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Organic molecules with charge flow abilities gain much attention in third-order nonlinear optical ma-
terials. To evaluate the hypothesis of terminal donor and/or acceptor groups participating organic
resonance structures for third-order nonlinear optical materials, conjugated double bonds structures
with terminal amino groups are selected in this paper. The trimethine cyanine dye with quinolone
skeleton (3a) was synthesized, it shows strong reverse saturable absorption and nonlinear refraction in
dimethyl formamide solution at 532 nm. Then, its derivative compound (3b) with long alkyl chains
was synthesized in order to improve the film forming performance, the spinning coating thin film ex-
hibits strong reverse saturable absorption with the third-order nonlinear susceptibilities
cð3ÞI ¼ 3:42� 10�8 esu and cð3Þ ¼ 3:23 � 10�9 esu under nanosecond and picosecond laser beams
respectively. The results validate that the organic compounds with terminal donor and/or acceptor
groups participating resonance structures have potential value for the design of the third-order nonlinear
optical materials.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Organic third-order nonlinear optical (NLO) materials have
gained much attention for their relatively large nonlinearities, fast
response time and structural flexibility [1e3]. In the last two de-
cades, there is no unique rule for the selection of organic third-
order NLO materials, the design of them used to focus on the
donor and/or acceptor linked conjugated structures [4e9], and the
organic structures with charge flowability, such as diradical and
zwitterionic compounds [10], were recently suggested as the key
structures in this field.

Through a careful investigation of the reported organic third-
order NLO materials, it is found that organic compounds with ter-
minal donor and/or acceptor groups participating stable resonance
structures would be good candidates for the requirements of
charge flowable structures; for example, the structures of NIR dye
of BM4i4i [11,12] and selenium containing cyanine dyes [13] are fit
to above structural characteristics. In our previous work, aromatic
heterocycles with amino groups were evaluated for the third-order
NLO properties based on above hypothesis, phenoxazinium
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dyes exhibit strong third-order NLO reverse saturable absorptions
and nonlinear refractions, and the effective third-order nonlinear
susceptibilities (c(3)) are up to 8.78� 10�11 esu and 4.20�10�12 esu
in acetonitrile solutions under nanosecond and picosecond laser
Z-scan [14], meanwhile phenothiazinium dyes show similar third-
order NLO properties with c(3) values being 5.16 � 10�11 esu and
3.40 � 10�12 esu under nanosecond and picosecond laser beams
respectively [15]. The third-order NLO properties of two types fused
heterocycles indicate the terminal donor and/or acceptor groups
participating resonance structures would be good candidates in
this field, however, more proofs with other type of conjugated
systems are needed to affirm the hypothesis.

In this paper, the third-order NLO properties of the trimethine
cyanine dyes, which have conjugated double bonds with terminal
amino groups in quinolone, are reported in terms of their solution
and films.
2. Experimental section

2.1. Materials

Starting materials and reagents (analytical grade) were pur-
chased from TCI Development Co., Ltd. (Shanghai branch, China) or
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and used
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directly. Chromatography was performed with silica gel (200e300
mesh).

2.2. Instruments

Melting points were determined on an Xe4microscope electron
thermal apparatus (Taike, China) and the values are uncorrected.
NMR spectra were recorded on a Varian-300 or 400 MHz spec-
trometer. Mass spectra were recorded on Finnigan MAT95 mass
spectrometer. UVevis absorption spectra were recorded on a Shi-
madzu Ue3900 spectrometer. Atomic force microscope (AFM)
images were tested with a Bruker dimension icon system. The
thickness of the films was obtained by a Hitachi Se4700 scanning
electron microscope (SEM).

The third-order NLO properties were measured by the Z-scan
technique as reportedmethod [16,17], laser pulses at wavelength of
532 nm with pulse width of 4 ns (fwhm) were generated from a
frequencyedoubled and Q-switched Nd:YAG laser and an Nd:YAG
532 nm laser (EKSPLA) with a pulse width of 21 ps (fwhm) and
repetition rate of 10 Hz was used for picosecond measurements.

