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Abstract: The rhodium-catalyzed intermolecular direct C�
H thiolation of arenes with aryl and alkyl disulfides was
developed for the first time to provide a convenient route
to aryl thioethers. This strategy is compatible with many
different directing groups and exhibits excellent functional
group tolerance. More significantly, mono- or dithiolation
can be selectively achieved, thus providing a straightfor-
ward way for selective preparation of aryl thioethers and
dithioethers.

Aryl sulfides are ubiquitous structural motifs in numerous bio-
logically active natural products, pharmaceuticals, and materi-
als.[1] Metal-mediated cross-coupling reactions of aryl (pseudo)-
halides with sulfur nucleophiles, such as aryl thiols and aliphat-
ic thiols, has been developed as a powerful tool to give aryl
thioethers under a variety of conditions.[2] However, these
methods require the prefunctionalization of substrates. With
the increasing interest in transition-metal catalyzed C�H bond
functionalization,[3] a direct thiolation of arene C�H bonds
would provide an alternative method for the rapid preparation
of aryl thioethers.

In the area of C�H bond functionalization, much attention
has been paid to C�C, C�O, and C�N bond-forming reac-
tions.[3] In sharp contrast, the formation of a C�S bond through
transition-metal catalyzed C�H activation is rare and most ex-
amples have been limited to the formation of aryl sulfones[4]

and benzothiazoles,[5] or the deprotonative sulfenylation of
acidic heterocycles.[6] The more challenging preparation of aryl
thioethers through non-acidic arene C�H activation are signifi-
cantly rare,[7] presumably because the sulfur atom of thioethers
can tightly bind to metals, leading to the deactivation of the
metal catalyst.[8] Pioneering Cu-mediated direct thioetherifica-
tion of the arene C�H bond was disclosed by Yu and co-work-
ers (Scheme 1 a).[7a] Qing and co-workers developed a CuII-
mediated methylthiolation of arene C�H bonds utilizing DMSO
as the methylthiolation reagent (Scheme 1 b).[7b] Recently
Cheng et al. reported a CuI-catalyzed thiolation of the di- or tri-

methoxybenzene C�H bond (Scheme 1 c).[7c] However, these
methods suffer from low efficiency and a narrow scope of pos-
sible thiolation reagents or substrates. Very recently, Daugulis
and co-workers reported a beautiful CuII-catalyzed thiolation of
arene C�H bonds using bidentate directing groups (Sche-
me 1 d).[7d] However, in most cases, only dithioether products
were obtained. Therefore, the development of a general non-
acidic arene C�H thioetherification reaction (especially one
using transition-metal catalysts other than Cu) that enables the
selective preparation of valuable aryl thioethers and dithioeth-
ers, and is compatible with a broad scope of substrates and
tolerant to a wide range of functional groups, would be of
prime synthetic value.

Recently, {Cp*RhIII} complexes have emerged as very useful
and efficient catalysts for C�H bond activation[3a–c, i, m] and sub-
sequent C�halogen,[9] C�N,[10] and especially C�C bond-form-
ing reactions,[11–14] including alkynylation, olefination,[11] nucleo-
philic additions,[12] and coupling with carbene precursors[13]

and aziridines.[14] Indeed, it was also found that RhIII catalysts
could complement other transition metals in the functionaliza-
tion of C�H bonds in terms of activity, substrate scope, selec-
tivity, and functional-group tolerance.[9–14] However, to the best
of our knowledge, there is no report on the more challenging

Scheme 1. Different approaches toward C�S bond formation through non-
acidic arene C�H activation.
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C�S bond formation by Rh-catalyzed transformations. Given
the prevalence of aryl thioethers in medicinal chemistry and
pharmaceutical industries, here we describe the first example
of Rh-catalyzed arene C�H thioetherification (Scheme 1 e). Sig-
nificantly, this new C�H thioetherification reaction is compati-
ble with many different directing groups (e.g. , pyridine, pyrimi-
dine, pyrazole, and oxime) and tolerates various synthetically
useful functional groups, selectively providing mono- or di-
thioethers by simply changing the reaction conditions.

