ORGANOMETALLICS

1,1'-Dicarbodiimidoferrocenes: Synthesis, Characterization, and Group IV 1,1'-Bisguanidinateferrocene Complexes

Orhi Esarte Palomero and Richard A. Jones*®

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States

S Supporting Information

ABSTRACT: We report the two-step one-pot preparation of a series of bulky substituted 1,1'-dicarbodiimidoferrocene proligands. In solution the compounds achieve equilibrium with the corresponding 2,4-diimino-1,3azetidine products which exhibit distinct spectroscopic and electrochemical features. Metalation of the carbodiimides with $M(NMe_2)_4$ (M = Zr, Hf) leads to fluxional six-coordinate compounds that exhibit intermediate Bailar twist features in solution and in the solid state. Coordination of the 2,4-diimino-1,3-diazetidines to $Zr(NMe_2)_4$ results in a metal-mediated carbodiimide metathesis into two zirconium guanidinate complexes, which can be rationalized by a two-step reaction mechanism.

INTRODUCTION

Early transition metal coordination chemistry has been greatly impacted by the seminal report of the synthesis of 1,1diaminoferrocene by Shafir and Arnold.¹ Since their contribution, the coordination chemistry of transition metal compounds bearing 1,1'-nitrogen disubstituted ferrocene containing ligands has grown extensively. Many of these ferroceno ligands can now be found in the literature: silvl amino derivatives,^{2,3} phosphinoamides,^{4,5} aryl amines synthesized by palladium cross-coupling reactions,⁶ azomethine type ⁹ phosphazene based ones starting from 1,1'ligands, diazidoferrocene¹⁰ and guanidines¹¹ to cite a few examples.

The ferrocene molecule has remarkable chemical stability allowing for easy derivatization (besides oxidizing agents) and makes a great tether for constructing pincer ligands (3.3 Å distance between cyclopentadienyl rings and ball bearing flexibility).¹²⁻¹⁶ It also imparts rigidity to structures which promotes good crystal packing while maintaining good solubility in common organic solvents. Additionally, ferrocene is an electrochemically active moiety allowing this class of compounds to be employed as redox switches to tune catalytic activity, as reported in recent literature examples.^{17–20}

In this study we sought to connect a missing link between ferrocene chemistry and nitrogen based heteroallylic ligands: the synthesis of 1,1'-dicarbodiimidoferrocene proligands. Although the related N,N'-diferrocenylcarbodiimide was reported as early as 1966,²¹ to the best of our knowledge the 1,1'-dicarbodiimidoferrocenes (Figure 1, I) have never been employed as proligands in coordination chemistry. Of related interest [3.3]-ferrocenophanes and the 2,4-diimino-1,3-azetidines have been exploited for ion sensing by various spectroscopic (NMR, UV-vis) and electrochemical means.²²⁻²⁴ More recently these kinds of ferrocenophanes

Figure 1. Top: 1,1'-dicarbodiimidoferrocene target compound of this study (I). Bottom: general structure of a carbodiimide (II), amidinate (III), and guanidinate (IV) binding motifs.

have been used as supporting structures for hosting diradicals.^{25,26} Carbodiimides (Figure 1, II) themselves find uses as proligands in inorganic chemistry due to their ability to bind a wide range of elements including the p-block elements (e.g., amidinato sylilenes and heavier congeners,²⁷ likewise for boron²⁸) as tight bite angle supporting ligands in the form of amidinates (Figure 1, III) and the closely related guanidinates (Figure 1, IV).^{29,30}

Received: May 21, 2019

Herein we report the straightforward synthesis of 4 new 1,1'dicarbodiimidoferrocene based *pro*ligands (1a-d). The molecules and their equilibrium 2,4-diimino-1,3-diazetidines counterparts (2a-d) have been characterized by spectroscopic methods (NMR, FT-IR, UV-vis), solid state structures (XRD), and electrochemical studies (Cyclic voltammetry), and their coordination chemistry with group IV dimethylamido metal sources to form ferrocene tethered 1,1'-bisguanidinateferrocene complexes has been explored. Additionally, we describe new reactivity involving zirconium-mediated carbodiimide metathesis involving the 2,4-diimino-1,3-azetidine equilibrium products.

RESULTS AND DISCUSSION

Proligand Synthesis and Characterization. The 1,1'dicarbodiimidoferrocene *pro*ligands were synthesized via a twostep one-pot procedure starting from 1,1'-diazidoferrocene. Using a suitable phosphine, the Staudinger phosphazene was generated *in situ*, followed by the addition of the corresponding isocyanate to obtain the desired carbodiimide plus phosphine oxide byproduct (Figure 2). This route was favored over other

Figure 2. Synthetic procedure for the preparation of 1,1'-carbodiimidoferrocenes.

known methods to synthesize sterically hindered carbodiimides which involve oxidizing $agents^{31}$ incompatible with ferrocene and prolonged heating in the presence of dehydrating agents^{32,33} to prevent side reactions.

Formation of the *tert*-butyl derivative (1a), which is a red oil at room temperature, was achieved using PPh₃ in refluxing THF. The synthesis of the mesityl (1b) and 2,6-diisopropyl derivatives (1c) (yellow solid and orange oil respectively) required the use of the less bulky PMe₃ for the reaction to proceed in acceptable yields. This method was also used for the synthesis of the adamantyl substituted *proligand* 1d which is an orange solid at room temperature. Commercially available, more affordable, and easier to handle, PMe₃ solutions in toluene can be used instead of neat PMe₃ without affecting product yields.

The *pro*ligands (1a-d) were purified by column chromatography (silica gel) and recovered in excellent purity. If the separation is carried out in the air several grams can be isolated in one run. However, on a larger scale, oxidation occurs and a green tail is deposited on the column. We hypothesize that the carbodiimide oxidizes to the corresponding urea in the presence of silica which readily binds to it and then further oxidizes to a green colored ferrocenium compound. Twodimensional TLC confirmed that the recovered product remains unaltered upon passage through the column, although there is significant streaking left behind in the TLC plate (see Supporting Information (SI) Figure S1). The carbodiimide *pro*ligands should be stored under an inert atmosphere, as they will otherwise slowly oxidize in the air.

Interestingly, on storage at room temperature for 2 days the 2,6-diisopropyl derivative 1c gave rise to a yellow solid which was identified as the 2,4-diimino-1,3-diazetidine intramolecular cycloaddition product 2c. This behavior is known for other simple alkyl and aryl carbodiimides (N,N'-dicyclohexylcarbodiimide, N,N'-diisopropyl carbodiimide).³⁴⁻³⁶ Here the reaction is no doubt favored since the two carbodiimide moieties are linked and in close proximity forming exclusively the E,E isomer to minimize steric interactions of the bulky substituents. A recent computational study shows the ability of ferrocene to bend while in the eclipsed conformation thus allowing for intramolecular cyclizations like this to occur.³⁷ Prolonged storage of 1a and 1d neat and in C₆D₆ solutions shows no detectable conversion of the carbodiimide, whereas **1b** converts to **2b** in 42% yield in C_6D_6 solution after 38 days at room temperature but remains unaltered in the solid state. We were able to isolate the corresponding 2,4-diimino-1,3 diazetidines 2a, 2b, 2c, and 2d by conducting the reaction at ~100 °C in toluene. Analysis of the reaction solutions showed incomplete conversion to the corresponding 2,4-diimino-1,3diazetidines, although isolation and purification are straightforward due to the diminished solubility of the products in pentane. The relatively slow nature of these reactions allowed us to monitor the conversions over extended periods of time via NMR. These studies showed that in solution the carbodiimide and its cyclized product are in equilibrium (see reaction profiles SI S4). The equilibrium can be attained by starting from the 2,4-diimino-1,3-azetidines, and no other species are observed from further carbodiimide metathesis (e.g., no N,N'-di-tert-butylcarbodiimide was observed after heating 1a even after extended periods of heating at 70 °C in C_6D_6 solution).

The 2,4-diimino-1,3-diazetidine heterocycles 2a-d exhibit distinct spectroscopic features compared to the parent carbodiimides. A hypsochromic shift of approximately 10 nm is observed in the UV-vis absorption maximum (see SI Figure S3) as well as a decrease in molar absorptivity in accordance with a lighter color of the bulk materials. The cyclization of the heterocycle prevents the free rotation along the ferrocene axis, and the pendant -R groups become inequivalent and produce two diagnostic well resolved sets of signals in the ¹H NMR spectra. Additionally, the characteristic carbodiimide IR stretch at *ca*. 2100 cm⁻¹ is no longer observed.

Repeated attempts to crystallize the oil 1c at low temperature failed, and only the 2,4-diimino-1,3-diazetidine 2c (SI Figure S4) and the corresponding bisurea could be crystallized. Attempts to obtain XRD quality crystals of the adamantyl substituted compounds 1d and 2d were also unsuccessful. However, we have been able to structurally characterize the *tert*-butyl derivatives 1a and 2a (Figure 3) and mesityl substituted analogs 1b and 2b (SI Figure S5). Condensation of the azetidine core causes the ferrocene moiety to bend with angles of 11° for 2a, 13° for 2b, and 11° for 2c between the cyclopentadienyl planes. The cyclization

Figure 3. Top: Equilibrium stablished between the carbodiimide and 2,4-diimino-1,3-diazetidine species. Bottom: ORTEP diagrams portray the solid-state structures of **1a** and **2a**. Ellipsoids drawn at 50% probability; hydrogens have been omitted for clarity.

does not significantly shorten the distance between the cyclopentadienyl centroids remaining at ca. 3.3 Å. Crystallographic details for the single crystal X-ray studies are provided in the SI, and CIF files are available via the CCDC database.

