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a b s t r a c t

A method for the stereoselective construction of the C80–O–C600 ether of nigricanoside-A, an antimitotic
natural product from the green alga Avrainvillea nigricans, has been developed based on chirality-trans-
ferring Ireland–Claisen rearrangement. The method was successfully applied to the synthesis of simple
models for the C20 lipid chain/galactosyl glycerol segment of the natural product.

� 2013 Elsevier Ltd. All rights reserved.
Nigricanoside-A (1) (Fig. 1), isolated as a strong antimitotic
agent [IC50 of nigricanoside-A dimethyl ester (2): 3 nM against hu-
man breast cancer MCF-7 cells] from the green alga Avrainvillea
nigricans by Andersen,1 is a unique oxylipin derivative including
two oxygenated fatty acids and a galactosyl glycerol moiety that
are connected to each other by ether bonds.2 Although the planar
structure and the partial relative stereochemistry of 1 have been
elucidated by intensive NMR analysis of the dimethyl ester (2) of
1, full assignment of the relative and absolute stereochemistries
of 1 has yet to be completed. The unique structure and the strong
bioactivity of 1 have prompted us to attempt its total synthesis and
full stereochemical assignment. At the beginning of the project, we
developed an effective method for the stereoselective construction
of the C80–O–C600 ether bond of 1 connecting the galactose moiety
to the C20 fatty acid chain based on chirality transferring Ireland–
Claisen rearrangement.3 Here, the details of the development and
application of the method to the synthesis of simple models
[(80S,2000R)-3 and (80R,2000R)-3] for the C20 lipid chain/galactosyl
glycerol segment of 1 are described.

Model compounds (80S,2000R)-3 and (80R,2000R)-3, excluding the
C16 fatty acid chain and the oxygen functionalities at C110 and
C120, were designed for the following purpose: (i) a simple demon-
stration of the stereoselective construction of the C80–O–C600 ether
of 1, (ii) comparison of the NMR spectra with 2 to predict the con-
figuration at C80 of 1, and (iii) investigation of the structure–activ-
ity relationship in antimitotic/cytotoxic assays of 1. The (2000R)-
configuration of the models was designed according to the pro-
posed (R)-configuration at C2000 of the glycerol of 1, which was
based on the assumption that nigricanosides were oxidative
metabolites of monogalactosyl diacyl glycerols (MGDGs), known
as chloroplast membrane lipids, having a common 3-galactosyl-
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sn-glycerol structure.4 In this preliminary report, we disclose the
synthesis and NMR analysis of the models.5

The synthetic plan for the model compounds (3) is outlined in
Scheme 1. The Z-olefin groups at C50 and C140 of 3 were scheduled
to be formed by Lindlar hydrogenation of the corresponding alkyne
groups at the final stage of the synthesis after aldehyde 4 and sul-
fone 5 were connected by Julia–Kocienski olefination6 to form the
E-olefin at C90. The Z-bromoalkene at C50 of 4 would be converted
into an alkyne group under mild basic conditions after the olefin-
ation step. For the construction of the C80 stereocenter and the Z-
bromoalkene of 4, the Ireland–Claisen rearrangement of ester 6
was employed. The rearrangement was expected to exhibit perfect
chirality transfer from C50 of 6 to C80 of 4. Therefore, bromoalkenol
8, which would be condensed with glycolic acid derivative 7 to
form 6, must be obtained in enantiomerically pure form. Thus, both
enantiomers (S)-8 and (R)-8 would be prepared by chiral
resolution.

The synthesis of glycolic acid 7 from the known 3-galactosyl-sn-
glycerol derivative 97 is shown in Scheme 2. The acetate groups of
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Scheme 2. Synthesis of carboxylic acid 7.
9 were removed by methanolysis, and the resulting tetraol was
subjected to stepwise protection with TBDPSCl and 2,2-dimethoxy-
propane to give alcohol 10 (79% over three steps). The protection of
10 as a TBS ether (91%) followed by the selective removal of the
TBDPS group8 produced alcohol 12 (80%), which was successfully
converted into 7 through etherification with tert-butyl bromoace-
tate followed by basic hydrolysis (67% over two steps).

The preparation of chiral allylic alcohols (R)-8 and (S)-8 started
from the known enone 139 (Scheme 3). Bromination of 13 followed
by elimination of HBr with Et3N produced a-bromo enone 14
(86%), which was reduced under Luche conditions to give racemic
alcohol 8 (98%).10 After the condensation of 8 with (R)-(�)-a-
methoxyphenylacetic acid (15), the resulting diastereomeric esters
16 and 17 were separated by preparative HPLC (16: 35%; 17:
35%).11 The hydrolysis of esters 16 and 17 afforded homochiral
alcohols (R)-8 (98%) and (S)-8 (100%),12 respectively. The absolute
configurations of the alcohols were determined by application of
the modified Mosher’s method on alcohol (S)-8.13

Sulfone 5 was prepared from undec-5-yn-1-ol (18)14 via a pro-
cess including Mitsunobu reaction15 with 1-phenyl-1H-tetrazole-
5-thiol (62%) and oxidation with H2O2 in the presence of ammo-
nium molybdate hydrate16 (50%) (Scheme 4).

