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A method for the stereoselective construction of the C8-0-C6" ether of nigricanoside-A, an antimitotic
natural product from the green alga Avrainvillea nigricans, has been developed based on chirality-trans-
ferring Ireland-Claisen rearrangement. The method was successfully applied to the synthesis of simple
models for the C20 lipid chain/galactosyl glycerol segment of the natural product.

© 2013 Elsevier Ltd. All rights reserved.

Nigricanoside-A (1) (Fig. 1), isolated as a strong antimitotic
agent [ICs of nigricanoside-A dimethyl ester (2): 3 nM against hu-
man breast cancer MCF-7 cells] from the green alga Avrainvillea
nigricans by Andersen,! is a unique oxylipin derivative including
two oxygenated fatty acids and a galactosyl glycerol moiety that
are connected to each other by ether bonds.? Although the planar
structure and the partial relative stereochemistry of 1 have been
elucidated by intensive NMR analysis of the dimethyl ester (2) of
1, full assignment of the relative and absolute stereochemistries
of 1 has yet to be completed. The unique structure and the strong
bioactivity of 1 have prompted us to attempt its total synthesis and
full stereochemical assignment. At the beginning of the project, we
developed an effective method for the stereoselective construction
of the C8'-0-C6” ether bond of 1 connecting the galactose moiety
to the C20 fatty acid chain based on chirality transferring Ireland-
Claisen rearrangement.? Here, the details of the development and
application of the method to the synthesis of simple models
[(8S,2"R)-3 and (8'R,2”R)-3] for the C20 lipid chain/galactosyl
glycerol segment of 1 are described.

Model compounds (8'S,2”R)-3 and (8R,2”R)-3, excluding the
C16 fatty acid chain and the oxygen functionalities at C11’ and
C12’, were designed for the following purpose: (i) a simple demon-
stration of the stereoselective construction of the C8-0-C6" ether
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Figure 1.

of 1, (ii) comparison of the NMR spectra with 2 to predict the con-
figuration at C8 of 1, and (iii) investigation of the structure-activ-
ity relationship in antimitotic/cytotoxic assays of 1. The (2”R)-
configuration of the models was designed according to the pro-
posed (R)-configuration at C2” of the glycerol of 1, which was
based on the assumption that nigricanosides were oxidative
metabolites of monogalactosyl diacyl glycerols (MGDGs), known
as chloroplast membrane lipids, having a common 3-galactosyl-


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tetlet.2013.06.085&domain=pdf
http://dx.doi.org/10.1016/j.tetlet.2013.06.085
mailto:fjwkn@sci.hokudai.ac.jp
http://dx.doi.org/10.1016/j.tetlet.2013.06.085
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet

N. Kinashi et al./Tetrahedron Letters 54 (2013) 4564-4567 4565

Alkynylation &

Lindlar Hydrogenation  Lindlar Hydrogenation
MeO_" \‘— 8 \:"Q/\/Q/V\/Me
\II/\/\s_/Y\ 1o 14 20°
O H OO /| Julia-Kocienski Olefination
o M
HO o_~R_OH
OH 2
(8'SIR,2™R)-3
PMBO™? \Q
Ireland-Claisen + N ,E/ \10'/\/\/\/\,\2,%
Rearrangement ,’ 5
Me>( O %Me
Me” o,
OTBS
PMBO”1:
B~ on PMBO™
5
8 OH Br O  Esterification
g o —
- °
Me
Me>( Me Me>( O)(Me
Me” o 0\/\/ Me" 0. 0\/'_\/0
OTBS 2" oTBs 2"

6

Scheme 1. Synthetic plan for model 3.

sn-glycerol structure.* In this preliminary report, we disclose the
synthesis and NMR analysis of the models.®

The synthetic plan for the model compounds (3) is outlined in
Scheme 1. The Z-olefin groups at C5’ and C14’ of 3 were scheduled
to be formed by Lindlar hydrogenation of the corresponding alkyne
groups at the final stage of the synthesis after aldehyde 4 and sul-
fone 5 were connected by Julia-Kocienski olefination® to form the
E-olefin at C9'. The Z-bromoalkene at C5’' of 4 would be converted
into an alkyne group under mild basic conditions after the olefin-
ation step. For the construction of the C8’ stereocenter and the Z-
bromoalkene of 4, the Ireland-Claisen rearrangement of ester 6
was employed. The rearrangement was expected to exhibit perfect
chirality transfer from C5’ of 6 to C8’ of 4. Therefore, bromoalkenol
8, which would be condensed with glycolic acid derivative 7 to
form 6, must be obtained in enantiomerically pure form. Thus, both
enantiomers (S)-8 and (R)-8 would be prepared by chiral
resolution.