Zirconium 1,1'-Bisguanidateferrocene Complexes: Synthesis and Characterization. Reaction of the *proligands* 1a-1d with $Zr(NMe_2)_4$ in tetrahydrofuran or toluene at room temperature afforded the corresponding zirconium 1,1'-bisguanidateferrocene complexes (3a-d) in good yields. When left undisturbed the complexes simply crystallize from the reaction mixtures over a period of 4 to 24 h. This strategy permitted the isolation of relatively pure crystalline materials by decanting the supernatant, followed by repeated washing with solvent to remove unreacted starting materials. Purity was confirmed by both NMR and elemental analysis.

The initial NMR scale metalation studies of 1a to yield 3a using $Zr(NMe_2)_4$ showed a broad baseline in the ¹H NMR spectrum from 4.6 to 3.0 ppm and a *tert*-butyl resonance at 1.43 ppm. In order to rule out the generation of paramagnetic ferrocenium species, the product was isolated as a crystalline material and analyzed again giving rise to the same spectrum. A plausible explanation for the observed peak broadening is therefore not due to magnetic properties but caused by fluxional behavior of 3a. The spectrum was acquired again at elevated temperature (90 °C), the broad peaks coalesced, and assignment of the observed resonances to a six-coordinate complex was made possible.

The observation that well resolved NMR spectra were not observed at room temperature for the alkyl substituted zirconium guanidinate complexes prompted us to synthesize the hafnium analogues (4a-d) and subject them to VT NMR studies. ¹H NMR spectra were recorded between -80 °C to 100 °C in increments of 20 °C. At low temperature the signals of the *tert*-butyl substituents are inequivalent (Figure 4), indicative of an octahedral compound with the guanidinates in asymmetrical positions around the metal, whereas at high temperature an averaged signal was observed (Figure 4). These data are consistent with a Bailar twist rearrangement through a trigonal prismatic intermediate being the source of the peak broadening. This behavior is known for other group IV amidate and amidinate transition metal compounds and a recently reported zirconium ferrocene azomethine.^{38–40}

Interestingly, the mesityl and 2,6-diisopropyl substituted zirconium complexes (3b, 3c) gave rise to interpretable ¹H

Figure 4. Baillar twist through a trigonal prismatic configuration. Below, VT⁻¹H NMR of 4a in C_7D_8 showing two distinct *tert*-butyl guanidinate resonances at low temperature (~1.5 ppm).

NMR spectra at room temperature, although some peak broadening is still present for the metal bound dimethylamide groups indicating that the exchange is not fully suppressed at room temperature. On the other hand, the adamantyl substituted compound **3d** resembled its **3a** counterpart showing extensive peak broadening.

The solid-state structures of the compounds confirmed the six-coordinate distorted octahedral geometry for the series of compounds. This is a conservative assignment of the geometry since the 3b and 3c structures appear to be more trigonal prismatic (Figure 5). This is not surprising given that the compounds exhibit Bailar twisting. The crystallographic parameters for 3a and 3d are distinctly different from those of 3b and 3c. Dimethylamides are strong ligands consequently exerting a significant thermodynamic trans effect on their trans ligand counterpart. Complexes 3a and 3d show significant lengthening (>0.1 Å) of the guanidinate nitrogen trans to the dimethylamides (see Figure 5). The angles between N_{trans}- $Zr-NMe_2$ are wider, approaching the ideal octahedral 180° angle. On the other hand, 3b and 3c are not as influenced by the trans effect with the guanidinate bond lengthening less than 0.05 Å. In these compounds the N_{trans}-Zr-NMe₂ angle has a more trigonal prismatic character (ideal, 132°, 3b: 140°, 3c 145°). Finally, the angle formed between the dimethylamides, which are not influenced by the constriction of the ferrocene moeity, differ for the whole series ranging between 91° in 3a to a 100° in 3c (Ideal angles: Oh 90°, Trigonal prismatic 95°). We believe that in the *proligands* **3b** and **3c** there is more steric hindrance closer to the metal binding

Figure 5. Solid state structures of compounds 3a-3d drawn at the 50% ellipsoid probability. Hydrogens atoms removed for clarity. R groups are depicted as wireframe. Bond lengths are given in Å.

sphere since they both bear ortho substituted aryl rings, and this favors the trigonal pyramidal geometrical arrangement. Buried volume values and steric plots obtained with Sambvca2.0⁴¹ show increased substituent interactions in **3b** and **3c** (see SI for plots). Bite angles of the guanidinates are not affected by the ferrocene tether. The hafnium analogues are isostructural due to the similar radius of zirconium(IV) and hafnium(IV); the structural parameters show an identical trend.⁴²

We have explored reactions of 3a-d with PMe₃ and *N*,*N*-dimethylaminopyridine, since the addition of a small twoelectron donor would give the complexes an 18 electron count and might stabilize a seven-coordinate pentagonal bipyramidal geometry. However, no incorporation of a neutral donor was observed when an excess was added to the reaction mixture before the addition of $Zr(NMe_2)_4$ to the carbodiimido ligands.

Reactivity of 2,4-Diimino-1,3-diazetidines with Zr- $(NMe_2)_4$. We have also studied the Zr metalation reactions of the 2,4-diimino-1,3-diazetidines in order to determine if they could act as *proligands*. The reaction of $Zr(NMe_2)_4$ with the carbodiimides 1a and 1b to afford 3a and 3b occurs rapidly, in under 10 min, as judged by NMR. Addition of the metal source causes an immediate darkening of the orange proligand solution. We hypothesized that this fast guanidinate formation

would result in eventual depletion of the 2,4-diimino-1,3diazetidine through the carbodiimide equilibrium.

In contrast, the reaction between **2b** and a slight excess of $Zr(NMe_2)_4$ at room temperature in C_6D_6 remains unchanged after 24 h and the solution remains yellow in color. Heating to 75 °C results in a reaction which is complete after 68 h as judged by the consumption of $Zr(NMe_2)_4$ and gives rise to a complex mixture of species which we have identified. The peak assignments, aided by 2D NMR experiments, revealed a mixture composed of traces of unreacted **2b**, traces of **3b** produced by the reverse equilibrium reaction, and two major zirconium bearing components species **5** and 7 with some traces of guanidinate complex **9** (Figure 6). A similar behavior is observed in the reaction of **2a** with $Zr(NMe_2)_4$. Bis(guanidinate) complexes **3a** and **3b** are thermodynamically stable at 75 °C in C_6D_6 for weeks and do not give rise to any further rearrangement.

Attempts to separate this reaction mixture were unsuccessful. Evaporating the solvent of the crude mixture and redisolving the residue in hexanes allowed only the separation of minor quantities of 9 (likely produced from the excess $Zr(NMe_2)_4$ available when 1a is generated). Slow evaporation of the hexane solution afforded crystals of 2b and a gooey residue containing a mixture of 2b, 5, and 7. Compound 7 was

Figure 6. Species identified in the reaction of 1 equiv of **2b** with 2.1 equiv of $Zr(NMe_2)_4$.

independently prepared from N,N'-dimesityl carbodiimide and $Zr(NMe_2)_4$, and **5** was prepared from recovered ligand **6** and $Zr(NMe_2)_4$ for unambiguous identification. The NMR resonances of the independently synthesized samples correspond well with the observed reaction products. Additionally, the LC-MS of the crude mixture reaction showed the presence of free guanidines **6** and **8**.

A plausible explanation for these results begins with a new reaction pathway via coordination of the diimine lone pair to $Zr(NMe_2)_4$ (Figure 7). In order to gather more information about the unusual transformations taking place in the reactions of the azetidines 2a and 2b with $Zr(NMe_2)_4$ (Figures 6, 7), we obtained kinetic data for the thermally activated process. We employed pseudo-first-order conditions⁴³ using 2a with high concentrations of $Zr(NMe_2)_4$ which also reduces reaction times and thus minimizes side generation of 3a. The rate of reaction was found to be first-order for both 2a and $Zr(NMe_2)_4$ [rate = $k[2a][Zr(NMe_2)_4]$. A two-step reaction mechanism can be postulated (Figure 7) comprised of a slow rate-determining step of the reaction between 2a and 1 equiv of $Zr(NMe_2)_4$ to generate 5. This step also produces an equivalent of N,N'-di-tert-butylcarbodiimide that rapidly reacts with an additional equivalent of $Zr(NMe_2)_4$ to form 10, the analog of 7. This is also consistent with the rapid reactions observed between independently synthesized guanidinate compounds. Steric plots of 2a and 2b show less hindrance at the ferrocene diimine site (vs the ring bound diamine) suggesting that steric factors play a role in the initial formation of 5.

