A Convenient Synthesis of N-Substituted 4-(Chloroalkylamino)-2,2,6,6-tetramethylpiperidine-1oxyls

D. KIKELJ*, S. PEČAR

University E. Kardelj, Department of Pharmacy, Yu-61 000 Ljubljana, Aškerčeva 9, Yugoslavia

Many reactive derivatives of 2,2,6,6-tetramethylpiperidine-1-oxyl which are used directly or as building blocks in spin labeling have been synthesized and summarized in exhaustive reviews^{1,2}. However, the synthesis of N-substituted 4-(chloroalkylamino)-2,2,6,6-tetramethylpiperidine-1-oxyls has not yet been published. These compounds are useful new nitroxyl key intermediates which can be used as alkylating agents in the synthesis of spin-labeled drug molecules since numerous pharmacologically active compounds have an aminoalkyl side chain. We have used 4-[N-methyl-N-(3-chloropropyl)-amino]-2,2,6,6-tetramethylpiperidine-1-oxyl (2a) in the synthesis of spin-labeled imipramine and chlorpromazine analogs³.

Since most direct methods for the conversion of alcohols into the corresponding chlorides involve the use of strong acids they may not be applied to N-oxyl compounds, because in the presence of strong acids nitroxyls undergo a disproportionation reaction with loss of paramagnetism⁴. The reaction steps requiring acidic conditions must therefore be performed before the secondary amine or the hydroxylamine is oxidized to the nitroxyl².

We report here a simple one-pot conversion of a series of nitroxyl alcohols into the corresponding chlorides under conditions which do not affect the nitroxyl moiety.

In attempts to prepare tosylates of nitroxyl alcohols of the type 1 by a modification of a procedure for the synthesis of alkyl methanesulfonates⁵, we found that stirring alcohols 1 with tosyl chloride and triethylamine in dichloromethane at room temperature resulted in excellent to moderate yields of the corresponding chlorides 2 which in most cases were T.L.C. pure and gave satisfactory analyses without further purification.

$$|Nitroxy| = N R | Tos-CI/IC2H5)3N/CH2CI2, rt.$$
1
$$|Nitroxy| = N R | (CH2)n - OH$$

$$|Nitroxy| = N R | (CH2)n - CI | (CH$$

Melting points were determined on a Kofler hot stage microscope and are uncorrected. Microanalyses were performed using a Perkin Elmer 240 C analyzer. Mass spectra were recorded on a CEC 21-110 B mass spectrometer. The I.R. spectra were run on a Perkin Elmer 257 instrument and were in accord with the structures given in Table 1. The E.S.R. spectra of compounds 1 and 2 were obtained from 10^{-4} molar solutions in chloroform using a Varian E 9 spectrometer and were characteristic triplets.

The nitroxyl alcohols 1a-f were prepared by reductive amination of 4-0xo-2,2,6,6-tetramethylpiperidine-1-oxyl with the respective aminoal-cohol using sodium cyanoborohydride as reducing agent and methyla-ion of the secondary amine thus obtained with formaldehyde and sodium cyanoborohydride, as previously reported^{6,7}. Compounds 1c-f are new; they were characterized by microanalysis, mass, I.R., and E.S.R. spectrometry.

SYNTHESIS

Table 1. 4-(Chloroalkylamino)-2,2,6,6-tetramethylpiperidine-1-oxyls (2) from the corresponding Nitroxyl Alcohols (1)

Educt 1		equiv of ——Tos-Cl/(C ₂ H ₅) ₃ N used	Product 2		
Formula ^a	m.p. [°C]		Formula ^a	Yield ^b [%]	m.p. [°C]
a (R*) - N CH ₂ - CH ₂ - CH ₂ - CH	77-79°°	1.5	$(R^*) - N \frac{CH_3}{CH_2 - CH_2 - CH_2 - CI}$	81	38-40°
b (R*)-N(CH ₃ -CH ₂ -OH	29-30°°	1.5	$(R^*) - N \frac{CH_3}{CH_2 - CH_2 - CI}$	45 ^d	oil
b \mathbb{R}^{\bullet} $-N$ CH_{2} $-CH_{2}$ $-OH$ CH_{2} $-CH_{2}$ $-OH$ CH_{2} $-CH_{2}$ $-OH$	oil	3.0	$(R^{\bullet}) - N $ $(CH_2 - CH_2 - CI)$ $(CH_2 - CH_2 - CI)$	50	65-67°
d \mathbb{R}^{\bullet} $-N \stackrel{CH_3}{\underset{C_2H_5}{}}$	oil	1.5	$\mathbb{R}^{\bullet} - \mathbb{N} \setminus_{\substack{CH - CH_2 - Cl \\ C_2H_5}}^{CH}$	67	53-55°
н	semisolid	4.5	$ \begin{array}{c} \text{Tos} \\ \text{(CH}_2)_3 - N \\ \text{(CH}_2 - \text{CH}_2 - \text{CI} \\ \text{CH}_2 - \text{CH}_2 - \text{CI} \end{array} $	30	83-85°
f (R*) -N CH ₃ CH ₂ -CH ₂ -OH CH ₂ -CH ₂ -OH	55–57°	3.0	\mathbb{R}^{\bullet} - \mathbb{N} $\begin{array}{c} CH_{2} - CH_{2} - CI \\ CH_{2} \\ CH_{2} \end{array}$ $\begin{array}{c} CH_{2} - CH_{2} - CI \\ CH_{2} - CH_{2} - CI \end{array}$	28 ^d	semisolid

m.p. not reported in Ref.7.

