FLAVANONES FROM TEPHROSIA LEIOCARPA

FEDERICO GÓMEZ-GARIBAY, LEOVIGILDO QUIJANO and TIRSO RIOS

Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán 04510 México, D. F., México

(Received in revised form 1 April 1991)

Key Word Index-Tephrosia leiocarpa; Leguminosae; prenyl flavanones; tephroleocarpin A and B.

Abstract—Roots and aereal parts of *Tephrosia leiocarpa* afforded two new flavanones, 5-hydroxy-7-methoxy-8-(3-hydroxy-3-methyl-*trans*-but-1-enyl)flavanone and 5-hydroxy-7-methoxy-8-(3-methyl-*trans*-but-1,3-dienyl)flavanone, named tephroleocarpin A and B, respectively.

INTRODUCTION

Chemical investigation on *Tephrosia* species have yielded rotenoids and other flavonoids of chemotaxonomic importance in the genus [1]. As part of our chemical systematic study of the genus *Tephrosia*, we have previously investigated several Mexican species and isolated a number of a new flavonoids [2–7]. We now describe a study of *Tephrosia leiocarpa*, an endemic species from the western part of México. The results follow the expected chemotaxonomic pattern of the genus.

RESULTS AND DISCUSSION

The extracts of roots and aerial parts of *Tephrosia* leiocarpa afforded after CC and preparative TLC over silica gel, two new flavanones, tephroleocarpin A (1) and B (2), in addition to the known terpenoids: geijerene and 1,5-dimethyl-1,5,7-cyclodecatriene; a mixture of sterols: sitosterol and stigmasterol; the rotenoids: rotenone, rotenolone B, dehydrorotenone and tephrosin as well as the known flavanones 7-methylglabranin and obovatin. Identification of known compounds was based on comparison with authentic samples and published data.

Tephroleocarpin A (1) is a yellowish crystalline compound, mp 99–101°. Its M_r as determined by mass spectrometry was in accord with the molecular formula $C_{21}H_{22}O_5$. Both the IR (3580, 1635, 1580 cm⁻¹) and the UV (206, 262, 356 nm) absorptions suggested a hydroxyflavanone structure [8]. The ¹H NMR spectrum confirmed the above suggestion, since it showed the characteristic ABX system signals of the flavanone nucleus at δ 5.40 (H-2) and 2.95 (H-3). The rest of the spectrum (Table 1), was similar to that of quercetol C (3), previously isolated from *Tephrosia quercetorum* [7], except that one methoxyl signal was missing and instead it showed a chelated hydroxyl signal at δ 12.85; therefore, the hydroxyl group must be at C-5 and the methoxyl group at

C-7. The El mass spectrum showed a molecular ion peak at m/z 354, together with other fragment peaks at m/z 339 $[M-Me]^+$, 336 $[M-H_2O]^+$, 193 $[C_{10}H_9O_4]^+$ and 77 which are consistent with the structure 1. The negative value of the optical rotation $[\alpha]_D - 62.13^\circ$ indicated the absolute configuration S at C-2 in tephroleocarpin A (1) [8]. These results indicate that tephroleocarpin A (1) must be 5-O-demethylquercetol C. Confirmation of the structure was achieved by methylation of 1 with methyl iodide. This gave the methyl ether 3 which was identical in all respects with quercetol C [7].

Tephroleocarpin B (2), $C_{21}H_{26}O_4$, $([M]^+ 342)$, was a yellow amorphous solid, mp 265–270°, $[\alpha]_D -92.55$ (CHCl₃). The UV (203, 288, 340 nm) and the IR (3440, 1635, 1575, 880 cm⁻¹) spectra were similar to those of 1 and typical of flavanones [8]. Again, the structure of 2 followed from the ¹H NMR spectral data (Table 1) which

^{*}Part 7 in the series 'Flavonoids from *Tephrosia* species'. For part 6 see ref. [7].

This is contribution No. 1060 of the Instituto de Química, UNAM. In commemoration of its 50th anniversary.