Electrochemistry. Electrochemical studies of ferrocenecontaining compounds are now well-known. We studied the electrochemical behavior of the carbodiimide *pro*ligands, the 2,4-diimino-1,3-diazetidines, and the metal complexes (see SI for details). Carbodiimides 1a-d show a reversible freely diffusing redox couple assigned to the one-electron oxidation of the ferrocene moiety in 0.1 M [NBu₄][PF₆] in dichloromethane. At higher potentials an irreversible oxidation event occurs assigned to the oxidation of the carbodiimide C==N bonds as previously established.^{11,44-46} Azetidines 2a-d also have a one-electron reversible oxidation of the ferrocene couple shifted to more oxidizing potentials followed again by another irreversible oxidation event occurring at the 2,4-

1. **2a** + $Zr(NMe_2)_4 \rightarrow 5$ + N,N'-di-t-butyl-carbodiimide *RDS* 2. N,N'-di-t-butyl-carbodiimide $\rightarrow Zr(NMe_2)_4$ + **10**

2a + 2 Zr(NMe₂)₄ => 5 + 10

First Order Dependence on Zr(NMe₂)₄

Figure 7. Proposed mechanism for the reaction of 2a/2b with $Zr(NMe_2)_4$. The conversion plots reveal first-order dependency for both 2,4-diimino-1,3-azetidine and $Zr(NMe_2)_4$. Additional details regarding kinetics can be found in the SI.

diimino-1,3-diazetidine core. The increase in the potential is attributed to the electron-withdrawing character of the 2,4-diimino-1,3-azetidine heterocycle (Figure 8). The study of compound 6 in 0.1 M $[NBu_4][PF_6]$ tetrahydrofuran solution revealed an irreversible oxidation at 544 mV likely occurring at the strained guanidine followed by a reversible electrochemical event assigned to the ferrocenium couple at 911 mV (see SI S22).

For the Zr complexes our studies were limited to **3a** and **3b** as representative examples of alkyl and aryl substituted ligand metal complexes. The voltammogram for **3a** in 0.1 M $[NBu_4][PF_6]$ tetrahydrofuran has a freely diffusing reversible event occurring at -720 mV assigned to the ligand Fc/Fc+ and a quasi-reversible event at -338 mV likely occurring at the guanidinate ligand. On the other hand, the voltammogram for

Figure 8. Top: Cyclic voltammogram of representative carbodiimide **2a** and 2,4-diimino-1,3-diazetidine **2b**. Bottom: Cyclic voltammogram of metal complexes **3a** and **3b**.

3b shows a quasi-reversible event at -500 mV assigned to the tether Fc/Fc⁺ occurring at the electrode interface as revealed by the scan rate dependency. At higher potential (430 mV) an irreversible event is observed involving the decomposition of the complex through the guanidinate (Figure 8).

CONCLUSIONS

In summary, a new family of disubstituted ferrocene compounds has been synthesized and studied. We have shown that 1,1'-dicarboiimidoferrocenes can be employed as heteroallylic *pro*ligands by isolation of their guanidinate early transition metal complexes. The 1,1'-dicarboiimidoferrocenes are in equilibrium with their 2,4-diimino-1,3-diazetidine counterparts which, in the presence of $Zr(NMe_2)_4$, favor carbodiimide metathesis forming two separate zirconiumbearing guanidinate species.

EXPERIMENTAL SECTION

Unless otherwise stated manipulations were carried out using standard Schlenk techniques or in a VAC HE-63P nitrogen-filled glovebox. Dry degassed solvent was obtained from the Innovative Technologies Solvent Purification system and stored over 4 Å molecular sieves prior to use. Deuterated benzene and toluene were distilled from sodium/benzophenone ketyl and stored over 4 Å molecular sieves in Teflon valved flasks. NMR spectroscopy was performed on an Agilent MR 400, Bruker Avance III HD 500, or a Varian VNMRS 600 and processed using Mestrenova. NMR spectra were acquired at room temperature unless otherwise specified. IR spectra were obtained on a Nicolet iS50 FT-IR spectrometer using attenuated total reflectance (ATR). Electrochemical experiments were performed on a Pine Research Instrumentation Inc. WaveNow potentiostat, and potentials are referenced to the ferrocene/ ferrocenium couple. Mass spectrometry data were provided by the UT Austin Mass Spectrometry Facility. X-ray crystallography was performed in the The University of Texas—X-ray Diffraction Laboratory. Elemental analysis (C, H, N) were performed by Midwest Microlab Inc. Indianapolis, IN. 1,1'-Diazidoferrocene was prepared according to the method reported by Arnold.¹ *Caution: Necessary precautions should be taken for the handling of this potentially explosive compound*. Mesityl isocyanate and 2,6-diisopropylisocyanate were prepared from the corresponding amine and di-*tert*-butyl dicarbonate.⁴⁷ 1-Adamantyl isocyanate was prepared using triphosgene starting from 1-adamantylammonium chloride. Detailed multigram procedures are given in the SI.

1,1'-Di-tert-butylcarbodiimidoferrocene (1a). 1,1'-Diazidoferrocene (2.9 g, 10.8 mmol) was dissolved in tetrahydrofuran (150 mL), triphenylphosphine (6.25 g, 23.8 mmol) was added, and the mixture was stirred for 3 h. Neat tert-butyl isocyanate (2.5 mL, 22.1 mmol) was then added, and the red suspension was refluxed for 14 h until it turned into a clear burnt orange colored solution. Solvent was removed under vacuum, and the oily residue was extracted with pentane (50 mL) and filtered to remove the bulk of PPh₃O which was washed with pentane $(2 \times 25 \text{ mL})$. Solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography using ethyl acetate/hexanes (3:97, $R_f = 0.33$) affording the title compound as a red oil. Yield (2.22 g, 54%). Alternatively, PPh3 can be substituted by tri-n-butyl phosphine, and the reaction with isocyanate proceeds at room temperature in this case. Even though purification can be performed in air, the product should be stored under an inert atmosphere. ¹H NMR (500 MHz, Benzene- d_6) δ 4.30 (t, J = 1.9 Hz, 4H, Cp-H), 3.92 (t, J = 1.9 Hz, 4H, Cp-H), 1.22 (s, 18H, $-C(CH_3)_3$). ¹³C NMR (126 MHz, Benzene- d_6) δ 137.8 (-N=C=N-), 98.5 (Cp-C-N), 66.7 (Cp-CH), 65.1 (Cp-CH), 56.3 $(-C(CH_3)_3)$, 31.5 $(-C(CH_3)_3)$. FT-IR (ATR, cm⁻¹) 2970, 2193, 2112, 1497, 1460, 1393, 1365, 1237, 1198, 1022, 919, 848, 814, 724, 693, 597, 533, 491, 442. HR-MS (ESI) m/z 399.1449 [Calculated for $C_{20}H_{26}N_4FeNa^+$ 399.1446].

1,1'-Dimesitylcarbodiimidoferrocene (1b). 1,1'-Diazidoferrocene (1 g, 3.73 mmol) was dissolved in tetrahydrofuran (30 mL), and PMe₃ (0.8 mL, 7.84 mmol) was added dropwise and stirred for 15 min until nitrogen evolution ceased. Solid mesitylisocyanate (1.26 g, 7.84 mmol) was then added, and the mixture was stirred for 18 h at room temperature. The solvent was evaporated under reduced pressure, the residue was extracted with pentane $(3 \times 15 \text{ mL})$ followed by filtering to remove PMe₃O, and the solvent was evaporated again. The resulting oily residue was purified by silica column chromatography with ethyl acetate/hexanes (3:97, $R_f = 0.26$). The title compound was obtained as a yellow solid. Yield (530 mg, 28%). ¹H NMR (500 MHz, Chloroform-d) δ 6.83 (s, 4H, Aryl-H), 4.34 (t, J = 1.9 Hz, 4H, Cp-H), 4.10 (t, J = 1.9 Hz, 4H, Cp-H), 2.33 (s, 12H, Aryl-CH₃), 2.24 (s, 6H, Aryl-CH₃). ¹³C NMR (126 MHz, Chloroform-d) δ 134.6 (C_q), 132.5 (C_q), 132.4 (C_q), 132.2 (C_q), 128.8 (Aryl-CH), 97.1 (Cp-C-N), 66.7 (Cp-CH), 64.8 (Cp-CH), 20.8 (Aryl-CH₃), 18.9 (Aryl-CH₃). FT-IR (ATR, cm⁻¹) 2915, 2856, 2132, 2105, 1581, 1525, 1472, 1432, 1366, 1223, 1098, 1020, 955, 936, 915, 851, 814, 724, 669, 621, 593, 543, 523, 490. Melting Point: 87-88 °C. HR-MS (ESI) m/z 503.1887 [Calculated for $C_{30}H_{31}N_4Fe^+$ 503.1893].

1,1'-Di(2,6-diisopropylphenyl)carbodiimidoferrocene (1c). 1,1'-Diazidoferrocene (1 g, 3.73 mmol) was dissolved in tetrahydrofuran (25 mL), and PMe₃ (0.8 mL, 7.84 mmol) was added dropwise and stirred for 15 min until nitrogen evolution ceased. 2,6-Diiisopropylisocyanate (1.59 g, 7.84 mmol) was added as a solution in toluene (10 mL), and the mixture was stirred for 18 h at room temperature. The solvent was evaporated under reduced pressure, the residue was extracted with pentane (3 × 15 mL) followed by filtering to remove PMe₃O, and the solvent was evaporated again. The oily residue was purified by silica column chromatography using ethyl acetate/hexanes (2:98, R_f = 0.28). The title compound was isolated as an orange colored oil. Yield (979 mg, 45%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.13 (m, 6H, Aryl-*H*), 4.33 (t, *J* = 1.9 Hz, 4H, Cp-*H*), 4.10 (t, *J* = 1.9 Hz, 4H, Cp-*H*), 3.38 (hept, *J* = 6.9 Hz, 4H, Aryl-CH(CH₃)₂), 1.28 (d, *J* = 6.9 Hz, 24H, Aryl-CH(CH₃)₂). ¹³C NMR (126 MHz, Chloroform-*d*) δ 142.4 (-N=C=N-), 132.5 (C_q), 130.2 (C_q), 125.5 (Aryl-CH), 123.3 (Aryl-CH), 97.1 (Cp-C-N), 66.9 (Cp-CH), 64.9 (Cp-CH), 29.2 (Aryl-CH(CH₃)₂), 23.2 (Aryl-CH(CH₃)₂). FT-IR (ATR, cm⁻¹) 2960, 2868, 2136, 1588, 1526, 1437, 1383, 1363, 1322, 1256, 1246, 1212, 1181, 1144, 1106, 1083, 1059, 1042, 1020, 934, 917, 807, 795, 748, 666, 620, 592, 545, 516, 491. HR-MS (ESI) *m*/*z* 587.2822 [Calculated for C₃₆H₄₃N₄Fe⁺ 587.2832].

