was stirred for 1.5 h and evaporated. 30 ml of CHCl₃ saturated with ammonia was added to the residue. The crystalline precipitate was filtered off and washed with ether. 1.78 g (97%) of the ammonium salt of acid **12** was obtained, m.p. 134–135°C, δP 41.8 (D₂O). ¹H NMR spectrum (δ , *J*, Hz; CD₃OD): 4.23 (d, 3H, CH₃P, ²*J*_{PH}=12.9); 1.81 (dt, 2H, PCH₂, ²*J*_{PH}=13.8, ³*J*_{HH}=8.0); 2.51–2.64 (m, 2H, CH₂CO); 3.68 (s, 3H, OCH₃), 4.97 (broad s, 4H, NH₄). The salt was dissolved in 50 ml of EtOH and passed through a column with KU-2 cationite (H⁺form). The solvent was distilled off, and the residue was dried *in vacuo* (2 h, 1 Torr, 45–50°C). 1.6 g (97%) of acid **12** was obtained in the form of a thick colorless oil, n_D^{20} 1.4732.

Compound 12 was obtained using a similar technique in a 96% yield from propenylphosphinate 4. The spectral parameters of the compound prepared from phosphinates 2 and 4 coincide.

The acid 13 was synthesized in a similar way using EtOH (see Tables 2 and 3), n_D^{20} 1.4686.

Methyl(2-oxamoylethyl)phosphinic acid (14). Dry HCl was passed through a solution of 6.1 g (0.02 mole) of unsaturated phosphinate **4** in 30 ml of ether at 0°C for 0.5 h. 0.36 ml (0.02 mole) of H₂O in 10 ml of THF was added and the reaction mixture was stirred for 1 h. The solution was concentrated *in vacuo*, and the crystalline residue was washed with diethyl ether and dried *in vacuo* over P₂O₅ to give 3.5 g (98%) of acid 14, m.p. 88°C, ³¹P NMR (DMSO): δ 49.5.

Methyl(2-oxaloethyl)phosphinic acid (15). To 3.6 g (0.02 mole) of oxamoylsubstituted phosphinic acid 14, 30 ml of concentrated HCl was added. The reaction mixture was refluxed, then the water was evaporated *in vacuo*. Acetone was added to the residue, NH_4Cl was filtered off, and the residue was dried *in vacuo*. 3.5 g (quantitative yield) of ketoacid 15 was obtained

as a pale yellow oil, ³¹P NMR (acetone- d_6): δ 55.3.

References

- K.Weissermel, H.J.Kleiner, M.Finke, and U.H.Felcht, Angew. Chem., 1981, 93, 256.
- 2. Pat. 330022 EP, Chem. Abstr., 1990, 112, 56281.
- 3. Pat. 2614240 FRG, Chem. Abstr., 1978, 88, 22423.
- 4. Pat. 2614241 FRG, Chem. Abstr., 1978, 88, 22422.
- 5. G.G.Furin, O.A.Vyazankina, B.A.Gostevsky, and N.S.Vyazankin, *Tetrahedron*, 1988, **44**, 2675.
- 6. U.Hertenstein, S.Hunig, H.Reichelt, and R.Schaller, Chem. Ber., 1982, 115, 261.
- 7. D.A.Evans and L.K.Truesdale, Tetrahedron Lett., 1973, 4929.
- 8. W.Lidy and W.Sundermeyer, Tetrahedron Lett., 1973, 1449.
- 9. W.Lidy and W.Sundermeyer, Chem. Ber., 1973, 106, 587.
- P.V.Kazakov, I.L.Odinets, M.Yu.Antipin, P.V.Petrovsky, L.V.Kovalenko, Yu.T.Struchkov, and T.A.Mastryukova, *Izv. Akad.Nauk SSSR, Ser.Khim.*, 1990, 2120 [Bull.Acad.Sci. USSR.Div.Chem.Sci., 1990, **39**, 1931].
- 11. H.O.House and V.Kramer, J.Org. Chem., 1963, 28, 3362.
- 12. E.Taskinen, Tetrahedron, 1978, 34, 353.
- 13. E.Taskinen, Tetrahedron, 1978, 34, 425.
- 14. E.I.Lazhko, E.V.Luzikova, G.Yu.Mikhailov, M.A.Kazankova, and Yu.A.Ustynyuk, *Zhu.Obshch.Khim.*, 1988, 58, 1247 [J.Gen.Chem. USSR].
- S.Hunig and R.Schaller, Angew. Chem. Int. Ed. Engl., 1982, 21, 36.
- V.K.Khairullin, T.I.Sobchuk, and A.N.Pudovik, Zh. Obshch.Khim., 1967, 37, 710 [J.Gen.Chem. USSR].
- 17. Pat. 030424 EP, Chem. Abstr., 1985, 95, 204142.

