New Synthetic Routes to Macrocyclic Triamines

Roger W. Alder,* a Rodney W. Mowlam, a David J. Vachon b and Gary R. Weisman b

- ^a School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- ^b Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA

1,5,9-Triazacyclododecane and related macrocyclic triamines can be conveniently constructed around a single carbon atom as template; this route permits the preparation of selectively alkylated derivatives.

Macrocyclic polyamines have found much use as ligands.¹ These compounds are generally prepared by macrocyclisation methods, such as the Richman–Atkins procedure,² but there is a continuing demand for improved synthetic methods, especially for the preparation of selectively alkylated compounds.^{3–5} In this communication, we describe a new approach in which the macrocycle is built around a single carbon atom as template, thus reducing the cyclisation reactions to those forming 5-, 6- and 7-membered rings. A particular advantage of our route (Scheme 1) is that manipulation of the tricyclic intermediates allows the preparation of selectively alkylated derivatives by the methods already described by Weisman *et al.*⁴ or by other transformations as shown for 1,5,9-triazacyclododecane in Scheme 1.

Bicyclic guanidines such as 1,5,7-triazabicyclo[4.4.0]dec-5-ene 1° are commercially available or readily prepared from acyclic triamines and CS_2 .7 Sodium hydride (4.5 g of 60% oil suspension) was added to 1 (13.9 g) in dry tetrahydrofuran (THF) (200 cm³), cooled to 0°C under nitrogen, and 1,3-dibromopropane (20.2 g) added. Stirring was continued for 1 h at 0°C and the reaction mixture was then left to warm to room temperature overnight. Ethanol (5 cm³) was added to destroy excess NaH, and the hygroscopic 1,5,9-triazatricyclo[7.3.1.0^{5,13}]tridecan-13-yl bromide filtered off; addition of diethyl ether (50 cm³) yielded a little more product. A solution of the bromide and NaBF4 in water (100 cm³) was extracted with CH_2Cl_2 (3 × 40 cm³), and after drying, evaporation and recrystallisation from ethanol–ether, 17.5 g

Scheme 1 Reagents and conditions: i, NaH, $Br[CH_2]_3Br$ in THF, then NaBF₄; ii, LiAlH₄ in THF: iii, 3 mol dm⁻³ HCl, then NaOH: iv, MeI; v, OH⁻/H₂O; vi, NaBH₄ in EtOH

(65%) of the tetrafluoroborate 2⁸ was obtained. The procedure above has been carefully optimised; reaction of 1 with 1,3-dibromopropane under these conditions gives 2 and 10–15% of the elimination product 7-(prop-2-enyl)-1,5,7-triazabicyclo[4.4.0]dec-5-ene. Use of potassium hydride, higher temperatures, more concentrated solutions, and 1-bromo-3-chloropropane, all led to lower yields of 2.

Modifications of the above procedure allow the preparation of other tricyclic guanidinium salts. Thus 8† could be obtained in 82% yield using 1,4-dibromobutane in the above procedure, but 1,2-dibromoethane only yielded elimination product. However, reaction of 1 with oxirane, followed by treatment of the product with 48% HBr and conversion to the perchlorate gave 9 in 72% yield. Reaction of 1,4,6-triazabicyclo[3.3.0]oct-4-ene9 with 9-bromopropanol, followed by treatment with methanesulfonyl chloride gave 10 as an oil, which could be converted to a crystalline tetraphenylborate salt, but all attempts to prepare salts of 11 by these methods failed. This guanidinium ion is known to be severely strained.

Tricyclic guanidinium salts 2 and 9 can be reduced in 75% yield to orthoamides 3 and 12^{10} with LiAlH₄ in THF; similar reduction of 8 yields a mixture of 13 and 14. Acid catalysed hydrolyses⁴ of 3, 12 and the mixture of 13 and 14 give the monocyclic triamines in good yields. Thus 3 when refluxed for 22 h with 3 mol dm⁻³ HCl, yielded 4 (89%).

New procedures which result in selective alkylation of these triamines are illustrated for 1,5,9-triazacyclododecane in Scheme 1. Reaction of orthoamide 3 with a variety of alkylating agents gives high yields of bicyclic amidinium salts⁴ such as 5, which can normally be hydrolysed under alkaline conditions to the monoalkylated monocyclic triamine (e.g. 6 was obtained in 63% yield). In some instances (with the 4-nitrobenzyl, prop-2-ynyl and phenacyl salts) alkaline hydrolysis resulted in loss of the alkyl group; for the first two cases acid hydrolysis was found to be a satisfactory alternative, but hydrolysis of the phenacyl salt was not successful. Reduction of the amidinium salt 5 with sodium borohydride in refluxing ethanol gave 1,5-dimethyl-1,5,9-triazacyclododecane 7 in 73% yield. This reaction presumably proceeds via protonation and ring opening of the first-formed aminal; reduction of 5 with LiAlH₄ stopped at the aminal stage. Other

[†] Satisfactory C, H, N analyses or HRMS were obtained for all new compounds. ¹H and ¹³C NMR spectra are consistent with the structures assigned.