1,1'-Diadamantylcarbodiimidoferrocene (1d). 1,1'-Diazidoferrocene (3 g, 11.2 mmol) was dissolved in tetrahydrofuran (75 mL), and PMe₂ (1 M in toluene, 22.5 mL) was added dropwise and stirred for 15 min until nitrogen evolution ceased. Adamantylisocyanate (4 g, 22.6 mmol) was added as a solution in tetrahydrofuran (20 mL). The mixture was stirred for 4 h at room temperature. The solvent was evaporated under reduced pressure, and the residue was extracted with a 50:50 ether/pentane mixture (3 \times 30 mL). The combined extracts were filtered to remove the bulk of PMe₃O. The filtrate was dry loaded in diatomaceous earth and purified by silica column chromatography using ethyl acetate/hexanes (2:98, $R_f = 0.22$). After evaporation of the solvent the title compound was obtained as an orange colored solid. Yield (4.12 g, 69%). ¹H NMR (500 MHz, Benzene- d_6) δ 4.38 (t, I = 1.9 Hz, 4H, Cp-H), 3.98 (t, I = 1.9 Hz, 4H, Cp-H), 1.92-1.86 (m, 18H, CH_2+CH), 1.49-1-43 (m, 12H, $-CH_2$ -).¹³C NMR (126 MHz, Benzene-d₆) δ 138.3 (-N=C= N-), 98.8 (Cp-C-N), 66.8 (Cp-CH), 65.2 (Cp-CH), 56.8 (N-C-Adamantyl), 45.3 (-CH2-), 36.1 (-CH2-), 30.2 (-CH-). FT-IR (ATR, cm⁻¹) 2902, 2848, 2093, 1493, 1451, 1353, 1303, 1265, 1192, 1101, 1062, 1019, 972, 920, 880, 811, 773, 717, 694, 619, 550, 483, 403. Melting Point: >283 °C (dec.). HR-MS (ESI) m/z 557.2337 [Calculated for $C_{32}H_{38}N_4FeNa^+$ 557.2339].

2,4-Diimino-1,3-diazetidine (2a). A Teflon valved Schlenk tube was charged with a solution of 1a (130 mg, 0.34 mmol) in toluene (5 mL) and heated at 110 °C for 48 h. Conversion to the azetidine was determined to be 32% by ¹H NMR. The solvent was evaporated under vacuum, and the resulting semisolid was washed with pentane $(3 \times 1 \text{ mL})$ to eliminate unreacted **1a** and dried to afford the title compound as a bright yellow solid. Isolated yield (24 mg, 18%). ¹H NMR (500 MHz, Benzene-d₆) δ 3.98–3.96 (m, 4H, Cp-H), 3.89 (t, J = 1.9 Hz, 2H, Cp-H), 3.83 (t, J = 1.9 Hz, 2H, Cp-H), 1.66 (s, 9H, $-C(CH_3)_3$, 1.38 (s, 9H). ¹³C NMR (126 MHz, Benzene- d_6) δ 161.3 (C_q), 140.9 (C_q), 111.7 (Cp-C-N), 83.0 (Cp-C-N), 71.9 (Cp-CH), 70.2 (Cp-CH), 67.6 (Cp-CH), 65.9 (Cp-CH), 55.6 (-C(CH₃)₃), 53.2 (-C(CH₃)₃), 32.1 (-C(CH₃)₃), 28.5 (-C(CH₃)₃). FT-IR (ATR, cm⁻¹) 3102, 3082, 2961, 2926, 2251, 1789, 1660, 1478, 1352, 1456, 1389, 1352, 1263, 1233, 1210, 1127, 1089, 1056, 1030, 1021, 940, 854, 875, 842, 816, 802, 752, 715, 679, 653, 606, 524, 495, 458, 436. Melting Point: 178-179 °C HR-MS (ESI) m/z 379.1589 [Calculated for C₂₀H₂₇N₄Fe⁺ 379.1580].

2,4-Diimino-1,3-diazetidine (2b). A Teflon valved Schlenk tube was charged with compound 1b (115 mg, 0.23 mmol) in toluene (5 mL) and heated at 100 °C for 18 h. The solvent was evaporated under reduced pressure to afford a yellow oil. Addition of pentane (3 mL) induces precipitation of the product which was isolated by filtration and washed with additional pentane (3 mL). The title compound was obtained as an orange powder. Yield (51 mg, 44%). ¹H NMR (500 MHz, Chloroform-d) δ 6.93 (s, 2H, Aryl-H), 6.63 (s, 2H, Aryl-H), 4.20-4.15 (m, 2H, Cp-H), 4.09 (t, J = 1.9 Hz, 2H, Cp-H), 4.01 (m, 4H, Cp-H), 2.45 (s, 6H, Aryl-CH₃), 2.28 (s, 3H, Aryl-CH₃), 2.17 (s, 6H, Aryl-CH₃), 2.10 (s, 3H, Aryl-CH₃). ¹³C NMR (126 MHz, Chloroform-d) δ 159.5 (C_q), 144.2 (C_q), 139.8 (C_q), 138.7 (C_q), 137.4 (C_q), 132.3 (C_q), 129.2 (Aryl-CH), 128.4 (C_q), 128.0 (Aryl-CH), 127.6 (C_q), 109.8 (Cp-C-N), 79.5 (Cp-C-N), 70.6 (Cp-CH), 69.7 (Cp-CH), 67.00 (Cp-CH), 65.7 (Cp-CH), 21.1 (Aryl-CH₃), 20.7 (Aryl-CH₃), 18.4 (Aryl-CH₃), 18.3 (Aryl-CH₃). FT-IR (ATR, cm⁻¹) 3086, 2914, 1789, 1669, 1609, 1578, 1474, 1437, 1394, 1374, 1338, 1302, 1225, 1194, 1158, 1064, 1038, 1022, 1002, 954, 927, 913, 867, 852, 834, 819, 806, n774, 731, 712, 666, 613, 590, 563, 542, 513, 499,

489, 473, 447, 423. Melting Point: 174–175 °C. HR-MS (ESI) m/z 503.1886 [Calculated for $C_{30}H_{31}N_4Fe^+$ 503.1893].

2,4-Diimino-1,3-diazetidine (2c). Proligand 1c spontaneously converts to the corresponding azetidine. A vial containing neat 1c oil develops visible solid azetidine after only 2 days from isolation. Here, we describe a simple purification method. A two-week-old vial containing a dark semi solid of 1c (89 mg, 0.15 mmol) was supplemented with pentane (1 mL) and crushed to afford a yellow solid which was isolated by filtration and washed with additional pentane (2 \times 1 mL). Yield of pale yellow solid (34 mg, 38%). ¹H NMR (500 MHz, Chloroform-d) δ 7.39 (t, J = 7.7 Hz, 1H, Aryl-H), 7.26 (d, J = 7.8 Hz, 2H, Aryl-H), 6.93–6.87 (m, 3H, Aryl-H), 4.14 (t, J = 2.0 Hz, 2H, Cp-H), 4.06 (t, J = 1.9 Hz, 2H, Cp-H), 4.00 (t, J = 1.9 Hz, 2H, Cp-H), 3.98 (t, J = 1.9 Hz, 2zH, Cp-H), 3.38 (hept, J = 6.9 Hz, 2H, Aryl-CH(CH₃)₂), 3.17 (hept, I = 6.9 Hz, 2H, Aryl- $CH(CH_3)_2$, 1.40 (d, J = 6.9 Hz, 6H, Aryl- $CH(CH_3)_2$), 1.36 (d, J =6.9 Hz, 6H, Aryl-CH(CH₃)₂), 1.25-1.13 (br, 12H, Aryl-CH- $(CH_3)_2$). ¹³C NMR (126 MHz, Chloroform-d) δ 160.6 (C_a), 148.9 (C_q) , 144.1 (C_q) , 140.1 (C_q) , 139.1 (C_q) , 129.9 (Aryl-CH), 127.2 (C_q) , 123.9 (Aryl-CH), 123.8 (Aryl-CH), 122.2 (Aryl-CH), 109.7 (Cp-C-N), 79.8 (Cp-C-N), 71.2 (Cp-CH), 69.5 (Cp-CH), 67.0 (Cp-CH), 65.7 (Cp-CH), 29.5 (Aryl-CH(CH₃)₂), 28.6 (Aryl-CH(CH₃)₂), 24.3 (Aryl-CH(CH₃)₂), 23.7 (Aryl-CH(CH₃)₂), 23.1 (br, Aryl-CH(CH₃)₂). FT-IR (ATR, cm⁻¹) 2961, 2869, 1790, 1678, 1588, 1447, 1402, 1383, 1374, 1336, 1255, 1240, 1205, 1174, 1108, 1061, 1041, 1025, 1004, 937, 924, 828, 808, 795, 784, 756, 740, 723, 692, 665, 614, 516, 498, 428, 405. Melting Point: 169-170 °C. HR-MS (ESI) m/z 587.2832 [Calculated for $C_{36}H_{43}N_4Fe^+$ 587.2832].