Received June 25, 1992.

Diastereoselective addition of organomanganese compounds to α-alkoxysubstituted propanals

A.N.Kasatkin, R.Kh.Biktimirov, I.P.Podlipchuk, V.R.Sultanmuratova, and G.A.Tolstikov*

Institute of Organic Chemistry, the Ural Branch, Russian Academy of Sciences, 450054 Ufa, Russian Federation. Fax: +7 (3472) 34 2914

Reactions of organomanganese compounds R^1MnI ($R^1 = Ph$, 4-MeC₆H₄-, Me, Bu, *n*-C₇H₁₅, BuC=C, PhC=C), prepared from R^1Li and MnI₂ in Et₂O, with aldehydes MeCH(OR²)CHO ($R^2 = CH_2Ph$, CH₂OMe, CH₂OCH₂Ph) afford *threo*-alcohols MeCH(OR²)CH(OH)R¹ with high diastereoselectivity. The interactions of phenylmanganese derivatives PhMnX (X = Cl, Br, I), Ph₂Mn, and Ph₃MnLi with 2-benzyloxypropanal were used as examples for studying the influence of reagent and solvent nature on addition diastereoselectivity.

Key words: organomanganese compounds, chiral alkoxyaldehydes, 2-benzyloxypropanal, condensation, diastereoselectivity.

Diastereoselective addition of organometallic reagents to aldehydes is of great importance for preparation of stereoisomerically pure β - and γ -substituted secondary alcohols, which are valuable synthones for preparation of many natural, biologically active compounds.¹⁻⁴ Condensation of aldehydes having asymmetrical α - or β -

carbon atoms (in particular, α - or β -alkoxyaldehydes) with organolithium and organomagnesium compounds is known to be of low stereoselectivity in most cases.^{1,5} Organic derivatives of Mn(II) have recently been successfully used for creation of new carbon-carbon bonds in 1,2-addition to the aldehyde group,⁶ as well as in 1,4-addition to α , β -enones⁷ and enals.⁸

In this work we studied the diastereoselectivity of reactions of manganese σ -complexes with racemic Obenzyl, O-methoxymethyl, and O-benzyloxymethyl derivatives of 2-hydroxypropanal chosen as model aldehydes.

The starting organomanganese compounds were prepared *in situ* by interaction of organolithium compounds or Grignard reagents with manganese halides at $-10 \div -5^{\circ}C$.⁹

Table 1 presents the results of studying the reactions of 2-benzyloxypropanal (1) with phenylmanganese compounds:

As follows from Table 1, interaction of racemic aldehyde 1 with PhMnI prepared from PhLi and MnI_2 in Et₂O leads to *threo*-isomeric alcohol 2a in high yield and 95% stereoselectivity. PhMnI prepared from PhMgBr reacts even more selectively, but the yield of 2a is not more than 40%. In the ¹H NMR spectra of diastereomers 2a and 2b separated by preparative HPLC, the coupling constants of the C(1), C(2) protons are 7.0 and 3.9 Hz, respectively, which evidences the *threo*-configuration of the main product 2a.^{10,11}

According to the literature data,^{1,5,12} the predominant formation of *threo*-isomeric alcohols in reactions of organometallic compounds with α -alkoxyaldehydes is related to formation of chelate complexes of type **3**, where the nucleophilic attack takes place at the least sterically hindered side of the carbonyl group (Cram's "cyclic" model¹²):

On transition from PhMnI to PhMnBr, the ratio 2a/2b decreases from 95:5 to 87:13, which is probably due to a decreased ability to form chelate 3 (for dihalides of

magnesium and zinc the Lewis acidity is known¹³ to decrease in the order: MI_2 , MBr_2 , MCI_2). The solvent nature exerts an even stronger influence on the diastereoselectivity. Thus, the reaction of PhMnI with aldehyde **1** in an Et₂O—THF mixture (1:2.5) gives the *erythro*-alcohol **2b** as the main product (**2a**/**2b** = 36:64). The predominating formation of **2b** is also observed with reagents prepared in the same solvent mixture from PhLi and MnCl₂ or Li₂MnCl₄ (Table 1, runs 5 and 6)*. In the presence of 15 vol.% DMF and HMPT, the portion of *erythro*-isomer **2b** grows even higher, although its content is never above 80%.

