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absolute configurations of edulans I, II 
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Abstract: Enantiospecific syntheses of (+)- and (-)-edulans I, II and (-)-dihydroedulans 
I, II, starting from (R)- and (S)-3-hydroxybutyric acid methyl esters, allowed the 
determination of the absolute configurations of edulans I, II. @ 1997 Elsevier Science 
Ltd. All rights reserved. 

Edulans I, II and dihydroedulans I, II, exhibiting intense rose-like aromas, are important trace 

components in the flavour of the purple passionfruit (PUSS~@MXI edulis, Sims).’ Although their 
structures including relative stereochemistries were determined as shown in Figure 1 by synthesis,* 
no reports concerning the absolute configuration have appeared. As a means to determine the absolute 
stereochemistries and also to investigate the structure-order relationships of edulans, we initiated 
syntheses of edulans I, II and dihydroedulans I, II in enantiomerically pure forms. 

Alkylation of the enone 1, 3 derived from 5,5dimethyl- 1,3-cyclohexanedione by three steps,4 

with (R)-3-tert-butyldimethylsiloxybutyraldehyde 2,5 prepared from commercially available (R)-3- 
hydroxybutyric acid methyl ester, afforded the alcohols 3 as an inseparable mixture of diastereomers 
in 74% yield. The stereochemistry at the newly generated stereogenic centers of the products was not 
determined; however, the aldol products, without separation, were further used in the next step, since 

such stereogenic centers are removed at the later stage of this synthesis. Thus, the alcohols 3 were 
subjected to a dehydration reaction. Among the various attempts for dehydration, we found that the 
elimination of the trifluoroacetates 4 with DBU gave the desired enone 5 as a sole product, in good yield 
(58% yield, 82% yield based on the consumed starting material). The olefin geometry was assigned to 

be (Z)-form by NOE experiments between the vinylic hydrogen and the geminal methyl hydrogens. 
Methylation of the ketone 5 with methyllithium in tetrahydrofuran at -78°C gave the r&-alcohols 6 
(97% yield) in a ratio of 2: 1, which, on exposure to tetrabutylammonium fluoride in tetrahydrofuran 
furnished the diols 7 and 8 in 96% yield. After separation by silica gel column chromatography, both 
diols 7 and 8 were treated with boron trifluoride etherate in tetrahydrofuran at 0°C to give the ring 
closure products 9 and 10 (99% combined yield) in a same ratio of 2: 1, respectively. The spectroscopic 
data of the synthetic edulans 19 and II 10 were identical with those reported.2b However, the sign of 
the specific optical rotation of edulan 19, [a]~--85.4 (c 0.16, CH2C12), synthesized here was opposite 
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Figure 1. Structures of edulans I, II and dihydroedulans I, II 
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to the natural product, [Ct]D +73.7 (c 0.08, CH2C12), isolated from fresh leaves of Ginkgo biloba L. 6 
This result was consistent with the absolute configurations at the 2 and 8a positions of natural edulan 
I being (2S) and (8aR) (Scheme 1). 
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Scheme 1. Reagents and conditions: i) LDA, THF, -78°C; ii) (CF3CO)20, Et3N, DMAP, CH2C12, 0°C; iii) DBU, benzene, 
room temperature; iv) MeLi, THF, -78°C; v) Bu4NF, THF, room temperature; vi) BF3-Et20, THF, 0°C. 

To confirm the absolute stereochemistry, a synthesis of (+)-edulan I 12 was carried out by 
adapting exactly the same procedure as for the synthesis of (-)-edulan I employing (S)-3-tert- 
butyldimethylsiloxybutyraldehyde 11 as the starting material and the specific rotation of (+)-edulan I 
12, [et]D +82.8 (c 0.39, CH2C12) was identical with that of the natural product (Scheme 2). 
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Scheme 2. Synthesis of edulans I and I1. 

Although the specific rotation for edulan II was not reported, 7 edulan I was isomerized into edulan 
II by treatment with boron trifluoride etherate 2b suggesting that edulan II is the stereoisomer of edulan 
I at the 8a position. 

We next carried out the synthesis of dihydroedulans I and II having the same (2S) configuration as 
that of natural (+)-edulan I. Although alkylation of the enone 1 with (S)-3-tert-butyldimethylsiloxybutyl 
iodide 148 was investigated under various conditions, the desired product 15 was obtained in poor 
(13%) yield. 

Therefore, the alkylation product 15 was alternatively prepared by three steps involving the alkylation 
of the IB-ethoxy enone 164 with 14, hydrogenation of the enone 17 in the presence of 5% Rh on 
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alumina, and elimination of the corresponding 13-ethoxy ketone, in 39% overall yield. Methylation 
of the ketone 15 with methyllithium afforded the diastereomeric alcohols 18 and 19 (76% yield) in 
a ratio of ca 1:1. Both compounds 18 and 19 were transformed into dihydroedulans I 20 and II 21 
by desilylation with tetrabutylammonium fluoride followed by ring closure of the corresponding diols 
with boron trifluoride etherate (Scheme 3). The spectroscopic data of the synthetic dihydroedulans I 
20 and II 21 were identical with those reported. 2c Since the specific rotations for dihydroedulans I and 
II were not reported, 9 the absolute configurations of dihydroedulans I and II have not been determined 
yet. 
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Scheme 3. Reagents and conditions: i) LDA, THF, -78°C to room temperature; ii) H2 (6.5 atm), 5% Rh on alumina, AcOEt; 
iii) Nail, THF, room temperature; iv) MeLi, THF, -78°C; v) Bu4NF, THF, room temperature; vi) BF 3 -Et20, THF, 0°C. 

To our knowledge, this is the first asymmetric synthesis of edulans I, II and dihydroedulans I, II, and 
the absolute stereochemistries of edulans I and II were unambiguously determined by this synthesis. 
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