The synthesis of glycolic acid 7 from the known 3-galactosyl-sn-
glycerol derivative 97 is shown in Scheme 2. The acetate groups of
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9 were removed by methanolysis, and the resulting tetraol was
subjected to stepwise protection with TBDPSCI and 2,2-dimethoxy-
propane to give alcohol 10 (79% over three steps). The protection of
10 as a TBS ether (91%) followed by the selective removal of the
TBDPS group® produced alcohol 12 (80%), which was successfully
converted into 7 through etherification with tert-butyl bromoace-
tate followed by basic hydrolysis (67% over two steps).

The preparation of chiral allylic alcohols (R)-8 and (S)-8 started
from the known enone 13° (Scheme 3). Bromination of 13 followed
by elimination of HBr with EtsN produced o-bromo enone 14
(86%), which was reduced under Luche conditions to give racemic
alcohol 8 (98%).'° After the condensation of 8 with (R)-(—)-o-
methoxyphenylacetic acid (15), the resulting diastereomeric esters
16 and 17 were separated by preparative HPLC (16: 35%; 17:
35%).!" The hydrolysis of esters 16 and 17 afforded homochiral
alcohols (R)-8 (98%) and (S)-8 (100%),'2 respectively. The absolute
configurations of the alcohols were determined by application of
the modified Mosher’s method on alcohol (S)-8.1

Sulfone 5 was prepared from undec-5-yn-1-ol (18)'* via a pro-
cess including Mitsunobu reaction!®> with 1-phenyl-1H-tetrazole-
5-thiol (62%) and oxidation with H,0, in the presence of ammo-
nium molybdate hydrate'® (50%) (Scheme 4).

The stereoselective construction of the C8' stereocenter by Ire-
land-Claisen rearrangement is shown in Scheme 5. First, glycolic
acid 7 was esterified with alcohol (S)-8 to afford ester (5'S)-6
(97%). The treatment of (5'S)-6 with NHMDS in the presence of
TMSCI in THF at —78 °C produced a ketene silyl acetal intermedi-
ate, which was then warmed to 0 °C to give rearranged product
(8'S)-20 as a single diastereomer. Carboxylic acid (8'S)-20 was con-
densed with N,0-dimethylhydroxylamine to furnish N-methoxy-N-
methylamide (8'S)-21 in good yield (80% over two steps).

The absolute stereochemistry at C8' of (8'S)-21 was determined
as shown in Scheme 6. First, the bromoalkene of (8'S)-21 was
reduced with BusSnH to alkene 22 (37%). After the reduction of
22 with LiAlH4!7 the resulting aldehyde was reacted with allyl
magnesium chloride to give 23 as a 1:1 mixture of diastereomers
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Scheme 4. Preparation of sulfone 5.
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Scheme 6. Determination of the stereochemistry at C8' of (8'S)-21.

at C9' (61%). Diene 23 was then cyclized by ring-closing olefin
metathesis with Grubbs’ first generation catalyst (24),'® and
trans-disubstituted cyclohexene 25, of which the trans-relationship
between Ha and Hb was confirmed by the large ] value (9.3 Hz) be-
tween these protons, was obtained in 21% yield after separation
from the corresponding cis-isomer. Alcohol 25 was converted into
(S)- and (R)-MTPA esters (26). Application of modified Mosher’s
analysis'® to these MTPA esters established the (S)-configuration
at C9’, which thus determined the (8'S)-configuration in conjunc-
tion with the trans-relationship between Ha and Hb.

The established (8'S)-configuration of 26 also explained the ste-
reoselectivity of the Ireland-Claisen rearrangement of (5'S)-6 pro-
ducing (8'S)-20. The initial formation of the ketene silyl acetal
would be highly Z-selective, and the Z-ketene silyl acetal would
be rearranged via a stable chair form transition state (TS in
Scheme 5), which would effectively promote the chirality transfer
from C5’ to C8' and produce (8'S)-20 exclusively.

The completion of the synthesis of model compound (8'S)-3 is
illustrated in Scheme 7. Weinreb amide (8'S)-21 was reduced with
LiAlH, to give aldehyde (8'S)-4, which was subjected to Julia-
Kocienski olefination with sulfone 5 using KHMDS to produce E-al-
kene (8'S)-27 (47% over two steps). The PMB group of (8'S)-27 was
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Scheme 7. Completion of the synthesis of (8'S,2”R)-3 and (8'R,2”R)-3.

removed with DDQ (99%), and the resulting alcohol (8'S)-28 was
converted into methyl ester (8'S§)-29 through TEMPO oxidation in
the presence of water!® followed by treatment with trimethylsilyl-
diazomethane (68% over two steps).?’ The bromoalkene group of
(8'S)-29 was transformed into an acetylene group [(8'S)-30, 47%]
by treatment with TBAF-3H,0 in DMF at 75 °C, which also removed
the TBS ether at C2”, according to Mori’s procedure.?! Lindlar
hydrogenation of (8'S)-30 followed by acidic methanolysis of the
acetonides produced (8S5,2”R)-3?2 (53% over two steps). Thus,
model compound (8'S,2”R)-3 was stereoselectively synthesized
from 3-galactosyl-sn-glycerol derivative 9 via a route including
chirality transferring Ireland-Claisen rearrangement as a key step.
This route was also successfully applied to the synthesis of
(8'R,2”R)-3>* from (R)-8 and 7.%*