2.3. Synthesis

2.3.1. Synthesis of 1-ethyl-4-methylquinolin-1-ium iodide (1a) and
1-ethyl-4-(2-(N-phenyl- acetamido)vinyl)quinolin-1-ium iodide
(2a)

Compounds 1a and 2awere prepared according to the reported
procedures [18].

2.3.2. Synthesis of 1-decyl-4-methylquinolin-1-ium iodide (1b)
A solution of 4-methylquinoline (2.00 g, 14.0 mmol) and 1-

iododecane (4.50 g, 16.8 mmol) in acetonitrile (140 mL) was
refluxed for 48 h under nitrogen atmosphere. The solvent was
removed under reduced pressure and the residue was purified by
columnchromatographyelutingwithdichloromethane and acetone
(v:v ¼ 2:1) to give the brown liquid product. Yield: 51.5%; 1H NMR
(400MHz, CDCl3) d 10.15 (d, J¼ 6.0 Hz,1H, AreH), 8.39 (d, J¼ 8.7 Hz,
2H, 2 � AreH), 8.30e8.15 (m, 2H, 2 � AreH), 8.04 (d, J ¼ 6.1 Hz, 1H,
AreH), 8.01 (dd, J¼ 8.2, 7.3 Hz,1H, AreH),, 5.27 (t, J¼ 7. Hz, 2H, CH2),
3.03 (s, 3H, CH3), 2.17e2.02 (m, 2H, CH2), 1.56e1.45 (m, 2H, CH2),
1.40e1.31 (m, 2H, CH2),1.31e1.18 (m,10H, 5� CH2), 0.86 (t, J¼ 6. Hz,
3H, CH3). 13C NMR (75 MHz, CDCl3) d 158.34, 148.43, 136.99, 135.86,
130.26, 129.49, 127.14, 123.20, 119.17, 58.15, 31.78, 30.22, 29.44,
29.34, 29.19, 29.13, 26.49, 22.60, 20.87,14.09.MS (ESIþ)m/z: calcd for
C20H30Nþ: 284.2378, found: 284.2378 [M-I�]þ.

2.3.3. Synthesis of 1-decyl-4-(2-(N-phenylacetamido)vinyl)
quinolin-1-ium iodide (2b)

Compound 1b (1.65 g, 4.0 mmol) was reacted with N,N0-
diphenylformamidine (0.79 g, 4.0 mmol) at 165 �C for 30 min, the
residue product was washed with diethyl ether and ethanol
sequentially, then dried under reduced pressure. Acetic anhydride
(3 mL) and triethyl orthoformate (1.5 mL) were added to the above
residue and the resultant suspension was stirred at 100 �C for
15min. The reactant was cooled to room temperature, diethyl ether
(20 mL) was added slowly. The product was collected by filtration
and finally purified by column chromatography eluting with
dichloromethane and acetone (v:v ¼ 2:1) to give the product as a
yellow solid. Yield: 30.6%; mp 143.2e144.5 �C; 1H NMR (400 MHz,
CDCl3) d 9.90 (d, J ¼ 6.3 Hz, 1H, AreH), 8.88 (d, J ¼ 14.1 Hz, 1H, Are
H), 8.19 (d, J ¼ 8.8 Hz, 1H, AreH), 8.16e8.02 (m, 2H, 2 � AreH), 7.88
(d, J¼ 8.5 Hz,1H, CH), 7.76 (t, J¼ 7.7 Hz,1H, AreH), 7.66 (m, J¼ 14.4,
7.3 Hz, 3H, 3 � AreH), 7.37 (d, J ¼ 7.3 Hz, 2H, 2 � AreH), 6.02 (d,
J ¼ 14.1 Hz, 1H, CH), 5.12 (t, J ¼ 7.4 Hz, 2H, CH2), 2.09 (s, 3H, CH3),
2.03 (m, 2H, CH2), 1.55e1.40 (m, 3H, CH3), 1.33 (m, J ¼ 5.7 Hz, 2H,
CH2), 1.23 (s, 10H, 5 � CH2), 0.86 (t, J ¼ 6.5 Hz, 3H, CH3). 13C NMR
(75 MHz, CDCl3) d 169.80, 153.87, 147.38, 140.66, 137.77, 135.40,
131.09, 130.32, 129.16, 128.31, 126.51, 125.79, 118.71, 115.18, 103.54,
57.38, 31.80, 30.00, 29.30, 26.51, 23.60, 22.63, 14.11. MS (ESIþ) m/z:
calcd for C29H37N2Oþ: 429.2906, found: 429.2892 [M-I�]þ.