The stereoselective construction of the C80 stereocenter by Ire-
land–Claisen rearrangement is shown in Scheme 5. First, glycolic
acid 7 was esterified with alcohol (S)-8 to afford ester (50S)-6
(97%). The treatment of (50S)-6 with NHMDS in the presence of
TMSCl in THF at �78 �C produced a ketene silyl acetal intermedi-
ate, which was then warmed to 0 �C to give rearranged product
(80S)-20 as a single diastereomer. Carboxylic acid (80S)-20 was con-
densed with N,O-dimethylhydroxylamine to furnish N-methoxy-N-
methylamide (80S)-21 in good yield (80% over two steps).

The absolute stereochemistry at C80 of (80S)-21 was determined
as shown in Scheme 6. First, the bromoalkene of (80S)-21 was
reduced with Bu3SnH to alkene 22 (37%). After the reduction of
22 with LiAlH4,17 the resulting aldehyde was reacted with allyl
magnesium chloride to give 23 as a 1:1 mixture of diastereomers
OH
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Figure 2. Deviation of 1H NMR chemical shifts of 3 from the reported values of 2. 1H
NMR spectra of 3 were measured in 25:2 C6D6/DMSO-d6 according to the
literature.1
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at C90 (61%). Diene 23 was then cyclized by ring-closing olefin
metathesis with Grubbs’ first generation catalyst (24),18 and
trans-disubstituted cyclohexene 25, of which the trans-relationship
between Ha and Hb was confirmed by the large J value (9.3 Hz) be-
tween these protons, was obtained in 21% yield after separation
from the corresponding cis-isomer. Alcohol 25 was converted into
(S)- and (R)-MTPA esters (26). Application of modified Mosher’s
analysis13 to these MTPA esters established the (S)-configuration
at C90, which thus determined the (80S)-configuration in conjunc-
tion with the trans-relationship between Ha and Hb.

The established (80S)-configuration of 26 also explained the ste-
reoselectivity of the Ireland–Claisen rearrangement of (50S)-6 pro-
ducing (80S)-20. The initial formation of the ketene silyl acetal
would be highly Z-selective, and the Z-ketene silyl acetal would
be rearranged via a stable chair form transition state (TS in
Scheme 5), which would effectively promote the chirality transfer
from C50 to C80 and produce (80S)-20 exclusively.

The completion of the synthesis of model compound (80S)-3 is
illustrated in Scheme 7. Weinreb amide (80S)-21 was reduced with
LiAlH4 to give aldehyde (80S)-4, which was subjected to Julia–
Kocienski olefination with sulfone 5 using KHMDS to produce E-al-
kene (80S)-27 (47% over two steps). The PMB group of (80S)-27 was
removed with DDQ (99%), and the resulting alcohol (80S)-28 was
converted into methyl ester (80S)-29 through TEMPO oxidation in
the presence of water19 followed by treatment with trimethylsilyl-
diazomethane (68% over two steps).20 The bromoalkene group of
(80S)-29 was transformed into an acetylene group [(80S)-30, 47%]
by treatment with TBAF�3H2O in DMF at 75 �C, which also removed
the TBS ether at C200, according to Mori’s procedure.21 Lindlar
hydrogenation of (80S)-30 followed by acidic methanolysis of the
acetonides produced (80S,2000R)-322 (53% over two steps). Thus,
model compound (80S,2000R)-3 was stereoselectively synthesized
from 3-galactosyl-sn-glycerol derivative 9 via a route including
chirality transferring Ireland–Claisen rearrangement as a key step.
This route was also successfully applied to the synthesis of
(80R,2000R)-323 from (R)-8 and 7.24

With both model compounds (80S,2000R)-3 and (80R,2000R)-3 in
hand, we compared the 1H NMR data of the model compounds in
C6D6/DMSO-d6 (25:2) with the reported data of 2. The deviation
of the chemical shifts of the models from those of 2 is shown in
Fig. 2. While there are large differences in the chemical shifts in
the H90–H160 region between each model and 2 due to the absence
of the C16 fatty acid chain and the oxygen functionalities at C110
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and C120 in the model compounds, the chemical shift deviations in
other regions of both models are small (within ±0.1 ppm). The sim-
ilarity of the 1H NMR spectrum of (80S,2000R)-3 with that of 2 is sug-
gested from the fact that the average of the absolute values of the
chemical shift deviations of (80S,2000R)-3 from 2 (for all protons, ex-
cept H90–H160 and hydroxy protons, of the model) is smaller
(0.018 ppm) than that of (80R,2000R)-3 (0.028 ppm). However, the
S-configuration at C80 of 2 cannot be asserted with confidence at
this stage due to the presence of significant chemical shift devia-
tions of H400 and H600b of (80S,2000R)-3, as well as the observation that
the 13C NMR data of both models significantly deviated from those
of 2 (data not shown). Further studies with alternative model com-
pounds are required for the determination of the stereochemistry
at C80 of 2.5