With both model compounds (8S,2”R)-3 and (8'R2”R)-3 in
hand, we compared the "H NMR data of the model compounds in
CsDe/DMSO-dg (25:2) with the reported data of 2. The deviation
of the chemical shifts of the models from those of 2 is shown in
Fig. 2. While there are large differences in the chemical shifts in
the H9'-H16' region between each model and 2 due to the absence
of the C16 fatty acid chain and the oxygen functionalities at C11’

3(2)-4(3) / ppm

Positions

Figure 2. Deviation of 'H NMR chemical shifts of 3 from the reported values of 2. 'H
NMR spectra of 3 were measured in 25:2 CgDg/DMSO-dg according to the
literature.!
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and C12’ in the model compounds, the chemical shift deviations in
other regions of both models are small (within +0.1 ppm). The sim-
ilarity of the 'H NMR spectrum of (8'§,2”R)-3 with that of 2 is sug-
gested from the fact that the average of the absolute values of the
chemical shift deviations of (8'S,2”’R)-3 from 2 (for all protons, ex-
cept H9-H16' and hydroxy protons, of the model) is smaller
(0.018 ppm) than that of (8'R,2"”R)-3 (0.028 ppm). However, the
S-configuration at C8' of 2 cannot be asserted with confidence at
this stage due to the presence of significant chemical shift devia-
tions of H4” and H6”b of (8'S,2"”R)-3, as well as the observation that
the '3C NMR data of both models significantly deviated from those
of 2 (data not shown). Further studies with alternative model com-
pounds are required for the determination of the stereochemistry
at C8' of 2.°

In conclusion, a method for the stereoselective construction of
the C8-0-C6" ether of nigricanoside-A (1), an antimitotic natural
product from the green alga Avrainvillea nigricans, has been devel-
oped based on chirality-transferring Ireland-Claisen rearrange-
ment. The method was successfully applied to the synthesis of
simple models [(8S,2”R)-3 and (8'R,2"R)-3] for the C20 lipid
chain/galactosyl glycerol segment of 1. Studies on the bioactivity
of the model compounds as well as the development of methodol-
ogies toward the total synthesis of 1 are in progress.
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H16'),2.14 (2H, ] = 7.6 Hz, H2'), 2.30 (1H, m, H7’a), 2.45 (1H, m, H7'b), 3.39 (3H,
s, OMe), 3.65 (1H, m, H5"), 3.70 (1H, m, H3"), 3.75 (1H, m, H8'), 3.77 (1H, m,
H6"a), 3.84 (2H, m, H3"), 3.90 (1H, m, H1"a), 3.92 (1H, m, H6"b), 3.98 (1H, m,
H2"), 4.05 (1H, m, H2""), 4.07 (1H, m, H4"), 4.11 (1H, m, H1”'b), 4.39 (1H, d,
J=7.7Hz, H1"), 5.38 (1H, m, H5'), 5.39 (1H, m, HY'), 5.40 (1H, m, H14’), 5.40
(1H, m, H15'), 5.57 (1H, m, H10’), 5.60 (1H, m, H6’) [Chemical shifts are shown
as exact values derived from 'D, COSY, HSQC, and HMBC measurements.]; '>C
NMR (100 MHz, CgDg/DMSO-dg [25:2], CsDg as 128.0 ppm) 5 14.25 (CHs, C20'),
22.87 (CH,, C19'), 25.05 (CH,, C3'), 26.99 (CH,, C4'), 27.06 (CH,, C13’), 27.51
(CHgy, C16'), 29.54 (CH,, C12’), 29.68 (CH,, C17’), 31.75 (CH,, C18'), 32.06 (CH,,
C11’), 33.39 (CH,, C2'), 34.23 (CH,, C7'), 51.04 (CH3, OMe), 64.05 (CH,, C3"),
67.67 (CH,, C6"), 69.38 (CH, C4"), 71.61 (CH, C2""), 71.99 (CH, C2"), 72.41 (CH,,
C1"),74.32 (CH, C5"), 74.54 (CH, C3"), 81.26 (CH, C8'), 105.13 (CH, C1”), 127.19
(CH, C6'), 129.74 (CH, C14’), 130.29 (CH, C5'), 130.41 (CH, C15’), 131.30 (CH,
C9'), 133.68 (CH, C10’), 173.43 (C, C1’); FD-HRMS calcd for C3oHs,0;0Na
[M+Na*]: 595.3458, found: 595.3473.

24. The Ireland-Claisen rearrangement of ester (5'R)-6 gave stereoselectively
(8'R)-21 as an almost single isomer in 67% yield after amidation.
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