Н	. 1	2	4
2	5.35 dd (4, 12)	5.40 dd (4, 10)	5.40 dd (4, 12)
3	2.95 m	2.95 m	2.95 m
6	6.08 s	6.10 s	6.05 s
-φ	7.39 s	7.40 s	7.40 s
7'	6.75 d (8)	7.19 d (17)	2.55 m
8′	6.55 d (8)	6.62 d (17)	1.35 m
10′	1.35 s	4.90 s	0.85 d (7)
11′	1.35 s	1.90 s	0.85 d (7)
-OMe	3.85 s	3.90 s	3.85 s
-OH	12.85 s	12.25 s	12.11 s

Table 1. ¹H NMR spectral data of flavonoids 1, 2 and 4 (ppm (δ), 80 MHz, CDCl₃, TMS as int. standard)

Values in parentheses are coupling constants or line separations in Hz.

showed that 2 must have the same substitution as 1 but a different side chain at C-8. While tephroleocarpin A (1) has a 3-hydroxy-3-methyl-trans-but-1-enyl side chain, tephroleocarpin B (2) has a 3-methyl-trans-but-1,3-dienyl as indicated by two singlets at δ 1.90 (3H) and 4.90 (2H) and two doublets (J = 17.0 Hz) at $\delta 7.19$ (1H) and 6.62 (1H) typical for this group in the ¹H NMR spectrum [10]. The mass spectrum showed a $[M]^+$ at m/z 336 and other significant fragments at m/z 321 $[M - Me]^+$ 217 $[C_{12}H_9O_4]^+$, 189 $[C_{11}H_9O_9]^+$, 104, 91 and 77 consistent with the proposed structure for tephroleocarpin B (2). Catalytic hydrogenation of 2 gave the corresponding tetrahydro derivative 4 ([M]⁺ 340), mp 109-110°. The ¹H NMR spectrum of 4 (Table 1) clearly showed a two-methyl doublet at $\delta 0.85$ (J = 7.0 Hz). The mass spectrum showed a $[M]^+$ at m/z 340 among other peaks at m/z 283 $[M-C_4H_9]^+$, 179 $[A-C_4H_9]^+$, 104 $[C_8H_8]^+$, and 77 according with structure 4. Final confirmation of the structure 2 was achieved by dehydration of tephroleocarpin A (1) which furnished tephroleocarpin B (2), as well as by catalytic hydrogenation of 5hydroxy-7-methoxy-8-prenylflavanone (5) which gave a dihydro derivative, identical in all respects with the tetrahydro derivative 4 obtained by hydrogenation of 2. Most likely 1 is the precursor of 2, which might be an artifact formed by dehydration of 1.

EXPERIMENTAL

Tephrosia leiocarpa was collected in August 1983, at the Estación Experimental de Biología 'Chamela', el Arroyo, Jalisco, México, 1983. A voucher is on deposit at the Herbarium of Instituto de Biología (UNAM). Air-dried leaves and flowers (1.06 kg) were extracted successively with petrol, EtOAc and MeOH. After evapn of solvents the green syrups A (25.3 g), B (43.0 g) and C (67.0 g) were obtained. In the same way from the air-dried roots (485 g) thick yellow extracts D (5.4 g), E (15.0 g) and F (23.5 g) were obtained.

The petrol extract A afforded after CC, a mixture of ubiquitous sterols, sitosterol and stigmasterol. The EtOAc extract B, was fractionated over silica gel (450 g) using petrol and CH_2Cl_2 . The petrol fractions were combined (8.2 g) and chromatographed on silica gel (90 g) using petrol and mixtures of petrol- CH_2Cl_2 of increasing polarity as eluants. Frs 12-17 (306 mg) eluted with petrol- CH_2Cl_2 (4:1) after further purification by prep. TLC gave 20 mg of a mixture of rotenolone B and tephrosin [9]. Frs 18-26 (25 mg) eluted with petrol- CH_2Cl_2 (3:1) provided 18 mg of dehydrorotenone, mp 210–215° (lit. 218° [11]).

