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Abstract: Rhodium(I)-catalyzed cyclization of allenynes with
a tethered carbonyl group was investigated. An unusual
insertion of a C=O bond into the C(sp2)–rhodium bond of
a rhodacycle intermediate occurs via a highly strained
transition state. Direct reductive elimination from the obtained
rhodacyle intermediate proceeds to give a tricyclic product
containing an 8-oxabicyclo[3.2.1]octane skeleton, while b-
hydride elimination from the same intermediate gives products
that contain fused five- and seven-membered rings in high
yields.

Transition-metal-catalyzed [2+2+2] cycloadditions of two
C�C multiple bonds with C=O bonds, as in aldehydes and
ketones, are useful methodologies for the construction of
oxygen-containing polycyclic compounds.[1–4] Intramolecular
variants are particularly attractive reactions that enable us to
easily access polycyclic compounds from acyclic substrates in
one pot [Scheme 1, Eq. (1)].[2a,g,h,3]

These cycloadditions begin with the formation of the
metalacycle intermediate A through oxidative cycloaddition
of two multiple C�C bonds to a low-valent transition-metal
complex, and cyclized products are produced through inser-
tion of a C=O bond into the M�C bond (a) of the
intermediate A followed by reductive elimination from the
intermediate B. In these reaction processes, if insertion of
a C=O bond into the M�C bond (b) of A occurs, the
intermediate C would be produced [Scheme 1, Eq. (2)].
However, most transition-metal-catalyzed cycloadditions
proceed through intermediate B,[2a,g,h, 3] and there has been
no report on cyclization through the intermediate C, probably
owing to the highly strained transition state A’’.

Recently, we have reported a RhI-catalyzed [6+2] cyclo-
addition of 4-allenals with alkynes or alkenes[5] in a tether
[Scheme 2, Eq. (1)].[5a] During ongoing investigation of this
cycloaddition, it was found that reaction of 1 a with [Rh-
(dppe)]ClO4 (10 mol%) instead of [Rh(IMes)(cod)]ClO4 did
not produce the expected product 2a, which contains fused
five- and eight-membered rings, but produced the bicyclic
alcohol 3a, which contains fused six- and seven-membered
rings, in 27% yield.[6–8] The formation of 3 a could not be
explained by the mechanism of the reported [6+2] cyclo-
addition, but it might be formed via the above-mentioned
unknown intermediate C� followed by b-hydride elimination
[Scheme 2, Eq. (2)]. This unexpected result prompted us to
investigate RhI-catalyzed cycloaddition of allenynes with
tethered aldehydes giving the product 3 a.

Scheme 1. Intramolecular cycloadditions of C�C multiple bonds with
C=O bonds.

Scheme 2. RhI-catalyzed cycloadditions of 1a with [Rh(IMes)(cod)]ClO4

or [Rh(dppe)]ClO4. IMes = 1,3-di(2,4,6-trimethylphenyl)imidazolin-2-yli-
dene, cod = cyclooctadiene, dppe= bis(diphenylphosphanyl)ethane.
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To improve the yield of 3a, cycloaddition of 1a under
various conditions was reinvestigated. However, the yield of
3a was only improved to 39% when using [Rh(dppe)]ClO4

(10 mol %) in ClCH2CH2Cl at room temperature. Thus, the
substrate was changed from 1a to 4a, which had two carbon
units between allene and alkyne (Table 1). The cyclization of
4a with [Rh(dppe)]ClO4 (10 mol%) in ClCH2CH2Cl at 50 8C
for 1 h gave the desired bicyclic compound 5a in 80 % yield
(Table 1, entry 1).[9] Screening of RhI complexes in the

reaction of 4a was carried out, and it was found that the use
of [RhCl(PPh3)3], [Rh(dppb)]ClO4, or [Rh(DPEphos)]ClO4

was not effective for this cycloaddition (Table 1, entries 2–4).
Surprisingly, the reaction using [Rh(dppbz)]ClO4 afforded the
cyclic compound 5 a in 91% yield (Table 1, entry 5). Further-
more, the catalyst loading could be reduced to 2 mol% under
similar conditions, thereby giving 5a in 80 % yield (Table 1,
entry 6). The use of [Rh(IMes)(cod)]ClO4, which was effec-
tive for the above-mentioned [6+2] cycloaddition,[5a] gave
a complex mixture in the cyclization of 4a (Table 1, entry 7).