2.3.4. Synthesis of 1-ethyl-4-(3-(1-ethylquinolin-4(1H)-ylidene)
prop-1-en-1-yl)quinolin-1-ium iodide (3a)

To a mixture of 2a (201.0 mg, 0.5 mmol) and 1a (149.5 mg,
0.5 mmol) in ethanol (5 mL), Et3N (0.15 mL) was added in portions,
and then the mixture was refluxed for 1 h. The reactant was cooled
to room temperature; the product was separated by filtration and
recrystallized from methanol to give dark green powder. Yield:
42.5%, mp 248.3e250.2 �C; 1H NMR (400 MHz, DMSO) d 8.70 (t,
J ¼ 13.0 Hz, 1H, CH), 8.38 (d, J ¼ 8.4 Hz, 2H, 2 � AreH), 8.17 (d,
J ¼ 7.3 Hz, 2H, 2 � AreH), 7.93 (d, J ¼ 8.7 Hz, 2H, 2 � AreH), 7.85 (t,
J ¼ 7.7 Hz, 2H, 2 � AreH), 7.80 (d, J ¼ 7.4 Hz, 2H, 2 � AreH), 7.60 (t,
J ¼ 7.6 Hz, 2H, 2 � AreH), 7.10 (d, J ¼ 13.0 Hz, 2H, 2 � CH), 4.47 (q,
J ¼ 6.8 Hz, 4H, 2 � CH2), 1.41 (t, J ¼ 7.0 Hz, 6H, 2 � CH3). 13C NMR
(151 MHz, DMSO) d 148.30, 142.51, 140.28, 137.71, 132.61, 125.74,
124.86, 124.13, 117.15, 110.40, 108.71, 48.35, 14.47. MS (ESIþ) m/z:
calcd for C25H24N2

þ: 353.2018, found: 353.2017 [M-I�]þ.

2.3.5. Synthesis of 1-decyl-4-(3-(1-decylquinolin-4(1H)-ylidene)
prop-1-en-1-yl)quinolin-1-ium iodide (3b)

To a mixture of 2b (278.2 mg, 0.5 mmol) and 1b (205.6 mg,
0.5 mmol) in ethanol (5.0 mL), Et3N (0.15 mL) was added in por-
tions, and then the mixture was refluxed for 1 h. The reactant was
cooled to room temperature, and ethyl ether (30 mL) was added.
The product was collected by filtration and purified by column
chromatography eluting with dichloromethane and acetone
(v:v ¼ 2:1) to give the target product as a dark green solid. Yield:
58.5%. mp 155.1e156.0 �C. 1H NMR (400 MHz, CDCl3) d 8.41 (t,
J ¼ 12.9 Hz, 1H, CH), 8.23 (d, J ¼ 8.2 Hz, 2H, 2 � AreH), 7.79 (d,
J ¼ 7.3 Hz, 2H, 2 � AreH), 7.73 (d, J ¼ 7.5 Hz, 2H, 2 � AreH), 7.66 (t,
J ¼ 7.8 Hz, 2H, 2 � AreH), 7.49 (d, J ¼ 8.7 Hz, 2H, 2 � AreH), 7.44 (t,
J ¼ 7.5 Hz, 2H, 2 � AreH), 6.86 (d, J ¼ 13.0 Hz, 2H, 2 � CH), 4.18 (t,
J ¼ 7.3 Hz, 4H, 2 � CH2), 1.87e1.73 (m, 4H, 2 � CH2), 1.45e1.12 (m,
28H, 14 � CH2), 0.86 (t, J ¼ 6.8 Hz, 6H, 2 � CH3). 13C NMR (75 MHz,
CDCl3) d 148.73, 142.46, 140.08, 137.97, 132.32, 125.55, 124.75,
116.19, 110.69, 109.97, 54.45, 31.84, 29.48, 29.44, 29.25, 29.23, 29.11,
26.74, 22.66, 14.11. MS(ESIþ) m/z: calcd for C41H57N2

þ: 577.4522,
found: 577.4531 [M-I�]þ.