2,4-Diimino-1,3-diazetidine (2d). A Teflon valved Schlenk tube was charged with a solution of 1d (115 mg, 0.21 mmol) in toluene (5 mL) and heated at 100 °C for 65 h. Conversion was determined to be 19% by ¹H NMR. The toluene was evaporated under reduced pressure and the resulting solid was washed in the flask with pentane $(3 \times 5 \text{ mL})$ to remove the starting carbodiimide affording 90% pure material. Although impractical due to the lipophilicity of both 1d and 2d, higher purity material can be recovered by reversed phase preparative HPLC. Yield of light-yellow powder (10 mg, 8%). ¹H NMR (500 MHz, Benzene- d_6) δ 4.02 (dt, J = 5.7, 1.9 Hz, 4H, Cp-H), 3.90 (t, J = 1.9 Hz, 2H, Cp-H), 3.83 (t, J = 1.9 Hz, 2H, Cp-H), 2.64 $(d, J = 3.0 \text{ Hz}, 6H, -CH_2-), 2.15 (d, J = 2.9 \text{ Hz}, 6H, -CH_2-), 2.04-$ 1.96 (m, 6H, -CH-), 1.69-1.64 (m, 3H, -CH₂-), 1.56-1.50 (m, 9H, $-CH_2$ -). ¹³C NMR (126 MHz, Benzene- d_6) δ 160.8 (C_a), 140.4 (C_q), 111.8 (Cp-C-N), 83.5 (Cp-C-N), 71.9 (Cp-CH), 70.2 (Cp-CH), 67.6 (Cp-CH), 65.9 (Cp-CH), 56.6 (N-C-Adamantyl), 53.9 (N-C-Adamantyl), 45.1 (-CH₂-), 41.5 (-CH₂-), 36.7 (-CH₂-), 36.6 (-CH₂-), 30.3 (-CH-), 29.9 (-CH-). FT-IR (ATR, cm⁻¹) 2904, 2851, 1790, 1669, 1479, 1453, 1358, 1344, 1326, 1306, 1262, 1242, 1187, 1099, 1056, 1040, 1023, 975, 934, 926, 883, 848, 808, 798, 775, 758, 739, 714, 694, 670, 628, 598, 558, 530, 520, 500, 461, 422. Melting Point: >283 °C (dec.). HR-MS (ESI) m/z 535.2521 [Calculated for $C_{32}H_{39}N_4Fe^+$ 535.2519].

Complex (3a) [C₂₈H₅₀FeN₈Zr]. In a vial proligand 1a (95 mg, 0.25 mmol) was dissolved in tetrahydrofuran (0.35 mL), and solid $Zr(NMe_2)_4$ (70 mg, 0.25 mmol) was added to the orange colored solution and shaken until homogeneous. After 4 h, complex 3a deposited as orange crystalline needles. The supernatant was removed, and the crystals were washed with additional tetrahydrofuran (0.1 mL) and then dried under vacuum to obtain 3a. Yield (84 mg, 52%). ¹H NMR (600 MHz, Toluene- d_{8} , 90 °C) δ 4.12 (q, J = 2.2 Hz, 4H, Cp-H), 3.82 (q, J = 2.1 Hz, 4H, Cp-H), 3.20 (br, 12H, Zr-N(CH₃)₂), 2.52 (d, 12H, guanidinate-N(CH₃)₂), 1.40 (d, 18H, $-C(CH_3)_3$). ¹³C NMR (151 MHz, Toluene- d_8 , 90 °C) δ 170.0 (br, guanidinate-C), 107.0 (Cp-C-N), 64.2 (Cp-CH), 63.8 (br, Cp-CH), 53.6 $(-C(CH_3)_3)$, 45.4 $(Zr-N(CH_3)_2)$, 40.8 (guanidinate-N- $(CH_3)_2$, 31.9 $(-C(CH_3)_3)$. FT-IR (ATR, cm⁻¹) 3096, 3078, 2963, 2847, 2801, 2753, 1603, 1526, 1475, 1456, 1388, 1354, 1282, 1234, 1134, 1198, 1183, 1066, 1053, 1010, 954, 939, 835, 786, 762, 724, 684, 636, 617, 509, 485, 434. Melting Point: 204 °C. Elemental Analysis Anal. Found: C, 51.76; H, 7.61; N, 16.53. Calcd [C₂₈H₅₀FeN₈Zr]: C, 52.07; H, 7.80; N, 17.35.

Complex (3b) [C₃₈H₅₄FeN₈Zr]. Proligand 1b (100 mg, 0.2 mmol) was dissolved in hexanes (0.25 mL), supplemented with $Zr(NMe_2)_4$ (54 mg, 0.2 mmol), and gently shaken until homogeneous. After 1 day, crystalline residue deposited in the bottom of the vial. The supernatant was removed, and the orange colored crystals were washed with hexanes $(3 \times 0.1 \text{ mL})$ and dried under vacuum to obtain **3b.** Yield (56 mg, 37%). ¹H NMR (400 MHz, Toluene- d_8) δ 6.73 (s, 4H, Aryl-H), 4.34 (t, J = 1.9 Hz, 4H, Cp-H), 3.91-3.84 (t, J = 1.9 Hz, 4H, Cp-H), 2.85 (s, 12H, Zr-N(CH₃)₂), 2.33 (s, 12H, Aryl-CH₃), 2.17 (br, 12H, guanidinate-N(CH₃)₂), 2.14 (br, 6H, Aryl-CH₃). ¹³C NMR (101 MHz, Toluene- d_8) δ 168.8 (guanidinate-C), 144.6 (C_a), 137.5 (C_q), 132.5 (C_q), 131.6 (C_q), 129.2 (Aryl-CH), 109.5 (Cp-C-N), 64.0 (Cp-CH), 64.0 (Cp-CH), 44.3 (Zr-N(CH₃)₂), 38.3 (guanidinate-N(CH₃)₂), 20.9 (Aryl-CH₃), 19.2 (Aryl-CH₃). FT-IR (ATR, cm⁻¹) 3088, 2912, 2855, 1621, 1600, 1532, 1472, 1393, 1372, 1273, 1198, 1144, 1159, 1022, 1003, 941, 880, 855, 814, 798, 762, 737, 683, 629, 582, 517, 490. Melting Point: 274 °C. Elemental Analysis Anal. Found: C, 59.49; H, 7.01; N, 14.41. Calcd [C₃₈H₅₄FeN₈Zr]: C, 59.28; H, 7.07; N, 14.55.

Complex (3c) [C44H66FeN8Zr]. In a vial, proligand 1c (100 mg, 0.17 mmol) was dissolved in hexanes (0.2 mL). Solid Zr(NMe₂)₄ (46 mg, 0.17 mmol) was added, and the mixture was left to stand overnight upon which a crystalline residue was obtained. The supernatant was removed, and the crystals were washed with hexanes $(3 \times 0.1 \text{ mL})$ and dried under vacuum to obtain 3c. Yield (76 mg, 47%). ¹H NMR (600 MHz, Toluene- d_8 , 90 °C) δ 4.24–4.18 (m, 4H, Cp-H), 3.92-3.87 (m, 4H, Cp-H), 3.65 (hept, J = 1.8 Hz, 4H, Aryl-CH(CH₃)₂), 2.81–2.80 (m, 12H, Zr–N(CH₃)₂), 2.35 (br, 12H, guanidinate-N(CH₃)₂), 1.33 (m, 24H, Aryl-CH(CH₃)₂). ¹³C NMR (151 MHz, Toluene- d_8 , 90 °C) δ 168.2 (guanidinate-C), 143.9 (C_o), 143.5 (C_a), 125.2 (Aryl-CH), 123.8 (Aryl-CH), 111.4 (Cp-C-N), 64.3 (Cp-CH), 62.7 (Cp-CH), 44.4 (Zr-N(CH₃)₂), 39.7 (guanidinate-N(CH₃)₂), 28.0 (Aryl-CH(CH₃)₂), 24.9 (Aryl-CH(CH₃)₂), 24.9 (Aryl-CH(CH₃)₂). FT-IR (ATR, cm⁻¹) 3056, 2956, 2864, 2763, 1622, 1584, 1530, 1459, 1434, 1377, 1358, 1339, 1296, 1238, 1200, 1181, 1157, 1130, 1109, 1055, 1013, 933, 891, 816, 786, 768, 758, 700, 661, 631, 592, 524, 487, 438, 420. Melting Point: 260-261 °C Elemental Analysis Anal. Found: C, 62.07; H, 8.00; N, 13.12. Calcd [C44H66FeN8Zr]: C, 61.87; H, 7.79; N, 13.12.

