View Article Online / Journal Homepage / Table of Contents for this issue

Intramolecular, Reversible C–H Oxidative Addition–Reductive Elimination at Rhodium. Reaction of the Intermediate with Different Types of C–H Bonds and Dihydrogen

Claudio Bianchini, Andrea Meli, Maurizio Peruzzini, and Fabrizio Zanobini

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, C.N.R., Via J. Nardi, 39, Firenze 50132, Italy

The ortho-metallated complex [{($Ph_2PCH_2CH_2)_2N(CH_2CH_2PPhC_6H_4$)}RhH](SO_3CF_3) thermally or chemically undergoes reductive elimination of the substituted phenyl group; the N($CH_2CH_2PPh_2$)₃Rh⁺ fragment thus formed is stabilized by CO, halides, C_2H_4 , or engaged in oxidative additions of H_2 and C–H bonds from arenes, alkynes, and aldehydes.

Some examples of transition metal complexes capable of inserting into hydrocarbon C–H bonds have recently appeared in the literature.¹ In most instances, these metal systems contain as ancillary ligands pentamethylcyclopentadienyl, carbonyls, and/or trialkylphosphines, but polyphosphane tripod-like ligands are also quite efficient.^{2,3} One of these is the potentially tetradentate hybrid ligand $N(CH_2CH_2PPh_2)_3$, denoted np₃.

The fragment $(np_3)Ir^+$ generated by Cl⁻ elimination from $(np_3)IrCl$ in tetrahydrofuran (THF), undergoes straightforward oxidative addition of a C-H bond from different alkenes, to give *cis*-hydrido(σ -alkenyl) derivatives, equation (1).² These are quite stable, probably because of the kinetic inertness of iridium complexes.

Since substitution of rhodium for iridium in many reactions gives analogous products but with considerably less stab-

LH = cyclo-octa-1,5-diene (cod), or cyclo-octene (coe)

ility,^{1b,4} we have tried to generate the $(np_3)Rh^+$ moiety through the reductive elimination of CH₄ from the unstable *cis*-(hydride)methyl complex [(np₃)RhH(Me)]⁺, equation (2). Unexpectedly, under the reaction conditions employed for iridium, the isoelectronic (np₃)Rh⁺ fragment does not insert into the COD or COE unsaturated C-H bonds, but undergoes intramolecular C-H bond oxidative addition of a phenyl group of the np₃ ligand, to give the *ortho*-metallated complex [{(Ph₂PCH₂CH₂)₂N(CH₂CH₂PPhC₆H₄)}RhH](SO₃CF₃) (1), equation (2).[†]

Interestingly, the intramolecular reaction shown in equation (2) can be reversed back to the 16-electron $(np_3)Rh^+$ species either thermally or by suitable substrates. Electrophilic attack by Me⁺ from MeOSO₂CF₃ on the Rh¹ hydride, $(np_3)RhH$ (2),² in benzene at reflux temperature, gives only the *ortho*-metallated derivative (1). Under the same conditions but at a temperature of 20 °C, a 3 : 1 mixture of (1) and of the hydrido(phenyl) complex [(np₃)Rh(H)Ph](SO₃CF₃) (3) is formed.[‡] Finally, by lowering the temperature to the melting

Selected spectroscopic data: (1) I.r., v(Rh-H) 2000, ortho-metallated phenyl 1560 cm⁻¹; ³¹P{1H} n.m.r. (positive shifts to high frequency of external 85% H₃PO₄) ABCX system (C₆D₆, 293 K), δ 25.70 [P_A, J(P_A-P_B) 22.6, J(P_A-P_C) 436.1, J(P_A-Rh) 104.3 Hz], 12.95, [P_B, J(P_B-P_C) 13.2, J(P_B-Rh) 80.9 Hz], -34.08 p.p.m. [P_C, J(P_C-Rh) 74.8 Hz]; ¹H n.m.r. ([²H₈]THF, 293 K) -11.5 (Rh-H, m, 1H).

