A NEW SYNTHESIS OF CYANOGEN CHLORIDE R. Varma and A. J. Signorelli⁺ Department of Chemistry, New York University University Heights, Bronx, New York 10453 (Received 14 October 1969)

Pure cyanogen chloride has been prepared in about 95% yield (calculated on the amount of Cl_2O used) by the reaction of Cl_2O with solid AgCN at room temperature.

Introduction

Cyanogen chloride, CNCl, can be prepared (1,2)by passing chlorine gas into aqueous solutions of HCN, NaCN, Na₂Zn(CN)₄ or K₂Zn(CN)₄. We wish to report here the preparation of CNCl by the reaction of a purified sample of chlorine monoxide, Cl₂O, with dry AgCN at room temperature. The purification and the characterization of CNCl are discussed.

Experimental

The work was carried out in a high vacuum system. Chlorine monoxide was prepared (3) by allowing Cl_2 gas to react with yellow mercuric oxide powder at -78° C for 24 hours. It was purified by fractional distillation and condensation in a high vacuum line and its purity checked by infrared spec-

⁺ Present Address: Department of Chemistry, Notre Dame University, Notre Dame, Indiana.

trum (4). The chlorine monoxide sample gas was repeatedly passed through a U-trap, packed loosely with anahydrous silver cyanide and glass wool. The products of reaction were collected in a trap cooled in liquid nitrogen. Cyanogen chloride was retained in traps cooled in isopropyl alcohol--dry ice slush (-78° C), when the reaction products were allowed to distill through two traps cooled at -78° C into traps cooled in liquid nitrogen. Elemental analysis (calcd. for CNC1, C = 19.52; N = 22.78; C1 = 57.68, found C = 19.45; N = 22.79) showed that the sample was reasonably pure. Complete characterization was made by comparing the observed infrared spectrum (v_{max} observed cm⁻¹: 2200, 2219, 788, 770, 720, 700 and 380) with that reported in the literature (5) and by analyzing the observed mass spectrum as shown in the table.

TABLE

mile metacrite incompily robicivery charded	
61 100 ${}^{12}c^{14}N^{35}c1^{+}$	
63 30.4 $12c^{14}N^{37}c1^+$	
30.5 3.7 ${}^{12}c^{14}N^{35}c1^{++}$	
31.5 1.4 $12c^{14}N^{37}c1^{++}$	
35 10.8 ³⁵ Cl ⁺	
37 4.3 ³⁷ Cl ⁺	
26 8.7 $12c^{14}N^+$	
14 6.4 $\frac{14}{N^+}$ or N_2^{++}	•
12 10.6 ¹² c ⁺	

Acknowledgement

One of us (A. J. S.) is thankful to Manhattan College for stipends received during the summer of 1968 which made this work possible. We extend our

CYANOGEN CHLORIDE

gratitude to New York University for the support extended to this project.

References

- T. S. PRICE and S. J. GREEN, J. Soc. Chem. Ind., 39, 98 (1929).
- H. SCHRODER, Z. Anorg. U. Allgem. Chem., 297, 296 (1958).
- C. SCHACK and C. LINDAHL, Inorg. Nucl. Chem. Letters, 3, No. 9, 387 (1967).
- 4. K. HEDBERG, J. Chem. Phys., 19, 509 (1951).
- W. O. FREITAG, E. R. NIXON, J. Chem. Phys., 24, 109 (1956).