Complex 3d [C₄₀H₆₂FeN₈Zr]. Proligand 1d (46 mg, 0.09 mmol) was dissolved in tetrahydrofuran (0.2 mL), supplemented with solid Zr(NMe₂)₄ (23 mg, 0.09 mmol), and gently shaken until homogeneous. Upon standing overnight the product crystallized. The supernatant was removed, and the crystals were washed with tetrahydrofuran $(3 \times 0.1 \text{ mL})$ and dried under vacuum to obtain 3d. Yield (77%, 53 mg). ¹H NMR (400 MHz, Toluene- d_{8} , -80 °C) δ 4.52 (br, 1H, Cp-H), 4.45 (br, 1H, Cp-H), 4.17 (br, 1H, Cp-H), 4.05 (br, 1H, Cp-H), 4.02, (br, 1H, Cp-H), 3.97 (br, 1H, Cp-H), 3.93 (br, 2H, Cp-H), 3.68 (br, 3H, guanidinate-N(CH₃)₂), 3.61 (br, 3H, guanidinate-N(CH₃)₂), 3.33 (br, 6H, guanidinate-N(CH₃)₂), 2.58 $(br, 3H, Zr-N(CH_3)_2)$, 2.43 $(br, 3H, Zr-N(CH_3)_2)$, 2.34 $(br, 3H, 2r-N(CH_3)_2)$ Zr-N(CH₃)₂), 2.24–1.65 (m, 47H). ¹³C NMR (101 MHz, Toluened₈, 193 K) δ 171.8 (guanidinate-C), 169.6 (guanidinate-C), 107.4 (Cp-C-N), 106.4 (Cp-C-N), 67.9 (br, Cp-CH), 67.7 (Cp-CH), 66.0 (br, Cp-CH), 65.8 (br, Cp-CH), 64.6 (br, Cp-CH), 64.2 (Cp-CH), 63.8 (Cp-CH), 63.1 (Cp-CH), 59.0 (Cp-CH), 56.0 (N-C-Adamantyl), 53.7 (N-C-Adamantyl), 47.3 (Zr-N(CH₃)₂), 45.0 $(-CH_2-)$, 44.6 $(Zr-N(CH_3)_2)$, 41.6 (guanidinate-N(CH_3)_2), 39.7 (guanidinate-N(CH₃)₂), 39.2 (guanidinate-N(CH₃)₂), 36.9 (-CH₂-), 36.7 (-CH₂-), 30.5 (-CH-), 30.0 (-CH-). FT-IR (ATR, cm⁻¹) 2972, 2901, 2844, 2801, 2753, 1605, 1526, 1462, 1429, 1408, 1378, 1352, 1342, 1304, 1274, 1260, 1235, 1219, 1192, 1181, 1119, 1095, 1056, 1007, 979, 957, 922, 840, 815, 794, 759, 714, 695, 640, 617, 580, 515, 477, 422, 407. Melting Point: 237-238 °C. Elemental Analysis Anal. Found: C, 59.81; H, 7.64; N, 13.72. Calcd [C₄₀H₆₂FeN₈Zr]: C, 59.90; H, 7.79; N, 13.97.

Complex (4a) [$C_{28}H_{50}FeN_8Hf$]. *Proligand* 1a (95 mg, 0.25 mmol) was dissolved in toluene (0.5 mL), and Hf(NMe₂)₄ (89 mg, 0.25 mmol) was added. The vial was shaken until homogeneous and allowed to stand for 4 h until crystalline material formed. The

supernatant was removed, and the residue was washed with additional toluene (0.15 mL) and dried under vacuum to obtain 4a. Yield (115 mg, 63%). ¹H NMR (400 MHz, Toluene- d_8) δ 4.35 (br, 2H, Cp-H), 3.93 (br, 4H, Cp-H), 3.85 (br, 2H, Cp-H), 3.53 (br, 6H, Hf–N(CH₃)₂), 3.21 (br, 6H, Hf–N(CH₃)₂), 2.48 (s, 12H, guanidinate-N(CH₃)₂), 1.42 (s, 18H, $-C(CH_3)_3$). ¹³C NMR (101 MHz, Toluene- d_8) δ 170.7 (br, guanidinate-C), 106.0 (br, Cp-C-N), 65.6 (Cp-CH), 63.8 (Cp-CH), 53.8 (br, $-C(CH_3)_3$), 46.5 (Hf–N(CH₃)₂), 46.2 (Hf–N(CH₃)₂), 41.1 (br, guanidinate-N(CH₃)₂), 32.2 ($-C(CH_3)_3$). FT-IR (ATR, cm⁻¹) 3097, 3078, 2965, 2851, 2801, 2753, 1605, 1525, 1477, 1446, 1425, 1388, 1355, 1282, 1238, 1213, 1198, 1185, 1137, 1121, 1069, 1056, 1010, 959, 946, 923, 909, 836, 821, 799, 786, 764, 726, 685, 636, 617, 510, 487, 436. Melting Point: 222–223 °C. Elemental Analysis Anal. Found: C, 45.46; H, 6.59; N, 15.00. Calcd [C₂₈H₅₀FeN₈Hf]: C, 45.87; H, 6.87; N, 15.29.

Complex (4b) [$C_{38}H_{54}FeN_8Hf]$. Identical procedure for 3b using Hf(NMe₂)₄ as the metal source. Yield of orange crystals (45 mg, 27%). ¹H NMR (400 MHz, Toluene- d_8) δ 6.73 (s, 4H), 4.31 (t, J = 2.0 Hz, 4H, Cp-H), 3.88 (t, J = 2.0 Hz, 4H, Cp-H), 2.89 (s, 12H, Hf–N(CH₃)₂), 2.35 (s, 12H, (Aryl–CH₃), 2.17 (br, 12H, guanidinate-N(CH₃)₂)), 2.15 (s, 6H, Aryl–CH₃). ¹³C NMR (101 MHz, Toluene- d_8) δ 168.1 (guanidinate-C). 143.9 (C_q), 132.9 (C_q), 131.9 (C_q), 129.1 (Aryl-CH), 108.6 (Cp-C-N), 64.2 (Cp-CH), 64.1 (Cp-CH), 44.2 (Hf–N(CH₃)₂), 38.3 (guanidinate-N(CH₃)₂), 20.8 (Aryl-CH₃), 19.1 (Aryl-CH₃). FT-IR (ATR, cm⁻¹) 3090, 2913, 2856, 2810, 2760, 1624, 1603, 1534, 1474, 1438, 1402, 1222, 1200, 1022, 1152, 1063, 1011, 946, 882, 851, 837, 813, 799, 764, 734, 683, 632, 615, 584, 554, 518, 499, 450, 433, 413. Melting Point: 268 °C. Elemental Analysis Anal. Found: C, 52.32; H, 6.41; N, 12.54. Calcd [C₃₈H₅₄FeN₈Hf]: C, 53.24; H, 6.35; N, 13.07.

Complex (4c) [C44H66FeN8Hf]. Same procedure as that for 1c using $Hf(NMe_2)_4$ as the metal source. The title compound crystallized as large orange crystalline chunks. Yield (111 mg, 69%). ¹H NMR (600 MHz, Toluene- d_8 , 90 °C) δ 4.19 (t, J = 1.9 Hz, 4H, Cp-H), 3.89 (t, J = 1.8 Hz, 4H, Cp-H), 3.70 (hept, J = 6.9 Hz, 4H, Aryl-CH(CH₃)₂), 2.85 (s, 12H, Hf-N(CH₃)₂), 2.36 (s, 12H, guanidinate-N(CH₃)₂), 1.35 (d, J = 6.8 Hz, 12H, Aryl-CH(CH₃)₂), 1.33 (d, J = 6.8 Hz, 12H, Aryl-CH(CH₃)₂). ¹³C NMR (151 MHz, Toluene- d_8) δ 167.7 (guanidinate-C), 143.8 (C_q), 143.3 (C_q), 125.5 (Aryl-CH), 123.8 (Aryl-CH), 110.6 (Cp-C-N), 64.3 (Cp-CH), 62.7 (Cp-CH), 44.5 (Zr-N(CH₃)₂), 28.0 (guanidinate-N(CH₃)₂), 25.0 (Aryl-CH(CH₃)₂), 24.9 (Aryl-CH(CH₃)₂). FT-IR (ATR, cm⁻¹) 3058, 2956, 2866, 1620, 1584, 1529, 1458, 1434, 1376, 1326, 1273, 1252, 1234, 1199, 1142, 1107, 1057, 1021, 1000, 935, 792, 751, 701, 627, 484. Melting Point: 275-276 °C. Elemental Analysis Anal. Found: C, 56.31; H, 7.30; N, 11.90. Calcd [C44H66FeN8Hf]: C, 56.14; H, 7.07; N, 11.90.

Complex 4d [C₄₀H₆₂FeN₈Hf]. Proligand 1d (60 mg, 0.11 mmol) was dissolved in tetrahydrofuran (0.3 mL), solid $Hf(NMe_2)_4$ (40 mg, 0.11 mmol) was added, and the vial was shaken until homogeneous. Yellow crystals deposit overnight. The supernatant was removed, and the crystalline residue was washed with tetrahydrofuran $(3 \times 0.1 \text{ mL})$ and dried under vacuum to obtain 4d. Yield (56%, 56 mg). ¹H NMR (400 MHz, Toluene- d_{s} , 233 K) δ 4.45 (s, 1H, Cp-H), 4.40 (s, 1H, Cp-H), 4.08 (s, 1H, Cp-H), 4.02 (s, 1H, Cp-H), 3.95 (s, 1H, Cp-H) 3.91 (s, 1H, Cp-H), 3.89 (s, 1H, Cp-H), 3.87 (s, 1H), 3.64 (m, 6H, $Hf-N(CH_3)_2$, 3.32 (s, 6H, $Hf-N(CH_3)_2$), 2.61 (s, 3H, guanidinate-N(CH₃)₂), 2.47 (s, 6H, guanidinate-N(CH₃)₂), 2.24-2.10 (m, 18H, guanidinate-N(CH_3)₂ + $-CH_2$ + $-CH_-$), 1.96–1.93 (m, 3H, $-CH_2$ -), 1.78–1.66 (m, 12H, $-CH_2$ -). ¹³C NMR (101 MHz, Toluene-d₈, 233 K) δ 171.7 (guanidinate-C), 169.1 (guanidinate-C), 106.8 (Cp-C-N), 105.0 (Cp-C-N), 68.2 (Cp-CH), 65.9 (Cp-CH), 65.5 (Cp-CH), 64.6 (Cp-CH), 63.6 (Cp-CH), 63.1 (Cp-CH), 59.5 (Cp-CH), 55.7 (N-C-Adamantyl), 53.7 (N-C-Adamantyl), 47.2 (Hf- $N(CH_3)_2$, 46.8 (Hf-N(CH_3)_2), 46.3 (Hf-N(CH_3)_2), 45.1 (-CH₂-), 44.5 (guanidinate-N(CH₃)₂), 42.9 (-CH₂-), 41.7 (br, guanidinate-N(CH_3)₂), 40.0 (guanidinate-N(CH_3)₂), 39.4 (br, guanidinate-N(CH₃)₂), 37.1 (-CH₂-), 36.9 (-CH₂-), 30.7 (-CH-), 30.2 (-CH-). FT-IR (ATR, cm⁻¹) 2902, 2848, 2804, 2757, 2742, 1601, 1533, 1516, 1477, 1462, 1446, 1425, 1407, 1390,

