Org. Chem., 49, 1364 (1984).
- 3) H. Yamamoto, T. Hanaya, H. Kawamoto, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, J. Org. Chem., 50, 3416 (1985); H. Yamamoto, K. Yamamoto, S. Inokawa, M. Yamashita, M.-A. Armour, and T.T. Nakashima, ibid., 48, 435 (1983).
- 4) G.W.J. Fleet, A.N. Shaw, S.V. Evans, and L.E. Fellows, J. Chem. Soc., Chem. Commun., 1985, 841.
- 5) H. Hashimoto, T. Shinozaki, T. Chino, and H. Yuasa, 60th National Meeting of the Chemical Society of Japan, Yokohama, April 1990, Abstr., No. 1C525.
- T.S. Fuller and R.V. Stick, Aust. J. Chem., 33, 2509 (1980).
- 7) MS (high-resolution) and ¹H NMR data (mostly at 500 MHz) of the products described in this paper were in agreement with the structures proposed.
- 8) Small amounts of the β -anomers of 11a and 11b appear to be present in the remaining fractions.
- 9) The L-fucopyranose configuration was assigned to 11a,b on the basis of their relatively small $J_{4,5}$ and large $J_{4,P}$ values, whereas the D-altropyranose structure for 11c,d was derived from the large $J_{4,5}$ and $J_{2,P}$ values.

(Received May 2, 1990)

6.4

7.2

14.9

^{2.3} a) Measured with a Varian VXR-500 instrument (the SC-NMR Lab, Okayama Univ.).