Thus, the *threo*-selectivity in the reaction of phenylmanganese halides with aldehyde 1 is lower the higher the solvation ability of the solvent to metal cations (the solvation ability is known¹⁴ to decrease in the order: Et_2O , THF, DMF, HMPT). Decrease in donor properties of the solvent seems to impede the formation of 3 due to coordination of THF, DMF, and HMPT molecules with the manganese atom. Without complexing, conformation 4 of the substrate, where the PhCH₂O-C_{α} bond is perpendicular to the plane of aldehyde fragment, is the most reactive (the Felkin—Anh model^{1,5,15}):

Diphenylmanganese and an «ate» complex of Ph_3MnLi prepared by treating Li_2MnCl_4 with 2 and 3

Table 1. Reactions of phenylmanganese derivatives with 2-benzyloxypropanal (1) $(-78 \rightarrow 20^{\circ} \text{C}, 3 \text{ h}, \text{[reagent]}_{0}; [1]_{0} = 2:1)$

Ru	n Reagent	Solvent	Yield (2a+2b) %	threo (2a): , erythro (2b) ^a
1	$PhMnI (PhLi + MnI_{2})$	Et ₂ O	86	95:5
2	PhMnI (PhMgBr + MnI_2)	Et ₂ O	36 ^b	97:3
3	$PhMnBr (PhLi + MnBr_2)$	Et ₂ O	68	87:13
4	$PhMnI (PhLi + MnI_2)^{2}$	Et ₂ O-THF	° 90	36:64
5	PhMnCl (PhLi + $MnCl_2$)	Et ₂ O-THF	81	35:65
6	PhMnCl (PhLi + Li_2MnCl_4)	Et ₅ O-THF	60	30:70
7	PhMnCl (PhLi + $Li_2^{MnCl_4}$)	Et ₂ OTHF- DMF ^d	70	26:74
8	$PhMnCl (PhLi + Li_2MnCl_4)$	Et ₂ O-THF HMPT°	- 72	23:77
9	$Ph_2Mn (2PhLi + Li_2MnCl_4)$	Et,O-THF	61	38:62
10	Ph ₃ MnLi(3PhLi+Li ₂ MnCl ₄)	Et ₂ O-THF	43 ^b	49:51
11	PhMgBr	Et ₂ O	80	84:16
12	PhLi	Et ₂ O	57	39:61

^{a)} According to HPLC. ^{b)} Noticeable resinification of the reaction mixture was observed. ^{c)} Hereinafter, THF-Et₂O 2.5:1. ^{d)} 15% DMF (v/v).^{c)} 15% HMPT (v/v).

^{*} Preparation of organomanganese compounds RMnCl from $MnCl_2$ and RLi or RMgBr in pure Et_2O cannot be carried out due to low solubility of $MnCl_2$.⁹

equiv. of PhLi, respectively (Et₂O – THF, 1:2.5), react with aldehyde 1 similarly to PhMnCl to give chiefly the *erythro*-alcohol 2b, however with a lower stereoselectivity. The content of 2b decreases from 72 to 51% on transition from PhMnCl to Ph₂Mn and then to Ph₃MnLi. In addition, if Ph₃MnLi is used, marked resinification of the reaction mixture is observed.

Similarly to PhMnI, interaction of PhMgBr with 1 gives mainly the *threo*-alcohol 2a; with PhMgBr instead of PhMnI the reaction selectivity decreases from 95 to 80%. On changing to PhLi, the main condensation product is the *erythro*-isomer 2b (Table 1, run 12). The much lower tendency of organolithium compounds to form products under chelate control as compared to Grignard reagents is well known.^{16,17}

The regularities found in the study of reactions with PhMnI, PhMgBr, and PhLi are also manifested for the corresponding methyl derivatives (Table 2, runs 1–4) (Scheme 1).

Thus, MeMnI prepared from MeLi and MnI_2 in Et_2O reacts with 1 to give the *threo*-isomeric alcohol 5a as nearly the only product. MeMgI as well as MeZnI react in a similar way but with lower selectivity. On transition to MeLi a reversal in stereoselectivity is observed. In ¹H NMR spectra of diastereomers 5a and 5b separated by means of preparative HPLC, the coupling constants of C(1) and C(2) protons are 6.3 and 3.3 Hz, respectively.^{10,11}

Other manganese derivatives of the RMnI type were prepared by treating MnI_2 with organolithium compounds in Et₂O. As follows from Table 2 (runs 5–9), the corresponding *threo*-isomeric alcohols **6a**–**10a** are formed with high stereoselectivity in reactions of *p*-tolyl-, butyl-, heptyl-, 1-hexinyl-, and phenylethynylmanganese iodide with 1 (Scheme 2).