1354, 1344, 1302, 1279, 1218, 1191, 1133, 1117, 1096, 1053, 1020, 1009, 955, 946, 918, 837, 820, 794, 758, 772, 720, 707, 696, 642, 620, 577, 513, 502, 490, 473, 427, 416. Melting Point: 243–244 °C. Elemental Analysis Anal. Found: C, 53.92; H, 6.95; N, 12.66. Calcd $[C_{40}H_{62}FeN_8Hf]$: C, 54.02; H, 7.03; N, 12.60.

[C₁₉H₃₂FeN₆Zr] (5) 2b. (52 mg, 0.1 mmol) and Zr(NMe₂)₄ (56 mg, 0.21 mmol) were dissolved in C_6D_6 (0.8 mL) and heated to 75 °C for 68h. ¹H NMR (400 MHz, Benzene- d_6) δ 4.17 (t, J = 1.9 Hz, 2H, Cp-H), 4.13 (t, J = 1.9 Hz, 2H, Cp-H), 3.87 (t, J = 1.9 Hz, 2H, Cp-H), 3.77 (t, J = 1.9 Hz, 2H, Cp-H), 2.91 (s, 18H, Zr-N(CH₃)₂), 2.55 (s, 6H, guanidinate-N(CH_3)₂). ¹³C NMR (101 MHz, Benzened₆) δ 169.1 (guanidinate-C), 107.0 (Cp-C-N), 99.2 (Cp-C-N), 68.6 (Cp-CH), 68.3 (Cp-CH), 67.5 (Cp-CH), 65.0 (Cp-CH), 45.3 (guanidinate-N(CH_3)₂), 42.1 (Zr-N(CH_3)₂). The free guanidine $[C_{13}H_{15}FeN_3]$ (6) can be isolated by hydrolysis of the reaction mixture. **2b** (94 mg, 0.19 mmol) and a slight excess of $Zr(NMe_2)_4$ (135 mg, 0.5 mmol) in C_6D_6 (1.2 mL) were heated in a valved NMR tube for 24h at 75 °C. The solution was cooled and poured into wet ice-cold dichloromethane (15 mL) under vigorous stirring. After 15 min a spatula tip of MgSO4 was added, the resulting suspension was filtered through a plug of diatomaceous earth to eliminate MgSO₄/ ZrO₂ and evaporated under reduced pressure. The orange colored residue was crushed in pentane (5 mL), filtered and washed with additional pentane $(3 \times 1 \text{ mL})$ to afford the title compound. Yield of orange microcrystalline solid (15 mg, 56%). ¹H NMR (500 MHz, Benzene-d₆) δ 4.16 (s, 1H, N-H), 4.08 (br, 4H, Cp-H), 3.83 (m, 4H, Cp-H), 2.59 (s, 6H, guanidine-N(CH₃)₂). ¹³C NMR (126 MHz, Benzene-*d*₆) δ 158.4 (guanidine-*C*), 108.2 (Cp-C-N), 89.4 (Cp-C-N), 69.6 (Cp-CH), 69.4 (Cp-CH), 68.5 (Cp-CH), 65.3 (Cp-CH), 38.5 (guanidinate-N(CH₃)₂). FT-IR (ATR, cm⁻¹) 3068, 2917, 1569, 1499, 1452, 1433, 1357, 1282, 1206, 1184, 1136, 1053, 1035, 1025, 914, 897, 872, 844, 816, 799, 791, 733, 710, 652, 598, 524, 473, 450, 409. Melting Point: 195-196 °C (dec.). HR-MS (ESI) m/z 270.0695 [Calculated for C₁₃H₁₆FeN₃⁺ 270.0688].f

 $[C_{27}H_{47}N_6Zr]$ (7) $Zr(NMe_2)_3[MesityINC(NMe_2)NMesityI]$. The title compound can be independently synthesized from N,N'dimesityl carbodiimide³¹ (0.42 mmol, 118 mg) and Zr(NMe₂)₄ (0.42 mmol, 114 mg) in C_6D_6 but was not isolated. ¹H NMR (400 MHz, Benzene- d_6) δ 6.85 (s, 4H, Aryl-H), 2.96 (s, 18H, Zr-N(CH₃)₂), 2.31 (s, 12H, Aryl-CH₃), 2.22 (s, 6H, Aryl-CH₃), 1.94 (s, 6H, guanidinate-N(CH₃)₂). ¹³C NMR (101 MHz, Benzene- d_6) δ 167.4 (guanidinate-C), 143.9 (C_q), 132.7 (C_q), 131.8 (C_q), 129.4 (Aryl-CH), 42.5 (Zr-N(CH₃)₂), 37.5 (guanidinate-N(CH₃)₂), 20.9 (Aryl-CH₃), 19.2 (Aryl-CH₃). Complex 7 in benzene solution was poured into wet ice-cooled dichloromethane (5 mL) and allowed to stir for 15 min. The solution was syringe filtered (0.2 μ m), the solvent was evaporated under reduced pressure, and the resulting white residue was recrystallized from pentane to obtain free N,N-dimethyl- $N'_{,N''}$ -dimesityl-guanidine $[C_{21}H_{29}N_3]$ (8) as colorless plates. Yield (10 mg, 7%). ¹H NMR (500 MHz, Benzene- d_6) δ 6.96 (br, 2H, Aryl-H), 6.63 (br, 2H, Aryl-H), 4.83 (br, 1H, N-H), 2.50 (s, 6H, -N(CH₃)₂), 2.39 (br, 6H, Aryl-CH₃), 2.27 (br, 3H, Aryl-CH₃), 2.10 (br, 3H, Aryl-CH₃), 2.03 (br, 5H, Aryl-CH₃). ¹³C NMR (126 MHz, Benzene- d_6) δ 151.7 (guanidine-C), 135.9 (br, C_q), 134.7 (br, C_q), 134.4 (br, C_q), 130.8 (br, C_q), 129.5 (Aryl-CH), 39.2 ($-N(CH_3)_2$), 20.9 (Aryl-CH₃), 18.9 (Aryl-CH₃), 18.6 (Aryl-CH₃). FT-IR (ATR, cm⁻¹) 3345, 2917, 2854, 1619, 1600, 1473, 1446, 1367, 1265, 1200, 1143, 1054, 1034, 996, 857, 810, 722, 694. Melting Point: 103-104 °C. HR-MS (ESI) m/z 324.2432 [Calculated for $C_{21}H_{30}N_3^+$ 324.2434].

[C₄₆H₇₈FeN₁₂Zr₂] (9). Only ¹H and ¹³C NMR data are reported for this compound. ¹H NMR (500 MHz, Benzene-*d*₆) δ 6.82 (s, 4H, Aryl-H), 4.37 (t, *J* = 1.9 Hz, 4H, Cp-H), 4.17 (t, *J* = 1.9 Hz, 4H, Cp-H), 3.17 (s, 36H, Zr–N(CH₃)₂), 2.23 (s, 12H, Aryl-CH₃), 2.20 (s, 6H, Aryl-CH₃), 2.09 (s, 12H, guanidinate-N(CH₃)₂). ¹³C NMR (126 MHz, Benzene-*d*₆) δ 170.0 (guanidinate-C), 132.2 (C_q), 129.2 (Aryl-CH), 144.0 (C_q), 128.5 (C_q), 107.2 (Cp-C-N), 67.2 (Cp-CH), 64.8 (Cp-CH), 43.2 (Zr–N(CH₃)₂), 38.7 (guanidinate-N(CH₃)₂), 20.9 (Aryl-CH₃), 19.1 (Aryl-CH₃).