The petrol extract D was chromatographed over silica gel (60 g) using petrol and mixtures of petrol– CH_2Cl_2 . Frs 1–2 (520 mg) were sepd by prep. GC to give 8 mg geijerene and 4 mg 1,5-dimethyl-1,5,7-cyclodecatriene [12]. Rechromatography of frs 9–43 over silica gel (30 g) provided 765 mg of 7-methyl-glabranin (5-hydroxy-7-methoxy-8-prenylflavanone), 572 mg of obovatin [13] and 87 mg of a mixture of sitosterol and stigmasterol. From the EtOAc extract E, frs eluted with petrol afforded further amounts of 7-methylglabranin (926 mg) and frs eluted with petrol– CH_2Cl_2 (8:1) afforded 47 mg of 5-hydroxy-7-methoxy-8-(3-hydroxy-3-methyl-*trans*-but-1-enyl)flavanone (tephroleocarpin A) (1). Frs eluted with petrol– CH_2Cl_2 (7:2 and 2:1) after purification by prep. TLC provided 6 mg of rotenone and 22 mg of 5-hydroxy-7-methoxy-8-(3-methyl-*trans*-but-1,3-dienyl) flavanone (tephroleocarpin B) (2).

Tephroleocarpin A (1). $C_{21}H_{22}O_5$, yellowish crystals, mp 99–101°, $[\alpha]_D - 62.13^\circ$ (CHCl₃; c 0.103); UV λ_{max}^{MeOH} nm (ϵ): 206 (23 958), 262 (31 354), 356 (3129); EIMS (probe) 70 eV m/z (rel. int.): 354 [M, $C_{21}H_{22}O_5$]⁺ (42.0), 339 [M-Me]⁺ (54.0), 336 [M-H₂O]⁺ (31.0), 321 [M-Me-H₂O]⁺ (32.0), 283 [M - C₄H₇]⁺ (95.0), 193 [C₁₀H₉O₄]⁺ (100.0), 77 (21.0).

Tephroleocarpin B (2). $C_{21}H_{20}O_4$, amorphous solid, mp 265–270°, $[\alpha]_D - 92.5°$ (CHCl₃; c 0.094); UV λ_{max}^{MeOH} nm (ϵ): 203 (18 327), 288 (8560), 340 (1863); EIMS (probe) 70 eV m/z (rel. int.): 336 [M, $C_{21}H_{20}O_4$]⁺ (100.0), 321 [M-Me]⁺ (33.0), 217 [$C_{12}H_9O_4$]⁺ (60.0), 189 [$C_{11}H_9O_3$]⁺ (34.0), 104 (18.0), 91 (23.0), 77 (50.0).

Methylation by MeI-K₂CO₃-Me₂CO of tephroleocarpin A (1) afforded 3 (10 mg), mp 198-200° (ref. [7] 198-200°), identified by comparison with an authentic sample. Dehydration of tephroleocarpin A (1): dry MgSO₄ (100 mg) was added to a soln of 1 in C_6H_6 and refluxed for 20 min, the reaction being monitored by TLC. When the reaction was completed the MgSO₄ was filtered and the solvent evapd yielding 9 mg of tephroleocarpin B (2). Hydrogenation of tephroleocarpin B (2): catalytic hydrogenation of 2 (15 mg) in MeOH using PtO₂ as catalyst gave, after TLC purification, 10 mg of the tetrahydro derivative 4, mp 109–110°, $[\alpha]_D$ –82.75° (CHCl₃, c 0.174), UV $\lambda_{max}^{CHCl_3}$ nm (e): 210 (28 701), 290 (17 105), 337 (3696); EIMS (probe) 70 eV m/z (rel. int.): 340 [M]⁺ (28), 283 [M-C₄H₉]⁺ (99), 179 $[C_9H_7O_4]^+$ (100), 104 $[C_8H_8]^+$ (77), 77 $[C_6H_5]^+$ (7). Hydrogenation of 7-methyl-glabranin (5): catalytic hydrogenation of 5 (20 mg) in MeOH using PtO₂ as catalyst gave, after TLC purification, 14 mg of a crystalline compound which was identical to 4 in all respects.

Acknowledgements—The authors wish to thank J. Cárdenas, R. Gaviño, L. Velasco, M. Torres and A. Toscano for ¹H NMR, IR, UV and mass spectra. We are also grateful to Mr Oswaldo Tellez (Instituto de Biología, UNAM) for collection of the plant material and botanical assistance.

REFERENCES

- 1. Waterman, G. P. and Khalid, A. S. (1980) *Phytochemistry* 19, 909.
- Gómez-Garibay, F., Quijano, L., García, G., Calderón, J. S. and Rios, T. (1983) Phytochemistry 22, 1305.
- 3. Gómez-Garibay, F., Calderón, J. S., Quijano, L., Cruz, O. and Rios, T. (1984) Chem. Ind. 632.
- Gómez-Garibay, F., Quijano, L., Calderón, J. S., Rodriguez, C. and Rios, T. (1985) *Phytochemistry* 24, 1057.