In conclusion, a method for the stereoselective construction of
the C80–O–C600 ether of nigricanoside-A (1), an antimitotic natural
product from the green alga Avrainvillea nigricans, has been devel-
oped based on chirality-transferring Ireland–Claisen rearrange-
ment. The method was successfully applied to the synthesis of
simple models [(80S,2000R)-3 and (80R,2000R)-3] for the C20 lipid
chain/galactosyl glycerol segment of 1. Studies on the bioactivity
of the model compounds as well as the development of methodol-
ogies toward the total synthesis of 1 are in progress.
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(1H, m, H150), 5.57 (1H, m, H100), 5.61 (1H, m, H60) [Chemical shifts are shown
as exact values derived from 1D, COSY, HSQC, and HMBC measurements.];13C
NMR (100 MHz, C6D6/DMSO-d6 [25:2], C6D6 as 128.0 ppm) d 14.25 (CH3, C200),
22.87 (CH2, C190), 25.05 (CH2, C30), 26.99 (CH2, C40), 27.08 (CH2, C130), 27.51
(CH2, C160), 29.62 (CH2, C120), 29.69 (CH2, C170), 31.75 (CH2, C180), 32.09 (CH2,
C110), 33.39 (CH2, C20), 34.26 (CH2, C70), 51.05 (CH3, OMe), 64.06 (CH2, C3000),
68.14 (CH2, C600), 69.62 (CH, C400), 71.64 (CH, C2000), 71.98 (CH, C200), 72.39 (CH2,
C1000), 74.51 (CH, C300), 74.78 (CH, C500), 81.38 (CH, C80), 105.05 (CH, C100), 127.19
(CH, C60), 129.77 (CH, C140), 130.30 (CH, C50), 130.40 (CH, C150), 131.33 (CH,
C90), 133.57 (CH, C100), 173.46 (C, C10); FD-HRMS calcd for C30H52O10Na
[M+Na+]: 595.3458, found: 595.3463.

23. Spectral and physical data of (80R,2000R)-3: a pale yellow oil; ½a�24
D + 2.8 (c 0.10,

CHCl3); IR (neat) m 3387, 2926, 2861, 1737 cm�1; 1H NMR (400 MHz, C6D6/
DMSO-d6 [25:2], C6HD5 as 7.15 ppm) d 0.86 (3H, t, J = 7.0 Hz, H200), 1.30 (2H,
m, H180), 1.30 (2H, m, H190), 1.32 (2H, m, H170), 1.38 (2H, m, H120), 1.61 (2H,
m, H30), 1.96 (2H, m, H110), 1.99 (2H, m, H40), 2.02 (2H, m, H130), 2.02 (2H, m,
H160), 2.14 (2H, J = 7.6 Hz, H20), 2.30 (1H, m, H70a), 2.45 (1H, m, H70b), 3.39 (3H,
s, OMe), 3.65 (1H, m, H500), 3.70 (1H, m, H300), 3.75 (1H, m, H80), 3.77 (1H, m,
H600a), 3.84 (2H, m, H3000), 3.90 (1H, m, H1000a), 3.92 (1H, m, H600b), 3.98 (1H, m,
H200), 4.05 (1H, m, H2000), 4.07 (1H, m, H400), 4.11 (1H, m, H1000b), 4.39 (1H, d,
J = 7.7 Hz, H100), 5.38 (1H, m, H50), 5.39 (1H, m, H90), 5.40 (1H, m, H140), 5.40
(1H, m, H150), 5.57 (1H, m, H100), 5.60 (1H, m, H60) [Chemical shifts are shown
as exact values derived from 1D, COSY, HSQC, and HMBC measurements.]; 13C
NMR (100 MHz, C6D6/DMSO-d6 [25:2], C6D6 as 128.0 ppm) d 14.25 (CH3, C200),
22.87 (CH2, C190), 25.05 (CH2, C30), 26.99 (CH2, C40), 27.06 (CH2, C130), 27.51
(CH2, C160), 29.54 (CH2, C120), 29.68 (CH2, C170), 31.75 (CH2, C180), 32.06 (CH2,
C110), 33.39 (CH2, C20), 34.23 (CH2, C70), 51.04 (CH3, OMe), 64.05 (CH2, C3000),
67.67 (CH2, C600), 69.38 (CH, C400), 71.61 (CH, C2000), 71.99 (CH, C200), 72.41 (CH2,
C1000), 74.32 (CH, C500), 74.54 (CH, C300), 81.26 (CH, C80), 105.13 (CH, C100), 127.19
(CH, C60), 129.74 (CH, C140), 130.29 (CH, C50), 130.41 (CH, C150), 131.30 (CH,
C90), 133.68 (CH, C100), 173.43 (C, C10); FD-HRMS calcd for C30H52O10Na
[M+Na+]: 595.3458, found: 595.3473.

24. The Ireland–Claisen rearrangement of ester (50R)-6 gave stereoselectively
(80R)-21 as an almost single isomer in 67% yield after amidation.
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