2.4. Spinning coating of the film

The quartz glass (25 � 25 � 1 mm3) was sequentially washed
with distilled water, acetone, ethanol and then acetone in an ul-
trasonic bath. Dye 3b (20.0 mg) was dissolved in cyclopentanone
(1.0 mL). The solution, which was filtered through a 0.22 mm filter,
was subsequently spinecoated at 1300 rmp on a quartz glass and
the filmwas dried in a vacuum oven at 60 �C for 24 h to remove the
residual solvent.

3. Results and discussion

3.1. Preparation of the materials

The synthetic schedule is shown in Fig. 1. Compounds 1aeb
were synthesized by the alkylation of the 4-methylquinoline. The
intermediates (2aeb) can be obtained by the one [19] or two steps
[18] synthesis according to the reported methods, and the two
steps synthesis was adopted for 2aeb since the procedures are
more efficient for purification in this case. The final products (3ae
b) were prepared by the condensations between the 2ae2b and



Fig. 1. Synthetic routes of trimethine cyanine dyes with quinolones.
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1ae1b respectively with the triethylamine as base. The decompo-
sition temperature of 3ae3b is up to 270e280 �C (Fig. S1), which
indicates the thermal stability of the cyanine dyes. The structures of
3ae3b consist of two stable resonance structures and terminal
nitrogen atoms participating the resonance skeletons, these fea-
tures are well fit to the suggested hypothesis of the organic charge
flowable structures for third-order NLO materials.
3.2. Optical properties of compound 3a in DMF

The normalized absorption spectrum of 3a in dimethyl form-
amide (DMF) solution was shown in Fig. 2 (3a in DMF), it has
absorption maximum at 712 nm with a shoulder peak at 657 nm,
which could identify the H-aggregation of the cyanine dye in the
solution [20]. The solution has no absorption at 532 nm, so the
third-order NLO properties could be measured with the
532 nm laser beam without the influence from linear absorption
comparing with the reported third-order NLO properties of the
cyanine dyes [21,22].

The third-order NLO properties of compound 3awere tested by
Z-scanwith nanosecond laser beam at 532 nm. The DMF solution of
3a shows strong reverse saturable absorption (RSA) and nonlinear
refraction (Figs. S2 and S3) with the third-order nonlinear sus-
ceptibilities cð3ÞR ¼ 1:45� 10�11 esu, cð3ÞI ¼ 2:08� 10�11 esu and
cð3Þ ¼ 2:54� 10�11 esu which can be calculated by the reported
methods [23,24] (Table S1). The remarkable third-order NLO
properties of compound 3a show the potential application of the
terminal nitrogen atoms participating resonance structure of
Fig. 2. Normalized absorption spectra of 3ae3b.
trimethine cyanine, unfortunately, compound 3a is difficult to form
a thin film because of its undesirable physical characteristics. Thus
the design of derivatives of 3a is necessary for the third-order NLO
properties in solution as well as thin film.

3.3. Optical properties of compound 3b in DMF solution and film

The spin-coating method was reported as the easy way to form
optical thin films, and that functional dyes with long alkyl chains
Fig. 3. Third-order NLO responses of compound 3b (1.0 � 10�3 mol L-1) in DMF so-
lution (points are tested data and lines are fit curves). (a) and (b): open aperture
transmittances; (c) and (d): refractive parts, data were obtained from the ratio of the
closed aperture transmittance divided by the open aperture transmittance. (a) and (c):
tested with nanosecond laser beam at 532 nm; (b) and (d): tested with picosecond
laser beam at 532 nm.



Table 1
The third-order NLO properties of the compound 3b.