Next, the cyclization of various substrates using [Rh-
(dppbz)]ClO4 was examined (Table 2). The cyclization of 4b,
having a silyloxy group in the tether, gave the cyclic
compound 5b in 72 % yield (Table 2, entry 1). The use of
substrate 4c, which has a TMS group at the alkyne part,
afforded 5c in 91% yield (Table 2, entry 2). In the reaction of
4d and 4e, which have an electron-withdrawing group such as
a chlorine atom and ester on the alkyne moiety, the
corresponding products 5 d and 5 e were obtained in 75%
and 88% yields, respectively (Table 2, entries 3 and 4). The
cyclization of 4 f–4h, which have various aromatic moieties on

the alkyne part, proceeded smoothly, giving the desired
products in high yields (Table 2, entries 5–7). When 4 i, the
reaction of which was expected to give a heterobicyclic
compound, was treated with [Rh(dppbz)]ClO4 (10 mol%) in
ClCH2CH2Cl at 50 8C for 1 h, the desired compound 5 i was
obtained in 71% yield (Table 2, entry 8).[10]

A possible reaction mechanism for the formation of 5
from 4 is depicted in Scheme 3. The rhodacycle I would be
formed by oxidative cycloaddition of the alkyne part and
external C=C bond of the allene moiety of 4 to the RhI

complex.[3, 11–13] Insertion of an aldehyde moiety of 4 into the
C(sp2)–rhodium bond of I would occur to give the rhodacycle
II, from which b-hydride elimination followed by reductive

Table 1: RhI-catalyzed cycloaddition of 4a.

Entry RhI complex t [h] Yield [%]

1[a] [Rh(dppe)]ClO4 1 80
2 [RhCl(PPh3)3] 18 5[d,e]

3[a] [Rh(dppb)]ClO4 24 –[e]

4[a] [Rh(DPEphos)]ClO4 26 –[e]

5[a] [Rh(dppbz)]ClO4 1 91
6[b] [Rh(dppbz)]ClO4 2 80
7[c] [Rh(IMes)(cod)]ClO4 15 –

[a] Reactions were carried out using 10 mol% [Rh(ligand)]ClO4 at 50 8C.
[Rh(ligand)]ClO4 was generated in situ from [Rh(ligand)(nbd)]ClO4

under an atmosphere of hydrogen. [b] The reaction was carried out using
2 mol% [Rh(dppbz)]ClO4. [Rh(dppbz)]ClO4 was generated in situ from
[Rh(dppbz)(nbd)]ClO4 under an atmosphere of hydrogen. nbd = nor-
bornadiene, dppb= bis(diphenylphosphanyl)butane, dppbz = 1,2-bis-
(diphenylphosphanyl)benzene, DPEphos=bis(2-(diphenylphosphanyl)-
phenyl)ether. [c] The reaction was carried out using 10 mol% [Rh-
(IMes)(cod)]ClO4 generated in situ from [Rh(IMes)(cod)]Cl (10 mol%)
and AgClO4 (10 mol%). [d] Yield was determined by 1H NMR spectros-
copy using 1,3,5-trimethoxybenzene as an internal standard. [e] The
starting material was recovered in 66 % (entry 2), 75% (entry 3), and
56% (entry 4) yields.

Scheme 3. Possible reaction mechanism.

Table 2: RhI-catalyzed cyclization of various substrates.[a,b]

Entry Substrate t [h] Product

1 4b : R = CH2OTBS 2 5b : 72%
2[c] 4c : R = TMS 1 5c : 91%
3 4d : R = Cl 1 5d : 75 %
4 4e : R = CO2Me 1 5e : 88%

5 4 f : R = H 1 5 f : 83 %
6 4g : R = OMe 2 5g : 82 %
7 4h : R = CO2Me 1 5h : 76%

8 4 i 1 5 i : 71%

[a] Reactions were carried out using 10 mol% [Rh(dppbz)]ClO4 at 50 8C.
[Rh(dppbz)]ClO4 was generated in situ from [Rh(dppbz)(nbd)]ClO4

under an atmosphere of hydrogen. TBS = tert-butyldimethylsilyl,
TMS= trimethylsilyl. [b] E = CO2Me. [c] In the presence of MS4A.

.Angewandte
Communications

1136 www.angewandte.org � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2014, 53, 1135 –1139

http://www.angewandte.org


elimination from III would occur to give the bicyclic
compound 5.