The threo-configuration of **6a-10a** follows from a comparison of coupling constants of C(1) and C(2) protons (6.1–7.8 Hz) with those in the spectra of threoisomers **2a** and **5a** which are of the same magnitude. In addition, in the ¹³C NMR spectra of **2a** and **5a-10a** the signals of the C(3) atoms are in the range of 15.16 to 15.66 ppm, whereas the corresponding signals for erythroisomers are in the range of 13.45 to 13.81 ppm.¹¹

Under the conditions studied, arylmanganese σ -complexes with 4-methoxy- and 2,5-dimethoxyphenyl substituents do not react with 1. Condensation of 1 with allyl derivatives CH₂=CHCH₂MnX leads to formation of a nearly equimolar mixture of diastereomeric 2-benzyloxy-5-hexen-3-ols (11a,b) (THF, X=Cl) (Table 2, run 13).

Apart from the O-benzyl derivative of α -hydroxypropanal, the reactions of its O-methoxymethyl (12) and O-benzyloxymethyl analogs (13) with PhMnI were carried out. Interaction of PhMnI with aldehydes 12, 13 proceeds with high stereoselectivity to give the *threo*alcohols 14a, 15a (14a-14b, 94:6; 15a-15b, 95:5) in 46 and 64% yield, respectively. Removal of methoxymethyl and benzyloxymethyl protective groups in compounds 14a, 15a leads to diol 16 which is identical to the

Scheme 1

hydrogenation product of the *threo*-isomer **2a** containing a benzyl fragment:

To conclude, the reactions of aryl-, alkyl-, and alkynyl- σ -complexes of Mn(II) prepared from MnI₂ and organolithium compounds in Et₂O with α -alkoxy-aldehydes can serve as a convenient and stereoselective procedure for the preparation of *threo*- β -alkoxysubstituted secondary alcohols.

Experimental

GLC analysis was carried out using a Chrom-5 chromatograph equipped with a flame-ionization detector, in a flow of helium (40 ml/min); column size 1.2m x 3mm, 5% SE-30 on Inerton-Super. The ratio of *threo-* and *erythro-*isomers was determined by high performance liquid chromatography using a

Table 2. Reactions of organomanganese compounds with 2benzyloxypropanal (1) (Et₂O, $-78 \rightarrow 20^{\circ}$ C, 3 h, [reagent]₀: [1]₀ = 2:1)

Run	Reagent	Reaction prducts	Yield %	^a threo (a): erythro (b)
1	MeMnI	5a,b	88	93:7
2	MeMgI	5a,b	80	85:15
3	MeZnI ^b	5a,b	52	87:13
4	MeLi	5a,b	60	27:73
5	4-MeC _c H₄MnI	6a,b	94	93:7
6	BuMnl	7a,b	69	>97:3
7	n-C-H ₁ -MnI	8a,b	90	>97:3
8	BuC≡CMnI	6a,b	71	>97:3
9	PhC=CMnI	10a.b	36	95:5
10	4-MeOC _c H ₄ MnI			
11	$2.5-(MeO)_2C_2H_2Mn$	I — ^d		
12	CH_=CHCH_MnI°	f		
13	CH ₂ ² =CHCH ₂ ² MnCl ⁴	³ 11a,b	70	50:50

^{a)} According to HPLC. ^{b)} Prepared from MeLi and ZnI₂ in Et₂O (0°C, 40 min). ^{c)} Only aldehyde 1 and MeOPh were isolated. ^{d)} Only aldehyde 1 and 1,4-(MeO)₂C₆H₄ were isolated. ^{e)} Prepared from CH₂=CHCH₂MgBr and MnI₂ in Et₂O at -78° C. ^{f)} Marked resinification of the reaction mixture was observed. ^{g)} Prepared from CH₂=CHCH₂MgCl and Li₂MnCl₄ in THF at -78° C.

DuPont 8800 liquid chromatograph equipped with a refractometer; a Zorba X-Sil (250 x 4.6 mm) column was used, the mobile phase was hexane—ethyl acetate, 80:20-95:5, the flow rate was 1.0 ml/min, pressure $95\cdot10^5$ Pa. ¹H and ¹³C NMR spectra were recorded using a Bruker AM 300 spectrometer (300 MHz) in CDCl₃ with tetramethylsilane as the internal standard. IR spectra were obtained with an UR-20 spectrophotometer in thin films.