Entry Samples Laser T0
a n2 (m2 W�1)b b (m W�1)c cR

(3) (esu)d cI
(3) (esu)e c(3) (esu)f g0 (esu)g

1 3b in DMFh nsi 0.72 8.50 � 10�17 1.50 � 10�9 3.08 � 10�11 3.29 � 10�11 4.51 � 10�11 2.26 � 10�32

2 3b Film nsj 0.86 e 1.80 � 10�6 e 3.42 � 10�8 e e

3 3b in DMFh psk 0.71 3.40 � 10�18 1.31 � 10�10 1.23 � 10�12 2.87 � 10�12 3.12 � 10�12 1.56 � 10�33

4 3b Film psk 0.86 8.70 � 10�15 9.10 � 10�8 2.73 � 10�9 1.73 � 10�9 3.23 � 10�9 1.91 � 10�31

a Linear transmittance.
b Nonlinear refractive index.
c Nonlinear absorption coefficient.
d Real part of third-order nonlinear susceptibility.
e Imaginary part of third-order nonlinear susceptibility.
f Third-order nonlinear susceptibility.
g Second-order hyperpolarizability.
h With the concentration at 1.0 � 10�3 mol L�1.
i Tested with nanosecond laser beam (532 nm) at 1.20 mJ.
j Tested with nanosecond laser beam (532 nm) at 0.90 mJ.
k Tested with picosecond laser beam (532 nm) at 0.25 mJ.
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[25], composite materials [26e30], side-chain polymers [31,32] and
solegel complexes [33,34] were used for the film. Functional dye
with decyl groups was selected for derivative of the trimethine
cyanine, and compound 3b was obtained by altering the substitu-
ent group of 3a to improve the film-forming ability (Fig. 1). The
linear optical absorption of 3b in DMF (Fig. 2, 3b in DMF), absorp-
tionmaximum at 714 nmwith a shoulder peak at 658 nm, is similar
to that of 3a.

The third-order NLO properties of 3b (1.0 � 10�3 mol L�1) in
DMF were firstly evaluated by Z-scan with 532 nm nanosecond
laser beam at 1.20 mJ. The third-order NLO absorption was
expressed by open aperture transmittance as shown in Fig. 3(a),
and the solution shows strong RSA. The nonlinear refractive
data were obtained from the closed aperture transmittance
divided by the open aperture transmittance, and the valley-to-peak
configuration of the curve suggests self-focusing effect (Fig. 3(c)).
The calculated third-order NLO parameters are cð3Þ ¼ 4:51
�10�11 esu, second-order hyperpolarizability g0 ¼ 2:26� 10�32

esu (Table 1, Entry 1). Strong third-order NLO RSA and refractive
phenomena with cð3Þ ¼ 3:12� 10�12 esu and g0 ¼ 1:56
�10�33 esu were also verified by the 532 nm picosecond laser
beam at 0.25 mJ (Fig. 3 (b) and (d); Table 1, Entry 3). Comparing with
the reported properties of pentamethine cyanine [35], compound
3b has the similar third-order NLO performance in the same test
condition although it has shorter conjugated double bond skeleton,
Fig. 4. Characteristics of the spin-coating film. (a): AFM height image of the film; (b): SEM
image.
and the results also indicate the importance of the terminal nitro-
gen atoms participating the resonance skeletons for third-order
NLO materials.

The optical film of 3b was prepared by spin coating. The film
has the smooth surface (Fig. 4(a)) with waviness of the topo-
graphic at about 2 nm (Fig. 4(c)). The cross-sectional SEM image
reveals that the thickness of the film is 144 nm (Fig. 4(b)). These
material features of the film with 3b indicate the long alkyl
chains of decyl groups are good selection for optical device of the
trimethine cyanine. The absorption spectra of the film containing
3b is shown in Fig. 2 (3b film), the absorption maximum locates
at 651 nm with a shoulder band at 745 nm, the difference be-
tween the absorptions of 3b in solution and film would be
induced by the existent of J and H-aggregations for the cyanine
dye at the same time [36].