We chose the reaction of 2-phenylpyridine (1 a) with diphen-
yl disulfide (2 a) as a model reaction (see Table S1 in the Sup-
porting Information). Although no coupling occurred when
using [RhCp*Cl2]2 (5 mol %) as a catalyst, addition of AgSbF6

(20 mol %) catalyzed the reaction to give the desired product
3 a (for structure, see Table 1), albeit with low conversion. Addi-
tion of an oxidant (150 mol %) significantly affected this C�S
coupling reaction and the use of Ag2CO3 as an oxidant gave
improved conversion and yield, providing dithioether 4 a (for
structure, see Table 4) as a main product. Other halide-abstract-
ing reagents were also tested and AgOTf proved to be particu-
larly effective, giving a sharp increase in the conversion and
yield. Dithioether 4 a was obtained in the greatest yield by
using Rh/AgOTf as the catalyst, Ag2CO3 as the oxidant, and tol-
uene as the solvent, heated to 150 8C for 36 h. Selective mono-
thioetherification was achieved by using Rh/AgOTf as the cata-
lyst, Cu(OAc)2 as the oxidant, and t-AmOH (t-AmOH = 2-
methyl-2-butanol) as the solvent, heated to 60 8C for 36 h. Con-
trol experiments revealed that the rhodium(III) complex is
essential.

With the optimal reaction conditions in hand, substrate
scope with respect to mono-thiolation was then surveyed
(Table 1). The reaction did not show pronounced electronic
preference, and introduction of various electron-rich (3 b, 3 d,
3 e, 3 g, 3 h), electron-poor (3 i–k), and halogen (3 c, 3 f, 3 l,
3 m) groups at the ortho (3 b, 3 c), meta (3 d–f), and para (3 g–
m) positions of the phenyl ring were all well tolerated. The
meta-substituted derivatives showed excellent regioselectivity
in C�H activation to give the less sterically crowded isomers
(3 d–f). In particular, the 2-methyl derivative (3 b) exhibited
good reactivity, thus showing high tolerance for steric hin-
drance. Furthermore, ester (3 i), nitrile (3 k), halogen (3 f, 3 l and
3 m), and even electrophilic carboxaldehyde (3 j) groups were
compatible with this C�S bond-forming reaction, making fur-
ther functionalization possible. Notably, the reaction was able
to thiolate the C�H bond of heterocyclic substrates (3 n). The
substrate scope was further extended to disulfides. To our de-
light, various diaryl disulfides showed good reactivities, irre-
spective of the electronic nature of the substituents on the
phenyl ring (3 o–q). Fortunately, the alkyl (3 r and 3 s) and
benzyl (3 t) disulfides were also compatible with the conditions
and afforded the corresponding thiolation products in good
yields, thus allowing for high diversity in the synthesis of aryl
thioethers.

To demonstrate the scope of other possible directing
groups, various pyridine directing groups were investigated
(Table 2). Pyridine rings functionalized with electron-donating
(3 aa–ad) or -withdrawing (3 ae) groups were tolerated well

and the tolerance of halide groups (3 ae) offers the opportuni-
ty for further functionalization. The steric bulk on the pyridine
ring had a limited effect on the reaction. Good reactivities
were seen when a methyl group was present on the pyridine
ring (3 aa–ad), regardless of whether it was at the 3-, 4-, 5-, or
6-position. Multicyclic pyridine derivatives were also found to
be useful in this thiolation reaction, with tricyclic benzo[h]qui-
noline and bicyclic quinolone both giving the corresponding
products (3 af and 3 ag, respectively) in good yields. Notably,
other N-based groups could also serve as effective directing
groups. For example, by using pyrimidine or pyrazole as the di-
recting group, the reaction provided the corresponding thiola-
tion products (3 ah–aj) and also showed high tolerance for
steric hindrance (3 ai), thus expanding the scope of the present
thiolation method.

In addition to heterocycles, ketoximes also worked well as
a directing group to facilitate the thiolation reaction (Table 3).
Notably, no product was observed in the absence of Rh cata-
lyst, indicating that the rhodium(III) complex is essential.[15]

Table 1. Rh-catalyzed ortho mono-thiolation of arene C�H bonds.[a]

[a] 0.2 mmol scale; yield of isolated products shown.
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Electronically modified aryl ketoximes were viable for this thiol-
ation reaction (3 ak–ap) and a bicyclic ketoxime also success-
fully underwent thiolation to give 3 aq. More gratifyingly, aro-
matic heterocycles were also successfully reacted (3 ar). The
above features indicate that the present method is a general
reaction that can be extended to more directing groups and it
is complementary to previous Cu-catalyzed C�H thiolation
reactions.[7]

Next, the scope of the double C�H activation/thioetherifica-
tion reaction was examined (Table 4). Various substrates con-
taining both electron-donating and electron-withdrawing
groups at the para-position of the phenyl ring were successful-
ly coupled with 2 a, providing dithioether products in moder-
ate to good yields (4 a–g). Notably, ester (4 d), carboxaldehyde