Ethereal solutions of organolithium and organo-magnesium compounds, $MnI_{2,9}$ Li₂MnCl₄ (as a 0.8 *M* THF solution)⁹ were prepared according to the known procedures. 2-Benzyl-oxypropanal,¹⁸ 2-methoxymethoxypropanal,¹⁹ and 2-benzyloxy-methoxypropanal¹⁹ were prepared by reduction of the corresponding ethyl lactates with diisobuthyl aluminium hydride. All reactions were carried out under dry argon. Et₂O and THF were distilled over LiAlH₄ before use.

Reactions of organomanganese compounds with α -alkoxyaldehydes. To a suspension of 0.618 g (2 mmol) of MnI₂ in 8 ml of Et₂O with stirring and cooling to -10° C was added 2.5 ml (2 mmol) of a 0.8 M ether solution of PhLi. The mixture was stirred for 40 min at -10+-5°C. After cooling to -78°C a solution of 0.164 g (1 mmol) of 1 in 1 ml of Et₂O was added. The reaction mixture was stirred for 1 h at $-7\tilde{8}$ °C, heated to room temperature in 3 h, hydrolyzed with 30 ml of 6% HCl, and extracted with Et₂O (3×15 ml). The combined ether extracts were washed with water (10 ml), dried with MgSO₄, and concentrated. By means of column chromatography (silica gel L 40/100; hexane-Et,O, 3:1), 0.208 g (86%) of 1-phenyl-2-benzyloxypropan-1-ol (2a,b) as a mixture (95:5) of threo- and erythro-isomers was isolated. * ¹H NMR spectrum (δ , J, Hz): of **2a**: 0.95 (d, 3H, Me, J = 6.2), 3.15 (br.s, 1H, OH), 3.52 (dq, 1H, CH, $J_1 = 7$, $J_2 = 6.2$), 4.36 (d, 1H, CH, J = 7), 4.37 d and

4.56 d, (2H, CH₂, $J_{AB} = 11.5$), 7.25 (m, 10H, arom.); **2b**: 1.17 (d, 3H, Me, J = 6.3), 3.05 (br.s, 1H, OH), 3.3 (d q, 1H, CH, $J_1 = 3.9$, $J_2 = 6.3$), 4.59 d and 4.69 d (2H, CH₂, $J_{AB} = 11.9$), 4.96 (d, 1H, CH, J = 3.9), 7.3–7.5 (m, 10H, arom.).

¹³C NMR spectrum (δ): of **2a**: 79.93 (d, C-1), 78.26 (d, C-2), 15.61 (q, C-3), 71.25 (t, C-4), 127.24 (d), 127.61 (d), 127.91 (d), 128.15 (d), 128.31 (d), 128.49 (d), 138.25 (s), 140.73 (s) (Ar); **2b**: 78.77 (d, C-1), 75.11 (d, C-2), 13.45 (q, C-3), 70.87 (t, C-4); 126.27 (d), 127.21 (d), 127.60 (d), 127.80 (d), 128.05 (d), 128.34 (d), 138.35 (s), 140.82 (s) (Ar). IR spectrum (v, cm⁻¹): 3450, 3080, 3045, 1610, 1500, 760, 720, 700.

Reactions of organomanganese compounds RMnX (R = Ph, 4-MeC₆H₄, 4-MeOC₆H₄, 2,5-(MeO)₂C₆H₃, Me, Bu, n-C₇H₁₅, CH₂=CHCH₂, BuC=C, PhC=C; X = Cl, Br, I), Ph₂Mn, Ph₃MnLi with aldehydes MeCH(OR)CHO (R = CH₂Ph, CH₂OMe, CH₂OCH₂Ph) were carried out using similar procedures.