1-alkyl-5-methyl-1,5,9-triazacyclododecanes should be readily available by this procedure; thus 1-(4-nitrobenzyl)-5-methyl-1,5,9-triazacyclododecane was obtained in 87% yield. Finally, reductive alkylation of 4 with NaBH $_3$ CN and CH $_2$ O or Eschweiler–Clarke reductive alkylation of the orthoamide 3 gave 1,5,9-trimethyl-1,5,9-triazacyclododecane. Eschweiler–Clarke alkylation of 4 itself surprisingly led to partial ring cleavage; this cleavage reaction has been described elsewhere. 11

We believe that these synthetic routes to macrocyclic triamines offer an attractive alternative to conventional methods, and that the strategy of constructing macrocycles around a (covalently-bound) template atom or group may be applicable to other cases.

We are grateful to SERC for a studentship (to R. W. M.) and the Research Corporation and National Science Foundation (CHE-8308099) for supporting the work at Durham, NH, and we thank Jacqueline Skerrow (Bristol) and Van B. Johnson (Durham, NH) for some preliminary experiments.

Received, 15th January 1992; Com. 2/00238H

References

G. A. Melson, Coordination Chemistry of Macrocyclic Compounds, Plenum, New York, 1979; D. H. Busch, Acc. Chem. Res., 1978, 11, 393; T. A. Kaden, Topics Curr. Chem., 1984, 121, 157; E. Kimura, Topics Curr. Chem., 1985, 128, 113; L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989; P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 1987, 35, 329; D. Parker, Chem. Soc. Rev., 1990, 19, 271; R. Bhula, P. Osvath and D. C. Weatherburn, Coord. Chem. Rev., 1988, 91, 89; A. Bianchi, M. Micheloni and P. Paoletti, Coord. Chem. Rev., 1991, 110, 17.

- 2 J. E. Richman and T. J. Atkins, J. Am. Chem. Soc., 1974, 96, 2268; T. J. Atkins, J. E. Richman and W. F. Oettle, Org. Synth., 1978, 58, 86.
- 3 P. V. Bernhardt and G. A. Lawrance, *Coord. Chem. Rev.*, 1990, **104**, 297.
- 4 G. R. Weisman, D. J. Vachon, V. B. Johnson and D. A. Gronbeck, *J. Chem. Soc.*, *Chem. Commun.*, 1987, 886.
- 5 P. L. Anelli, M. Murru, F. Uggeri and M. Virtuani, J. Chem. Soc., Chem. Commun., 1991, 1317; H. Bernard, J. J. Yaouanc, J. C. Clément, H. des Abbayes and H. Handel, Tetrahedron Lett., 1991, 32, 639.
- 6 1,3,4,6,7,8-Hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine: A. F. McKay and M. E. Kreling, *Can. J. Chem.*, 1957, 35, 1438; F. P. Schmidtchen, *Chem. Ber.*, 1980, 113, 2175; a number of derivatives of 1, including homochiral compounds have recently been reported: F. P. Schmidtchen, *Tetrahedron Lett.*, 1990, 31, 2269; H. Kurzmeier and F. P. Schmidtchen, *J. Org. Chem.*, 1990, 55, 3749; G. M. Coppola, J. F. Fraser, G. E. Hardtmann and M. J. Shapiro, *J. Heterocyclic Chem.*, 1985, 22, 193 report cycloaddition of a tricyclic derivative of 1, and reduction of the product to a tetracyclic orthoamide.
- 7 Eur. Pat. App. EP 198,680 to BP Chemicals (*Chem. Abs.*, 1987, 106, 67340m).
- 8 J. M. Erhardt, E. R. Grover and J. D. Wuest, *J. Am. Chem. Soc.*, 1980, **102**, 6365.
- 9 2,3,5,6-Tetrahydro-1*H*-imidazo[1,2-*a*]imidazole: A. F. McKay, M. E. Kreling, G. Y. Paris, R. O. Braun and D. J. Whittingham, *Can. J. Chem.*, 1957, 35, 843; a number of homochiral derivatives of this guanidine have recently been reported: E. J. Corey and M. Ohtani, *Tetrahedron Lett.*, 1989, 30, 5227; G. Büchi, A. D. Rodriguez and K. Yakushijin, *J. Org. Chem.*, 1989, 54, 4494.
- J. M. Erhardt and J. D. Wuest, J. Am. Chem. Soc., 1980, 102, 6363; T. J. Atkins, J. Am. Chem. Soc., 1980, 102, 6364; G. R. Weisman, V. B. Johnson and R. E. Fiala, Tetrahedron Lett., 1980, 21, 3635.
- 11 R. W. Alder, D. Colclough and R. W. Mowlam, *Tetrahedron Lett.*, 1991, 32, 7755.