Strong RSA of the filmwas found by the Z-scanwith nanosecond
laser beamwith 532 nm at 0.90 mJ (Fig. 5(a)), and that the imaginary
part of third-order nonlinear susceptibility is up to 3.42 � 10�8 esu
(Table 1, Entry 2); the refractive part cannot be detected under this
condition (Fig. 5(c)) due to the strong RSA in this condition.
Meanwhile, strong RSA and nonlinear refraction phenomena were
observed by picosecond laser beamwith 532 nm at 0.25 mJ (Fig. 5(b)
and (d)), and it has remarkable third-order NLO parameter with
cð3Þ ¼ 3:23� 10�9 esu and g0 ¼ 1:91� 10�31 esu. The third-order
properties of compound 3a and 3b affirm the hypothesis for
image of the film cross section; (c): a typical cross section profile of AFM topographic



Fig. 5. Third-order NLO responses of spin-coating film with 3b (points are tested data
and lines are fit curves). (a) and (b): open aperture transmittances; (c) and (d):
refractive parts, data were obtained from the ratio of the closed aperture transmittance
divided by the open aperture transmittance. (a) and (c): tested with nanosecond laser
beam at 532 nm; (b) and (d): tested with picosecond laser beam at 532 nm.
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selection of third-order NLO materials from terminal donor and/or
acceptor groups containing stable resonance structures.

4. Theoretical calculations

To get insight into the optical properties of 3ae3b, (TD)DFT
calculations with the B3LYP exchange functional employing 6-
311þG(d) basis sets were performedwith the Gaussian09 program
package [37]. Solvent effects are considered by conductor-like
polarizable continuum model (CPCM) and DMF is used as solvent.
The optimized structures and molecular orbital plots of cations
3aDe3bD are shown in Fig. 6 and Figs. S4 and S5. Selected pa-
rameters for the vertical excitation (UVevis absorptions) of them
are displayed in Table S2.

The analysis of the wave function indicates that the electron
absorption corresponds to the transition from the ground to the
Fig. 6. The HOMO and LUMO of 3bD in DMF.
first excited state (S0 / S1) and is mainly described by one-
electron excitation from the highest occupied molecular orbital
(HOMO) to the lowest unoccupied orbital (LUMO)(Table S2). For
both 3aD and 3bD, the two quinoline rings are not in the same
plane (Fig. S4), and the dihedral angles between which are 36� and
32� respectively. Even so, the HOMOs and LUMOs of 3aþe3bþ are
still delocalized over the whole conjugated structure, that is,
the two quinoline chromophore and conjugated double bonds
(Fig. S5, Fig. 6).

NBO charge analysis shows the charges on two nitrogen atoms
of 3aþ are �0.366e and �0.363e. However, for 3bD, the charges
are �0.371e and �0.364e respectively. The two nitrogen atoms on
the heterocyclic ring have a strong electron-withdrawing ability,
and on both sides of the electron decyl group, it can effectively push
the electronic nitrogen atom, to form a suction-supply system, and
to enhance the degree of intramolecular charge transfer. This long
electron conjugated structure for a suction system is present, so
that the compound 3b under the action of the light stronger elec-
tronephoton coupling, thus contributing to increasing the electron
from the ground state to the excited state, reducing the transition
energy from 2.269 eV for 3aD to 2.266 eV for 3bD (Figs. 6, S5), so
the sample 3b has a more strong third-order nonlinear optical
response.

5. Conclusions

Due to the requirements of the organic third-order NLO mate-
rials, trimethine cyanine dyes with terminal donor and/or acceptor
groups participating resonance structures were selected in this
paper. 1-Ethyl-4-(3-(1-ethylquinolin-4(1H)-ylidene)prop-1-en-1-
yl)quinolin-1-ium iodide (3a) shows strong reverse saturable ab-
sorption and nonlinear refraction by Z-scan under nanosecond
laser beam at 532 nm, then the derivative compound,1-decyl-4-(3-
(1-decylquinolin-4(1H)-ylidene)prop-1-en-1-yl)quinolin-1-ium
iodide (3b), with long alkyl groups was redesigned and synthe-
sized. Optical film of 3b can easily be prepared by spin-coating, and
it exhibits more strong reverse saturable absorption at 532 nm, the
imaginary part of third-order nonlinear susceptibility is up to
3.42 � 10�8 esu under nanosecond laser beam, and the nonlinear
susceptibility is up to 3.23� 10�9 esu under picosecond laser beam,
respectively. Their optical properties are discussed through NBO
charge distribution analysis and the frontier molecular orbital
theory. The results of this research validate the potential applica-
tion of the terminal donor and/or acceptor groups participating
stable resonance structures in designing the third-order NLO
materials.
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