3-Benzyloxybutan-2-ol (5a,b)*.¹⁶ ¹H NMR spectrum (δ , *J*, Hz) of **5a**: 1.15 d and 1.17 (d, 6H, Me, J = 6.3), 2.68 (br.s, 1H, OH), 3.31 d q and 3.61 d q (2H, CH, $J_1 = J_2 = 6.3$), 4.44 d and 4.67 d (2H, CH, $J_{AB} = 11.5$), 7.28 (m, 5H, arom.); **5b**: 1.06 d and 1.08 d (6H, Me, J = 6.3), 2.26 (br.s, 1H, OH), 3.41 d q and 3.84 d q (2H, CH, $J_1 = 3.3$, $J_2 = 6.3$), 4.42 d and 4.55 d (2H, CH₂, $J_{AB} = 11.8$), 7.25 (m, 5H, arom.). ¹³C NMR spectrum (δ) of **5a**: 71.26 (d, C-1), 80.26 (d, C-2), 15.46 (q, C-3), 71.12 (t, C-4), 18.62 (q, Me); 127.84 (d), 128.54 (d), 138.45 (s) (arom.); **5b**: 69.30 (d, C-1), 78.31 (d, C-2), 13.54 (q, C-3), 70.77 (t, C-4), 17.77 (q, Me), 127.65 (d), 128.46 (d), 138.68 (s) (arom.). IR spectrum (ν , cm⁻¹): 3450, 3080, 3045, 1610, 1505, 760, 720.

1-(p-Tolyl)-2-benzyloxypropan-1-ol (6a,b). ¹H NMR spectrum of **6a** (δ , J, Hz): 0.99 (d, 3H, Me, J= 6.1), 2.25 (s, 3H, Me), 3.15 (br.s, 1H, OH), 3.55 (d q, 1H, CH, $J_1 = 7.8$, $J_2 = 6.2$), 4.35 (d, 1H, CH, J= 7.8), 4.42 d and 4.53 d (2H, CH₂, $J_{AB} = 11.3$), 7.06 d and 7.17 d (4H, arom., $J_{AB} = 7.8$), 7.3 (m, 5H, arom.). ¹³C NMR spectrum (δ) of **6a**: 80.13 (d, C-1), 78.26 (d, C-2), 15.64 (q, C-3), 71.32 (t, C-4), 21.23 (q, Me), 127.24 (d), 127.30 (d), 128.57 (d), 129.09 (d), 137.65 (s), 138.31 (s, arom.); **6b**: 78.84 (d, C-1), 75.10 (d, C-2), 13.47 (q, C-3), 71.03 (t, C-4), 21.23 (q, Me). IR spectrum (ν , cm⁻¹): 3450, 3080, 3045, 1610, 1500, 760, 720, 700.

threo-2-Benzyloxyheptan-3-ol (7a).¹⁶ ¹H NMR spectrum (δ , *J*, Hz): 1.32 (t, 3H, Me, *J*= 7.1), 1.1 (d, 3H, Me, *J*= 5.9), 1.15–1.45 (m, 6H, CH₂), 2.55 (br.s, 1H, OH), 3.29 (d q, 1H, CH, *J*₁= 6.3, *J*₂= 5.9), 3.33 (m, 1H, CH), 4.33 d and 4.58 d (2H, CH₂, *J*_{AB}= 11.5), 7.22 (m, 5H, arom.). ¹³C NMR spectrum (δ): 74.96 (d, C-1), 78.49 (d, C-2), 15.58 (q, C-3), 71.04 (t, C-4), 14.02 (q, Me), 22.79 (t), 27.79 (t), 32.67 (t, CH₂), 127.70 (d), 127.79 (d), 128.45 (d), 138.58 (s, arom.). IR spectrum (v, cm⁻¹): 3450, 3080, 3045, 1610, 1505, 760, 720.

threo-2-Benzyloxydecan-3-ol (8a). ¹H NMR spectrum (δ , *J*, Hz): 0.78 (t, 3H, Me, *J*= 7.2), 1.08 (d, 3H, Me, *J*= 5.9), 1.1-1.45 (m, 12H, CH₂), 2.5 (br.s, 1H, OH), 3.26 (d q, 1H, CH, $J_1 = 6.3$, $J_2 = 5.9$), 3.3 (m, 1H, CH), 4.32 d and 4.55 d (2H, CH₂, $J_{AB} = 11.4$), 7.2 (m, 5H, arom.). ¹³C NMR spectrum (δ): 75.05 (d, C-1), 78.58 (d, C-2), 15.66 (q, C-3), 71.09 (t, C-4), 14.16 (q, Me), 22.73 (t), 25.66 (t), 29.33 (t), 29.77 (t), 31.93 (t), 33.03 (t, CH₂), 127.79 (d), 127.85 (d), 128.52 (d), 138.51 (s, arom.). IR spectrum (v, cm⁻¹): 3450, 3080, 3050, 1610, 1505, 760, 720.

threo-2-Benzyloxy-4-nonyn-3-ol (9a). ¹H NMR spectrum

^{*} The diastereomers were separated by means of preparative HPLC.