 $[C_{17}H_{42}N_6Zr]$ (10) $Zr(NMe_2)_3[tert-butyINC(NMe_2)N-tert$ butyl]. The title compound can be independently synthesized from commercially available N,N'-di-tert-butylcarbodiimide (25 mg, 0.16 mmol) and Zr(NMe₂)₄ (44 mg, 0.16 mmol) in C₆D₆ solution (0.8 mL) but was not isolated. ¹H NMR (400 MHz, Benzene- d_6) δ 3.11 (s, 18H, Zr–N(CH₃)₂) 2.36 (s, 6H, guanidinate-N(CH₃)₂), 1.21 (s, 18H, $-C(CH_3)_3$). ¹³C NMR (101 MHz, Benzene- d_6) δ 170.5 (guanidinate-C), 54.0 (-C(CH₃)₃), 43.3 (Zr-N(CH₃)₂), 41.2 (guanidinate-N(CH_3)₂), 32.0 ($-C(CH_3)_3$). After the NMR analysis, the benzene solution was poured into wet ice-cold dichloromethane (15 mL). After the solution stirred for 15 min, a spatula tip of MgSO₄ was added and the suspension was filtered through a plug of diatomaceous earth to remove MgSO₄/ZrO₂. The solvent was evaporated under reduced pressure, and the residue recrystallized from benzene to obtain guanidine $[C_{11}H_{25}N_3]$ (11). Yield of white solid (7 mg, 22%). ¹H NMR (500 MHz, Chloroform-d) δ 2.90 (s, 6H, $-N(CH_3)_2$, 1.90 (s, br, 1H, N-H), 1.42 (s, 18H, $-C(CH_3)_3$). ¹³C NMR (126 MHz, Chloroform-d) δ 160.7 (guanidine-C), 55.6 $(-C(CH_3)_3)$, 41.7 $(-N(CH_3)_2)$, 30.0 $(-C(CH_3)_3)$. FT-IR (ATR, cm⁻¹) 2962, 2870, 1625, 1595, 1529, 1490, 1464, 1394, 1366, 1282, 1151, 1196, 1096, 1081, 1057, 1041, 959, 817, 681, 630, 614, 598, 547, 451. Melting Point: 119-121 °C. HR-MS (ESI) m/z 200.2128 [Calculated for $C_{11}H_{26}N_3^+$ 200.2127].

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.9b00336.

Details of experimental procedures, UV-vis spectra, NMR spectra, cyclic voltammetry, kinetic plots, steric plots (PDF)

Accession Codes

CCDC 1909323–1909339 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: rajones@cm.utexas.edu.

ORCID [©]

Richard A. Jones: 0000-0003-4174-6530

Funding

The project that gave rise to these results received the support of "la Caixa" Banking Foundation (LCF/BQ/AA17/11610005) in the form of a fellowship for O.E.P. We thank the Welch Foundation (F-816) for support. The Bruker Avance III HD 500 was purchased with funds from an NIH grant (1 S10 OD021508-01).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Professor M. J. Rose and C. Joseph for permission to use their electrochemical instrumentation and technical guidance. We also thank J. Chen at the Texas Center for Electrochemistry for useful advice.

Organometallics

REFERENCES

- (1) Shafir, A.; Power, M. P.; Whitener, G. D.; Arnold, J. Organometallics 2000, 19 (19), 3978-3982.
- (2) Shafir, A.; Power, M. P.; Whitener, G. D.; Arnold, J. Organometallics 2001, 20 (7), 1365–1369.
- (3) Brosmer, J. L.; Huang, W.; Diaconescu, P. L. Organometallics 2017, 36 (23), 4643–4648.

(4) Pick, F. S.; Thompson, J. R.; Savard, D. S.; Leznoff, D. B.; Fryzuk, M. D. Inorg. Chem. 2016, 55 (8), 4059-4067.

- (5) Halcovitch, N. R.; Fryzuk, M. D. Aust. J. Chem. 2016, 69 (5), 555-560.
- (6) Shafir, A.; Arnold, J. Inorg. Chim. Acta 2003, 345, 216-220.
- (7) Shafir, A.; Fiedler, D.; Arnold, J. J. Chem. Soc. Dalt. Trans. 2002, No. 4, 555-560.
- (8) Quan, S. M.; Wei, J.; Diaconescu, P. L. Organometallics 2017, 36 (22), 4451–4457.
- (9) Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White,
- A. J. P.; Williams, D. J. J. Chem. Soc., Dalt. Trans 2001, 1 (i), 1162–1164.
- (10) Abubekerov, M.; Khan, S. I.; Diaconescu, P. L. Organometallics 2017, 36 (22), 4394-4402.
- (11) Klapp, L. R. R.; Bruhn, C.; Leibold, M.; Siemeling, U. Organometallics 2013, 32 (20), 5862–5872.
- (12) Heinze, K.; Lang, H. Organometallics 2013, 32 (20), 5623-5625.
- (13) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. **1952**, 74 (8), 2125–2126.
- (14) Dunitz, J. D.; Orgel, L. E.; Rich, A. Acta Crystallogr. **1956**, 9 (4), 373–375.
- (15) Togni, A.; Hayashi, T. Ferrocenes; VCH: 1995.
- (16) Astruc, D. Eur. J. Inorg. Chem. 2017, 2017 (1), 6-29.
- (17) Huang, W.; Diaconescu, P. L. Inorg. Chem. 2016, 55 (20), 10013-10023.
- (18) Arumugam, K.; Varnado, C. D.; Sproules, S.; Lynch, V. M.; Bielawski, C. W. Chem. - Eur. J. **2013**, *19* (33), 10866–10875.
- (19) Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White, A. J. P. J. Am. Chem. Soc. **2006**, 128 (23), 7410– 7411.
- (20) Dai, R.; Diaconescu, P. L. Dalt. Trans. 2019, 48, 2996-3002.
- (21) Schlögl, K.; Mechtler, H. Angew. Chem. 1966, 78 (11), 606.
- (22) Sola, A.; Orenes, R. A.; Tárraga, A.; Molina, P. *Tetrahedron Lett.* **2016**, *57* (9), 1048–1052.

(23) Otón, F.; Espinosa, A.; Tárraga, A.; De Arellano, C. R.; Molina, P. Chem. - Eur. J. 2007, 13 (20), 5742-5752.

(24) Oton, F.; Espinosa, A.; Tarraga, A.; Molina, P. Organometallics 2007, 26 (25), 6234-6242.

(25) Gurskaya, L.; Bagryanskaya, I.; Amosov, E.; Kazantsev, M.; Politanskaya, L.; Zaytseva, E.; Bagryanskaya, E.; Chernonosov, A.; Tretyakov, E. *Tetrahedron* **2018**, *74* (15), 1942–1950.

(26) Bagryanskaya, I.; Fedin, M.; Gorbunov, D.; Gritsan, N.; Gurskaya, L.; Kazantsev, M.; Polienko, Y.; Stass, D.; Tretyakov, E. *Tetrahedron Lett.* **2017**, 58 (5), 478–481.

(27) Álvarez-Rodríguez, L.; Cabeza, J. A.; García-Álvarez, P.; Polo, D. Coord. Chem. Rev. 2015, 300, 1–28.

(28) Hill, N. J.; Findlater, M.; Cowley, A. H. Dalt. Trans. 2005, No. 19, 3229-3234.

(29) Edelmann, F. T. Chapter 3 Advances in the Coordination Chemistry of Amidinate and Guanidinate Ligands; Elsevier Inc.: 2008; Vol. 57.

(30) Chlupatý, T.; Růžička, A. Coord. Chem. Rev. 2016, 314, 103–113.

(31) Peddarao, T.; Baishya, A.; Barman, M. K.; Kumar, A.; Nembenna, S. New J. Chem. 2016, 40 (9), 7627–7636.

(32) Maity, A. K.; Fortier, S.; Griego, L.; Metta-Magaña, A. J. Inorg. Chem. 2014, 53 (15), 8155-8164.

(33) Findlater, M.; Hill, N. J.; Cowley, A. H. Dalt. Trans. 2008, No. 33, 4419–4423.

(34) Gordon, P. G.; Yap, G. P. A.; Barry, S. T. J. Chem. Crystallogr. 2011, 41 (3), 375–378.

(35) Goj, O.; Haufe, G.; Fröhlich, R. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, 52 (6), 1554–1556.

- (36) Ulrich, H. Chemistry and Technology of Carbodiimides; John Wiley & Sons Ltd.: 2007.
- (37) Kaspi-Kaneti, A. W.; Tuvi-Arad, I. Organometallics 2018, 37 (19), 3314–3321.
- (38) Sharma, B.; Callaway, T. M.; Lamb, A. C.; Steren, C. A.; Chen, S. J.; Xue, Z. L. *Inorg. Chem.* **2013**, *52* (19), 11409–11421.

(39) Cook, T. M.; Steren, C. A.; Xue, Z. L. Dalt. Trans. 2018, 47 (32), 11030–11040.

(40) Dai, R.; Lai, A.; Alexandrova, A. N.; Diaconescu, P. L. Organometallics 2018, 37 (21), 4040-4047.

(41) Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.; Oliva, R.; Scarano, V.; Cavallo, L. *Organometallics* **2016**, 35 (13), 2286–2293.

(42) For the sake of completion, metalation with $Ti(NMe_2)_4$ has been attempted. In our hands we have only recovered impure and poorly defined products. From hexanes we were able to recover a thin crystalline plate of a bimetallic cluster of formula $[C_{49}H_{79}Fe_2N_{13}OTi_2]$; see SI 36 for ORTEP diagram.

(43) Zeitler, H. E.; Kaminsky, W. A.; Goldberg, K. I. Organometallics **2018**, 37 (21), 3644–3648.

(44) Lloveras, V.; Caballero, A.; Tárraga, A.; Velasco, M. D.; Espinosa, A.; Wurst, K.; Evans, D. J.; Vidal-Gancedo, J.; Rovira, C.; Molina, P.; Veciana, J. *Eur. J. Inorg. Chem.* **2005**, 2005 (12), 2436–2450.

(45) Sola, A.; Orenes, R. A.; García, M. Á.; Claramunt, R. M.; Alkorta, I.; Elguero, J.; Tárraga, A.; Molina, P. *Inorg. Chem.* **2011**, *50* (9), 4212–4220.

(46) Barbey, G.; Caullet, C. Tetrahedron Lett. **1977**, 18 (45), 3937–3938.

(47) Knolker, H. J.; Braxmeier, T.; Schlechtingen, G. Angew. Chem., Int. Ed. Engl. **1995**, 34 (22), 2497–2500.

J