Tos =
$$-SO_2$$
 $-CH_3$

Table 2. Spectral Data of Compounds 1c-f and 2a-f

Com- pound	Molecular Formula ^a	M.S. m/e	I.R. ^b (film; KBr for 2a , c , d , e) $v \text{ [cm}^{-1} \text{]}$	E.S.R. (3 lines) a_N (mT)
1	C ₁₃ H ₂₇ N ₂ O ₃ (259.4)	260 (M+1)+c	3400, 2930, 1460, 1375, 1360, 1240, 1215, 1180, 1045	1.5
1c		257 (M) +	3430, 2960, 1455, 1370, 1355, 1240, 1215, 1175, 1050	1.5
1d	$C_{14}H_{29}N_2O_2$ (257.4)	$317 (M+1)^{+c}$		1.5
1e	+ 10 D-1 D -2 (1010 1015 1175 1010	1.5
1f	$C_{17}H_{36}N_3O_3$ (330.5)	$331 (M+1)^{+c}$	2935, 1465, 1430, 1360, 1330, 1240, 1220, 1175, 765, 650	1.5
2a	$C_{13}H_{26}CIN_2O$ (261.8)	261 (M) +	2935, 1465, 1450, 1560, 1560, 1240, 1240, 1775, 765, 650	1.5
2b	$C_{12}H_{24}C1N_2O$ (247.8)	247 (M) +	2970, 1460, 1375, 1360, 1330, 1240, 1215, 1175, 735	1.5
2c	$C_{13}H_{25}Cl_2N_2O$ (296.3)	$296 (M+1)^{+c}$	2985, 1465, 1435, 1375, 1360, 1330, 1240, 1205, 1175, 735, 715, 650	1.5
2d	$C_{14}H_{28}CIN_2O$ (275.9)	275 (M)+	2970, 1460, 1380, 1365, 1250, 1220, 1195, 1185, 1035, 810, 705	1.5
2e	$C_{23}H_{38}Cl_2N_3O_3S$ (507.6)	$507 (M+1)^{+c}$	2975, 1600, 1465, 1345, 1305, 1250, 1165, 1115, 1095, 720, 685, 660	
2f	$C_{17}H_{34}Cl_2N_3O$ (367.4)	$367 (M+1)^{+c}$	2930, 1455, 1375, 1360, 1325, 1295, 1240, 1215, 1175, 720, 660	1.5

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.39 ; H, ± 0.29 ; N, ± 0.29 . Exception: 1c, C, -0.48.

4-[N-Methyl-N-(3-chloropropyl)-amino]-2,2,6,6-tetramethylpiperidine-1oxyl (2a); Typical Procedure:

To a stirred solution of 4-[N-methyl-N-(3-hydroxypropyl)-amino] 2,2,6,6-tetramethylpiperidine-1-oxyl (1a; 2.43 g, 10 mmol) in dry dichloromethane (50 ml) p-toluenesulfonyl chloride (2.68 g, 15 mmol) and dry triethylamine⁵ (2.1 ml, 15 mmol) are added. Stirring is continued for 48 h at room temperature. After evaporation of the solvent, ether (50 ml) is added to the residue and the resultant mixture is transferred to a separatory funnel. It is washed with water (2 × 50 ml) and extracted with 1 normal hydrochloric acid (50 ml). The acidic solution is washed with ether (50 ml), then made alkaline with sodium carbonate, and extracted with ether (4 × 25 ml). The etheral solution is dried with potassium carbonate, filtered, and evaporated in vacuo. Product 2a is obtained as a red oil which crystallizes on standing; yield: 2.11 g (81%); m.p. 38-40°C.

Acknowledgements are due to Mrs. M. Kastelic and to the Department of Chemistry, E. Kardelj University, for microanalyses.

Received: June 27, 1983

b Yield of isolated pure product.

Purified by column chromatography on silica gel using chloroform/ methanol (9/1) as eluent.

b Only the most intense absorption bands are listed. In the region v = 3000-2700 cm⁻¹, only the peak with the highest intensity is given.

 $^{^{\}circ}$ M $^{+}$ is also present but its intensity is less than that of $(M+1)^{+}$.

^{*} Address for correspondence.

J. F. W. Keana, Chem. Rev. 78, 37 (1978).

B. J. Gaffney, in: Spin Labeling - Theory and Applications, L. J. Berliner, Ed., Academic Press, New York, 1976.

³ D. Kikelj, S. Pečar, to be published.

⁴ E. G. Rosantsev, Free Nitroxyl Radicals, Plenum Press, New York

R. K. Crossland, K. L. Servis, J. Org. Chem. 35, 3195 (1970).

⁶ R. F. Borch, M. D. Bernstein, H. D. Durst, J. Am. Chem. Soc. 93 2897 (1971).

G. M. Rosen, M. B. Abou-Donia, Synth. Commun. 5, 415 (1975).