(8, J, Hz): 0.9 (t, 3H, Me, J=6), 1.18 (d, 3H, Me, J=6), 1.22–1.5 (m, 6H, CH₂), 2.55 (br.s, 1H, OH), 3.37 (d q, 1H, CH, $J_1=6.2$, $J_1=6$), 3.42 (m, 1H, CH), 4.43 d and 4.67 d (2H, CH₂, $J_{AB}=11.5$), 7.35 (m, 5H, arom.). ¹³C NMR spectrum (8): 75.02 (d, C-1), 78.55 (d, C-2), 15.64 (q, C-3), 71.09 (t, C-4), 71.06 (s), 77.10 (s, C=C), 14.08 (q, Me), 22.83 (t), 27.82 (t), 32.71 (t, CH₂), 127.77 (d), 127.85 (d), 128.51 (d), 138.51 (s, arom.). IR spectrum (v, cm⁻¹): 3440, 3090, 3060, 1610, 1495, 735, 695.

1-Phenyl-4-benzyloxy-1-pentyn-3-ol (**10a,b**). ¹H NMR spectrum of **10a** (δ , J, Hz): 1.45 (d, 3H, Me, J= 6.2), 2.85 (br.s, 1H, OH), 3.72 (d q, 1H, CH, $J_1 = 6.6$, $J_2 = 6.2$), 4.47 (d, 1H, CH, J= 6.6), 4.6 d and 4.72 d (2H, CH₂, $J_{AB} = 11.6$), 7.2– 7.45 (m, 10H, arom.). ¹³C NMR spectrum (δ) of **10a**: 65.87 (d, C-1), 77.21 (d, C-2), 15.16 (q, C-3), 70.71 (t, C-4), 84.83 (s), 86.58 (s, C \equiv C), 126.83 (d), 127.24 (d), 127.45 (d), 130.73 (d), 137.14 (s, arom.); **10b**: 64.65 (d, C-1), 76.15 (d, C-2), 13.81 (q, C-3), 70.10 (t, C-4). IR spectrum (v, cm⁻¹): 3400, 3065, 3030, 2230, 1595, 1490, 755, 735, 690.

2-Benzyloxy-5-hexen-3-ol (**11a,b**).¹⁶ ¹H NMR spectrum (δ , *J*, Hz): 1.12 d and 1.14 d (3H, Me, *J*= 6.2), 2.0–2.3 (m, 2H, CH₂C=), 3.3–3.55 (m, 2H, CH), 3.36 d and 4.59 d (2H, CH₂, *J*_{AB}= 11.5), 4.43 d and 4.54 d (2H, CH₂, *J*_{AB}= 11.8), 4.95–5.15 (m, 2H, CH₂=), 5.7-5.9 (m, 1H, CH=), 7.25 (m, 5H, arom.). ¹³C NMR spectrum (δ): 13.93 q and 15.51 q (Me), 37.07 t and 37.64 t (CH₂C=), 70.89 t and 71.12 t (CH₂), 72.74 d and 74.36 d (CHOH), 77.31 d and 77.59 d (CH), 117.22 t and 117.54 t (CH₂=), 134.90 d and 135.02 d (CH=), 127.71 (d), 127.79 (d), 127.85 (d), 128.51 (d), 138.48 (s), 138.65 (s, arom.). IR spectrum (v, cm⁻¹): 3450, 3080, 3045, 1650, 1600, 1510, 1010, 930, 750, 715.

1-Phenyl-2-methoxymethoxypropan-1-ol (**14a,b**). ¹H NMR spectrum of **14a** (δ , J, Hz): 1.05 (d, 3H, Me, J= 6.3), 3.38 (s, 3H, Me), 3.38 (br.s, 1H, OH), 3.78 (d q, 1H, CH, J_1 = 7.3, J_2 = 6.3), 4.45 (d, 1H, CH, J= 7.3), 4.7 d and 4.78 d (2H, CH₂, J_{AB} = 6.8), 7.3 (m, 5H, arom.). ¹³C NMR spectrum of **14a** (δ): 79.56 (d, C-1), 78.37 (d, C-2), 17.08 (q, C-3), 96.19 (t, CH₂), 55.67 (q, OMe), 127.19 (d), 127.96 (d), 128.40 (d), 140.96 (s, arom.); **14b**: 77.38 (d, C-1), 76.00 (d, C-2), 14.28 (q, C-3), 95.35 (t, CH₂), 55.67 (q, OMe). IR spectrum (v, cm⁻¹): 3430, 3080, 3065, 3035, 1605, 1500, 735, 700.