(3) I.r., v(Rh-H) 2010, reinforced phenyl vibration 1580 cm⁻¹; ³¹P{¹H} n.m.r., AB₂X system (C₆D₆, 293 K), δ 23.64 [P_A, J(P_A-P_B) 21.9, J(P_A-Rh) 91.5 Hz], δ 31.97 p.p.m. [P_B, J(P_B-Rh) 115.7 Hz]; ¹H n.m.r. (CD₃COCD₃, 293 K), δ -8.1 (Rh-H, dm, 1H).

(5) I.r., ν (CO) 1975 cm⁻¹; ³¹P {¹H} n.m.r., A₃X system (CD₃COCD₃, 293 K), δ 39.55 [*J*(P-Rh) 134.1 Hz]. The solubility of [(np₃)RhX] (X = Cl, N₃) is too low to allow any spectroscopic characterization in solution. However the crystals are isomorphous with the trigonal-bipyramidal rhodium derivative (2).² The i.r. spectrum of [(np₃)RhN₃] shows a strong absorption at 2015 cm⁻¹ assigned to the stretching mode of the azido ligand.

(7) I.r., v(Rh-H) 2010 cm⁻¹, v(C₆H₄CF₃) 1430 cm⁻¹; ³¹P{¹H} n.m.r., AB₂X system (CD₃COCD₃, 293 K), δ 34.28 [P_A, J(P_A-P_B) 26.3, J(P_A-Rh) 98.4 Hz], δ 47.8 p.p.m. [P_B, J(P_B-Rh) 123.7 Hz]; ¹H n.m.r. (CD₃COCD₃, 293 K), δ -11.30 (Rh-H, dm, 1H).

(8): I.r., v(Rh-H) 2000, $v(C\equiv C)$ 2120, reinforced phenyl vibration, 1580 cm⁻¹; ³¹P{¹H} n.m.r., AB₂X system (CD₃COCD₃, 293 K), δ 35.42 [P_A, $J(P_A-P_B)$ 19.7, $J(P_A-Rh)$ 102.4 Hz], δ 19.98 p.p.m. [P_B, $J(P_B-Rh)$ 85.7 Hz]; ¹H n.m.r. (CD₃COCD₃, 293 K), δ -7.70 [Rh-H, dm, 1H, $J(H-P_{reas})$ 170 Hz].

dm, 1H, $J(H-P_{trans})$ 170 Hz]. (9) I.r., v(Rh-H) 1990, v(C=O) 1630 cm⁻¹; ³¹P{¹H} n.m.r., AB₂X system (CD₃COCD₃, 293 K), δ 35.32 [P_A, $J(P_A-P_B)$ 21.6, $J(P_A-Rh)$ 124.1 Hz], δ 5.93 p.p.m. [P_B, $J(P_B-Rh)$ 102.9 Hz]; ¹H n.m.r. (CD₃COCD₃, 293 K), δ -8.2 [Rh-H, ddt, 1H, $J(H-P_{trans})$ 142, $J(H-P_{cis})$ 8, J(H-Rh) 18 Hz].

(10) I.r., $v(Rh-H) 2000 \text{ cm}^{-1}$; ${}^{31}P{}^{1}H{}$ n.m.r., AB₂X system (CD₂Cl₂, 223 K), δ 47.97 [P_A, $J(P_A-P_B)$ 21.0, $J(P_A-Rh)$ 113.2 Hz], δ 37.13 p.p.m. [P_B, $J(P_B-Rh)$ 99.0 Hz]. ¹H n.m.r. ([²H₈]THF, 293 K), δ -14.60 (N-Rh-H, m, 1H), -9.0 [P-Rh-H, dm, 1H, $J(H-P_{trans})$ 100 Hz].

(6) ${}^{31}P{}^{1}H{}$ N.m.r., A₃X system (CD₃COCD₃, 293 K), δ 30.38 p.p.m. [J(P-Rh) 121.8 Hz]. On lowering the temperature to 203 K the pattern changes to give two broad resonances centred at δ 28.50 and δ -5.20 p.p.m.; ${}^{1}H$ n.m.r. (CD₃COCD₃, 293 K), δ 2.96 (C₂H₄, m, 4H).

point of benzene, only the arene activation takes place as evidenced by i.r., ¹H and ³¹P n.m.r. spectroscopy. In particular, the ³¹P{¹H} n.m.r. spectrum of (3) consists of an AB₂X pattern whereas the cyclometallated derivative exhibits an ABCX pattern.