(4 e), and halogen (4 f and 4 g) groups were tolerated, offering
the opportunity for further functionalization. Contrasting with
previous Rh-catalyzed C�H functionalization reactions,[9–14]

meta-substituted substrates successfully provided difunctional-
ized products, enabling the preparation of 1,2,3,4-tetrasubsti-
tuted benzene derivatives (4 h and 4 i). Both electron-rich and
electron-poor diaryl disulfides were successfully coupled with
2-phenylpyridine to give products 4 j–l in good yields. More
gratifyingly, the present dithiolation reaction tolerated other N-
based directing groups (4 m–o) even when 6-methylpyridine
was used as the directing group (4 m), indicating the high
level of steric tolerance of this system. Notably, double activa-
tion of arene C�H bonds is rare with rhodium catalysis,[9, 16] and
most reported examples involved C�C bond formation as
well.[16]

To probe the catalytic mechanism, we carried out several ex-
periments: First, cyclometalated RhIII complex 5 was found to
successfully catalyze the thiolation reaction of 2-phenylpyridine
to give dithiolation product 4 a in 60 % yield, indicating the
plausible intermediacy of a rhodacycle complex in the catalytic
cycle (Scheme 2). A significant primary kinetic isotope effect
(kH/kD = 4.0) was observed for an intermolecular competitive

Table 2. Scope of other directing groups.[a]

[a] 0.2 mmol scale; yield of isolated products shown.

Table 3. Scope of aryl ketoximes.[a]

[a] 0.2 mmol scale; yield of isolated products shown.

Table 4. Rh-catalyzed ortho dithiolation of arene C�H bonds.[a]

[a] Reaction conditions: 0.2 mmol of 1, 0.5 mmol of 2, 0.01 mmol
[RhCp*Cl2]2, 0.04 mmol of AgOTf, 0.4 mmol of Ag2CO3 and 0.3 mL of
PhMe at 150 8C for 36 h. Yield of isolated products shown.
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coupling of 2 a with a 1:1 mixture of 1 a and 1 a-D5 at a low
conversion (Scheme 3). This KIE value of 4 is typical for the C�
H activation processes.[17]

Although the mechanism of the reaction is unclear at this
moment, we tentatively propose the following mechanistic
pathway on the basis of the above data (Scheme 4). First, the
[RhCp*Cl2]2 precursor reacts with the AgOTf additive to provide
a cationic RhIII species, which facilitates the C�H bond activa-
tion of substrate 1 a to form an Ar–RhIII rhodacycle (A). Inter-
mediate A can undergo a nucleophilic-addition-type reaction
with diphenyl disulfide to afford the desired product 3 a and
PhSRhIII species B (path a). Alternatively, oxidative addition of
the disulfide bond to the RhIII center could occur to give a RhV

intermediate (C),[18] followed by reductive elimination to give

product 3 a and RhIII B (path b). Intermediate B can continue to
react with substrate 1 a through a C�H activation step to form
a five-membered rhodacycle intermediate (D), which would
undergo reductive elimination to afford 3 a together with a rho-
dium(I) species. Oxidation of RhI gives RhIII to complete the cat-
alytic cycle.

In summary, we have reported the first example of Rh-cata-
lyzed direct C�H thiolation by using readily available disulfides
as thiolation reagents. This protocol shows a broad substrate
scope and many different directing groups can be used in the
C�H thiolation reaction. More significantly, this method allows
for selective mono- or dithiolation and exhibits excellent toler-
ance of functional groups, enabling the straightforward and se-
lective preparation of valuable and versatile aryl thioethers and
dithioethers. Owing to its high selectivity and broad substrate
scope, this C�H thiolation reaction should be of high synthetic
value. Detailed mechanistic studies and synthetic applications
of the Rh-catalyzed thiolation reaction are underway.

Experimental Section

General Procedure

An oven-dried reaction vessel was charged with [Cp*RhCl2]2

(6.1 mg, 0.01 mmol), AgOTf (10.2 mg, 0.04 mmol), 2-phenylpyridine
(1 a ; 31 mg, 0.2 mmol), diphenyl disulfide (2 a ; 43 mg, 0.2 mmol),
Cu(OAc)2 (20 mg, 0.1 mmol), and 2 mL of t-AmOH (0.1 m). The
vessel was sealed and heated at 60 8C (oil bath) for 36 h. The re-
sulting mixture was cooled to room temperature, filtered through
a Celite pad and then transferred directly to an alumina column
and eluted with petroleum ether and acetone (15:1) to give prod-
ucts 3 a (40.5 mg, 77 % yield).
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