1-Phenyl-2-benzyloxymethoxypropan-1-ol (15a,b). ¹H NMR spectrum (δ , J, Hz) of **15a**: 1.13 (d, 3H, Me, J = 6.3), 3.42 (br.s, 1H, OH), 3.9 (d q, 1H, CH, J₁= 7.1, J₂ = 6.3), 4.52 (d, 1H, CH, J = 7.1), 4.61 (s, 2H, CH₂Ph), 4.85 d and 4.92 d (2H, CH₂, J_{AB}= 7), 7.45 (m, 5H, arom.). ¹³C NMR spectrum (δ): 79.23 (d, C-1), 78.23 (d, C-2), 16.96 (q, C-3), 93.97 (t, CH₂), 69.85 (t, 165

CH₂Ph), 127.10 (d), 127.85 (d), 127.92 (d), 128.35 (d), 128.49 (d), 137.58 (s), 140.93 (s, arom.); **15b**: 75.89 (d, C-2), 14.16 (q, C-3), 96.13 (t, CH₂), 69.70 (t, CH₂Ph). IR spectrum (ν , cm⁻¹): 3430, 3090, 3065, 3030, 1605, 1495, 735, 700.

threo-1-Phenylpropan-1,2-diol (16),²⁰ m.p. 55°C. ¹H NMR spectrum (δ , J, Hz): 1.08 (d, 3H, Me, J= 6.5), 2.5 (br.s, 1H, OH), 4.0 (d q, 1H, CH, J_1 = 4.3, J_2 = 6.3), 4.67 (d, 1H, CH, J= 4.3), 7.45 (m, 5H, arom.). ¹³C NMR spectrum (δ): 77.62 (d, C-1), 71.40 (d, C-2), 17.35 (q, C-3), 126.72 (d), 127.91 (d), 128.35 (d), 140.44 (s, arom.). IR spectrum (v, cm⁻¹): 3480, 3050, 3035, 1605, 1495, 760, 700.

References

- 1. M.T.Reetz, Angew. Chem., 1984, 96, 542.
- 2. M.T.Reetz, Pure Appl. Chem., 1988, 60, 1607.
- 3. R.W.Hoffmann, Angew. Chem., 1987, 99, 503.
- C.H.Heathcock, S.Kiyooka, and T.A.Blumenkopf, J.Org. Chem., 1984, 49, 4214.
- 5. M.T.Reetz, Organotitanium Reagents in Organic Synthesis, Springer, Berlin, 1986, p.125.
- 6. G.Cahiez and B. Figadere, *Tetrahedron Lett.*, 1986, 26, 4445.
- 7. G.Cahiez and M.Alami, Tetrahedron Lett., 1989, 30, 3541.
- 8. G.Cahiez and M.Alami, Tetrahedron Lett., 1989, 30, 7365.
- 9. J.F.Normant and G.Cahiez, *Modern Synthetic Methods*, R.Scheffold Ed., John Wiley & Sons, New York, 1983, **3**, 173.
- Y.Yamamoto, H.Yatagai, Y.Saito, and K.Maruyama, J.Org. Chem., 1984, 49, 1096.
- 11. L.Banfi, D.Potenza, and G.S.Ricca, Org. Magn. Res., 1984, 22, 224.
- 12. D.J.Cram and K.R.Kopecky, J.Am.Chem.Soc., 1959, 81, 2748.
- 13. G.E.Keck and E.P.Boden, Tetrahedron Lett., 1984, 25, 265.
- 14. A.Lupi and B.Chubar, Solevyie Effekty v Organicheskoi i Metalloorganicheskoi Khimii (Salt Effects in Organic and Organometallic Chemistry), Moscow, Mir, 1991, 352 (in Russian).
- 15. N.T.Anh, Top. Curr. Chem., 1980, 88, 145.
- M.T.Reetz, K.Kesseler, S.Schmidtberger, B.Wenderoth, and R.Steinbach, Angew. Chem. Supplement, 1983, 1511.
- 17. W.C.Still and J.A.Schneider, *Tetrahedron Lett.*, 1980, 21, 1035.
- 18. M.Kinoshita and S.Aburaki, Bull.Chem.Soc. Japan, 1973, 46, 1279.
- 19. L.Banfi, A.Bernardi, L.Colombo, C.Gennari, and C.Scolastico, J.Org. Chem., 1984, 49, 3784.
- 20. F.Fischer, Chem.Ber., 1957, 90, 357.

Received April 4, 1992