- 5. Gómez-Garibay, F., Calderón, J. S., Quijano, L., Dominguez, M. and Rios, T. (1985) *Phytochemistry* 24, 1126.
- Gómez-Garibay, F., Quijano, L., Calderón, J. S., Aguirre, G. and Rios, T. (1986) Chem. Ind. 827.
- Gómez-Garibay, F., Quijano, L., Calderón, J. S., Morales, S. and Rios, T. (1988) Phytochemistry 27, 2971.
- Whalley, W. B. (1962) The Chemistry of Flavonoids Compounds (Geissman, T. A., ed.), p. 441. Pergamon Press, New York.
- 9. Clark, E. P. (1943) J. Am. Chem. Soc. 65, 27.
- Gray, A. I., Waig, R. D. and Waterman, P. G. (1975) J. Chem. Soc., Perkin Trans. I 488.
- 11. Clark, E. P. (1933) Science 77, 311.
- 12. Thomas, F. A. (1972) Helv. Chim. Acta 55, 2429.
- 13. Chen, Y.-L., Wang, Y.-S., Lin, Y.-L., Munakata, K. and Ohta, K. (1978) Agric. Biol. Chem. 42, 2431.

Phytochemistry, Vol. 30, No. 11, pp. 3834–3836, 1991 Printed in Great Britain. 0031-9422/91 \$3.00+0.00 © 1991 Pergamon Press plc

A CHROMENOFLAVANONE AND TWO CAFFEIC ESTERS FROM PONGAMIA GLABRA

MURARI M. SAHA, UTTAM K. MALLIK and ASOK K. MALLIK*

Department of Chemistry, Jadavpur University, Calcutta 700 032, India

(Received in revised form 19 April 1991)

Key Word Index—Pongamia glabra; Leguminosae; stem bark; flavonoids; (-)-isoglabrachromene; hexacosanyl caffeate; triacontanyl caffeate; betulinic acid.

Abstract—(-)-Isoglabrachromene, a new natural chromenoflavanone, and hexacosanyl caffeate and triacontanyl caffeate, two new esters, have been isolated together with 11 known flavonoids and betulinic acid from the stem bark of *Pongamia glabra*. The reason why the H- α and H- β of 2'-hydroxy-6'-methoxychalcones appear at the same field in their ¹H NMR spectra is discussed.

INTRODUCTION

All parts of *Pongamia glabra* Vent. (Leguminosae) have been extensively studied. Furano-, chromeno- and simple flavonoids have been found to be the major chemical constituents of this plant. Our previous investigation on the flowers resulted in the isolation of three new hydroxyfuranoflavones [1, 2]. Subsequent work by other groups on different parts of this plant has resulted in several new flavonoids. The occurrence of several triterpenoids in the leaves has also been reported [3]. The stem bark and roots of this plant have not been investigated in recent years. We, therefore, undertook a reinvestigation of the stem bark of *P. glabra*.

RESULTS AND DISCUSSION

Extensive chromatography of the concentrate of the cold extract of the stem bark of *P. glabra* over silica gel afforded a new natural chromenoflavanone (-)-iso-glabrachromene (1), two new caffeic esters, hexacosanyl caffeate (2a) and triacontanyl caffeate (2b) (isolated as a mixture), the known flavonoids glabrachromene (3), ovalitenone, pongachromene, 5-methoxy-3',4'-methylenedioxy-2'',2''-dimethylpyrano(7,8-6'',5'')flavone, lanceolatin B, karanjin, pongapin, glabra-II, kanugin, desmethoxykanugin and fisetin tetramethyl ether and the triterpene betulinic acid.

(\pm)-Isoglabrachromene (1) was previously known as the cyclization product of the natural chalcone glabrachromene (3) [4]. Subrahmanyam *et al.* [4] carried out the cyclization with TLC grade silica gel (prolonged treatment) and Malik *et al.* [5] with methanolic sodium acetate. In this study (-)-1, mp 167-168°, $[\alpha]_{D}^{25} - 69.4^{\circ}$

^{*}Author to whom correspondence should be addressed.