In addition to benzene, other substrates bearing sp^2 and sp C–H bonds, as well as other diatomic and triatomic molecules, are able to shift the equilibrium shown in equation (2) towards

[†] All compounds were isolated as crystalline solids which gave satisfactory elemental analyses.

the $(np_3)Rh^+$ fragment via addition to (1). Noticeably, the reactions are stoicheiometric and occur at ambient temperature. The $(np_3)Rh^+$ system can be forced back to the trigonal bipyramidal geometry of the starting product (2) by adding monodentate ligands such as halides or pseudohalides to give (4) and CO to give (5), equation (3). By contrast, reagents such as α, α, α -trifluorotoluene, phenylacetylene, and acetaldehyde with sp² or sp C-H bonds oxidatively add to the rhodium fragment to yield rare, stable examples of octahedral *cis*-(H)(σ -organyl)Rh^{III} complexes such as [(np₃)RhH(σ -C₆H₄CF₃)](SO₃CF₃) (7), [(np₃)RhH(σ -C₂Ph)](SO₃CF₃) (8), and [(np₃)RhH(σ -COMe)](SO₃CF₃) (9), equation (4).†

Complexes with octahedral geometry are also formed by treating (1) in THF with H₂, Cl₂, and CS₂. As a result, *cis*-dihydride (10),[†] *cis*-dichloride (11),⁵ and η^2 -CS₂ (12)⁶ complexes are obtained, equation (5). Reductive elimination

973

of the phenyl group of (1) also occurs when it is treated with C_2H_4 to give the fluxional complex [(np₃)Rh(C₂H₄)](SO₃CF₃) (6).† In this case, however, the octahedral solid state geometry changes to trigonal bipyramidal in solution as evidenced by the ³¹P{¹H} n.m.r. spectrum at 293 K which exhibits an A₃X system.

The $(np_3)Rh^+$ fragment has potential applications in several catalytic cycles. In this respect, excellent preliminary results have been observed in alkene hydrogenation and hydroformylation reactions and in aldehyde decarbonylations. This is not surprising considering the easy formation of the *cis*-(dihydride), π -ethylene, and *cis*-(hydride)acyl derivatives.

Received, 21st November 1986; Com. 1658

References

- See for example: (a) T. T. Wenzel and R. G. Bergman, J. Am. Chem. Soc., 1986, 108, 4856; J. M. Buchanan, J. M. Stryker, and R. G. Bergman, *ibid.*, 1986, 108, 1537; H. Janowicz and R. G. Bergman, *ibid.*, 1983, 105, 3929; R. H. Crabtree and C. P. Parnell, Organometallics, 1984, 3, 1727; J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3723; J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, *ibid.*, 1983, 105, 7190; C. J. Cameron, H. Felkin, T. Fillebeen-Khan, N. J. Forrow, and E. Guittet, J. Chem. Soc., Chem. Commun., 1986, 801; (b) W. D. Jones and F. J. Feher, J. Am. Chem. Soc., 1984, 106, 1650.
- 2 C. Bianchini, D. Masi, A. Meli, M. Peruzzini, M. Sabat, and F. Zanobini, Organometallics, 1986, 5, 2557.
- 3 M. Antberg and L. Dahlenburg, Angew. Chem., Int. Ed. Engl., 1986, 25, 260; J. Organomet. Chem., 1986, 312, C67.
- 4 W. D. Jones and F. J. Feher, *Organometallics*, 1983, **2**, 562; R. A. Perlana and R. G. Bergman, *ibid.*, 1984, **3**, 508.
- 5 M. Di Vaira, M. Peruzzini, F. Zanobini, and P. Stoppioni, *Inorg. Chim. Acta*, 1983, **69**, 37.
- 6 C. Bianchini, D. Masi, C. Mealli, A. Meli, and M. Sabat, Organometallics, 1985, 4, 1014.