The most critical step in the mechanism should be the one
from I to II (i.e., from A to C via A’’ in Scheme 1) since
insertion of a C=O bond into the C(sp2)–rhodium bond would
yield a highly strained transition state. Thus, to obtain insights
into the reaction course, we prepared the substrate 4 a in an
enantiomerically enriched form (81 % ee) and subjected it to
the optimal conditions. As a result, the substrate (R)-4a was
converted to (S)-5a in 86% yield, 76% ee, which is explain-
able according to the mechanism shown in Scheme 3. Thus,
the stereospecific formation of a chiral rhodacycle intermedi-
ate I’ from the chiral substrate 4a occurs, and then the
intermediate II’ is produced by insertion of a C=O into the
C(sp2)–rhodium bond of I’ (Scheme 4).[14]

Additionally, we prepared the substrate 4j having no
hydrogen atom at the b-position of the aldehyde moiety to
prevent b-hydride elimination from an oxa-rhodacycle inter-
mediate such as II’ in Scheme 4. When 4j was treated with
[Rh(dppbz)]ClO4 (10 mol %) at reflux for 3 h, we obtained 6j,
which has an 8-oxabicyclo[3.2.1]octane structure, in 84%
yield;[15, 16] 6j was surely formed through direct reductive
elimination from the oxa-rhodacycle intermediate II’’
(Scheme 5). Furthermore, the cyclization of 4j under a CO
atmosphere afforded the tricyclic lactone 7 j in 62 % yield
along with the cyclic compound 6j in 24 % yield, the structure
of which was unambiguously determined by X-ray analysis.[17]

The product 7j should be produced through the insertion of
CO into the oxa-rhodacycle intermediate II’’, and all of the
results in Schemes 4 and 5 strongly support the mechanism in
Scheme 3.

Next, we turned our attention to investigating the scope of
carbonyl groups in the cyclization giving a product having an
8-oxabicyclo[3.2.1] skeleton (Table 3). The cyclization of 4k
and 4 l, which have a dialkyl ketone moiety (R = Me or Et)
instead of an aldehyde, proceeded to give 8-oxabicyclo-
[3.2.1]octane derivatives in 87% and 90% yields, respectively,
when using MS4A as an additive (Table 3, entries 1 and 2).
When aryl ketones 4m–o were employed in this cyclization,
4o, having an electron-withdrawing group at the aromatic
ring, afforded the corresponding cyclic compound 6o in high
yield, while a complex mixture was obtained in the case of 4n,
bearing an electron-donating group at the aromatic ring
(Table 3, entries 3–5). Gratifyingly, this cyclization was appli-
cable for sterically hindered silyl ketone 4p, and 6p was
obtained in 81% yield, the structure of which was also
unambiguously determined by X-ray analysis (Table 3,
entry 6).[17]

In conclusion, we succeeded in developing novel RhI-
catalyzed cyclizations of allenynes with a tethered carbonyl
group, wherein an unusual insertion of a C=O bond into the
C(sp2)–rhodium bond of rhodacycle intermediate I occurs
nevertheless via a highly strained transition state, and to our
knowledge, a metalacycle intermediate such as II has been
unknown in the literature. Direct reductive elimination from
II proceeds to give a tricyclic product containing an 8-
oxabicyclo[3.2.1]octane skeleton, while b-hydride elimination
from II gives products that contain fused five- and seven-
membered rings via intermediate III in high yields. It is

Scheme 4. Chiral transfer reaction.

Scheme 5. Cyclizations of 4 j.

Table 3: Cyclization through reductive elimination of rhodacycle II.[a,b]

Entry Substrate t [h] Product

1 4k : R = Me 1 6k : 87%
2 4 l : R = Et 24 6 l : 90 %

3 4m : R = H 24 6m : 42%
4 4n : R = OMe 24 6n : –[c]

5 4o : R = CO2Me 24 6o : 85%

6 4p 1 6p : 81%

[a] Reactions were carried out using 10 mol% [Rh(dppbz)]ClO4 in the
presence of MS4A at reflux. [Rh(dppbz)]ClO4 was generated in situ from
[Rh(dppbz)(nbd)]ClO4 under an atmosphere of hydrogen.
[b] E = CO2Me. [c] A complex mixture including the desired compound
was obtained.
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known that polycyclic compounds con-
taining an 8-oxabicyclo[3.2.1]skeleton
such as englerins[18] have an interesting
biological activity, and the present
cyclization is a unique methodology
for construction of such a skeleton.
Further studies along this line includ-

ing applications to the synthesis of natural products are in
progress.
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