December 1994 SYNTHESIS 1255

Push-Pull Ynamines via Alkynyliodonium Chemistry

Paul Murch, Bobby L. Williamson, Peter J. Stang*
Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
Received 9 August 1994

The reaction of substituted alkynyl(phenyl)iodonium salts 3a-e with lithium diphenylamine (LiNPh₂) leading to the formation of push-pull ynamine products 5a-e is described.

There has been a resurgence of interest in acetylene chemistry in general and, in particular, in functionalized acetylenes. 1,2 Of special interest are the functionalized acetylenes containing push-pull systems 1, with electron-donating groups (EDG) at one end and electron-withdrawing (EWG) substituents at the opposite end of the triple bond. The most commonly employed electron-donating groups are the dialkyl or diaryl amino functionalities whereas the electron-withdrawing groups tend to be carbonyl or cyano, giving rise to push-pull ynamines 2. A variety of methods has been developed³⁻⁶ over the years for the formation of the push-pull ynamine systems 2. Many of these rely upon elimination (dehydrohalogenation or dehalogenation) or nucleophilic processes with inherent limitations. In this paper we wish to report a new, mild methodology for the formation of push-pull ynamines 2 via alkynyliodonium chemistry.7

EDG
$$\longrightarrow$$
 C \equiv C \longrightarrow EWG R_2N -C \equiv C-C-R

Diverse β -functionalized alkynyl(phenyl)iodonium triflates 3 are readily available⁸ and, upon interaction with lithium diphenylamine (LiNPh₂) in diethyl ether followed by workup, result in the desired bis-functionalized pushpull alkynes 5 in reasonable (43–66%) isolated yields (Scheme 1). This methodology is readily applicable for the preparation of a variety of carbonyl functionalized ynamines, as well as the silyl substituted systems and most importantly the hitherto unknown sulfone substituted molecule 5e.

$$Y-C \equiv C-I^+ -Ph \quad OTf + LiNPh_2$$

$$3 \qquad 4 \qquad 5$$

$$a \quad Y = (CH_3)_3Si \qquad b \qquad Y = O$$

$$C \quad Y = C_6H_5-C - d \quad Y = t\text{-Bu}-C - e \quad Y = p\text{-H}_3C\text{-}C_6H_4\text{-}SO_2\text{-}$$

Scheme 1

The product ynamines have been characterized by physical and spectral means as described in the experimental. Notably intense signals for the $C \equiv C$ bond (2058–2250 cm⁻¹) were observed, as well as for the carbonyl and sulfone functionalities in the infrared. The ¹H and

¹³C NMR are all in accord with the proposed structures, the sp carbons in the ¹³C NMR between 73.4 and 114.2 ppm being especially indicative.

In summary, a new, mild method of push-pull acetylene preparation via an alkynyliodonium species which is tolerant of a variety of functionalities is reported.

Melting points (uncorrected) were obtained with a Mel-Temp® capillary melting point apparatus. Radial chromatography was performed with a Harrison Research Chromatotron®, model 7924T. Infrared spectra were recorded neat or as CCl₄ mulls on a Mattson FT-IR spectrometer. All NMR spectra were recorded on a Unity 300 Varian spectrometer. The ¹H NMR spectra were recorded at 300 MHz, and chemical shifts are reported relative to $CDCl_3$ (δ 7.24), CD_2Cl_2 (δ 5.32) or CD_3CN (δ 1.93). The ¹³C NMR spectra were recorded at 75 MHz, ¹H decoupled, and reported relative to CDCl₃ (δ 77.0), CD₂Cl₂ (δ 53.8) or CD₃CN (δ 1.30). Mass spectra were obtained with either a Finnigan MAT 90 mass spectrometer with a Finnigan MAT ICIS II operating system or a VG Micromass 7050E double focusing high resolution mass spectrometer with the VG data system 2000 under electron impact (EI) at 70 eV. 3-Nitrobenzyl alcohol was used as a matrix in CH2Cl2, CHCl3, or CH₃CN as solvent. Polypropylene glycol was used as a reference for peak matching. Microanalyses were performed by Atlantic Microlab Inc. Norcross, Georgia. All commercial reagents were ACS reagent grade and used without further purification. Silica gel (200-400 mesh) was purchased from Baxter Scientific. Silica gel 60 (containing gypsum) for Chromatotron plates was purchased from EM Science. Reagent grade CH₂Cl₂, hexanes, and CH₃CN were dried by distillation over CaH₂. Et₂O was distilled from Na/benzophenone. Reaction flasks were flame dried and flushed with N2 prior to use. The syntheses of alkynyliodonium triflates have been previously reported.⁸ Satisfactory microanalysis results were obtained for **5b**: C + 0.23, H + 0.19, N - 0.11, S - 0.14.

N,N-Diphenylamino(trimethylsilyl)acetylene (5a):

To a stirred solution of diphenylamine (1.35 g, 3.00 mmol) in Et₂O (50 mL), BuLi (1.23 mL, 2.5 M, 3.00 mmol) was added at $-78 \,^{\circ}\text{C}$ under N₂. The trimethylsilylethynyl(phenyl)iodonium triflate (0.500 g, 1.00 mmol) was then added all at once and the reaction mixture was stirred for 3 h while slowly warming to $20 \,^{\circ}\text{C}$. The reaction mixture was then eluted through silica gel (2.0 g) with CH₂Cl₂ and the volume reduced on a rotary evaporator. Silica gel radial chromatography $(200-400 \text{ mesh}, 2 \text{ mm} \text{ plate}, \text{CH}_2\text{Cl}_2)$ and removal of the solvent by rotary evaporation afforded N,N-diphenylamino(trimethylsilyl)acetylene as a red oil; yield: $0.34 \text{ g} (43 \,^{\circ}\text{M})$. IR (neat): $v = 3062, 2959, 2058, 1734, 1590, 1471 \text{ cm}^{-1}$.

¹H NMR (CDCl₃): $\delta = 7.68$ (d, 4H, J = 7.5 Hz), 7.31 (t, 2H, J = 7.5 Hz), 7.09 (t, 4H, J = 6.9 Hz), 0.18 (s, 9 H).

¹³C NMR (CDCl₃): δ = 137.4, 130.2, 127.4, 104.1, 94.3, 85.9, 0.14. HRMS (FAB) (Calc. for C₁₇H₁₉NSi): m/z = 265.1287 (M⁺). Found: 265.1283.

N,N-Diphenylamino(2-thiophenecarbonyl)acetylene (5b):

To a stirred solution of diphenylamine (0.173 g, 1.00 mmol) in Et₂O (50 mL), BuLi (0.41 mL, 2.5 M, 1.0 mmol) was added at -78 °C under N₂. The 2-thiophenecarbonylethynyl(phenyl)iodonium triflate (0.500 g, 1.00 mmol) was added all at once and the solution was stirred for 5 min. The reaction mixture was then eluted through silica gel with CH₂Cl₂ and the volume reduced on a rotary evaporator. Silica gel radial chromatography (200–400 mesh, 2 mm plate, CH₂Cl₂) and removal of the solvent by rotary evaporation afforded N,N-diphenylamino(2-thiophenecarbonyl)acetylene as a red oil; yield: 0.16 g (53 %).

1256 Papers SYNTHESIS

IR (neat): v = 3054, 2986, 2187, 1592, 1490, 1452, 1350, 1234, 1191, 1048, 931 cm⁻¹.

¹H NMR (CDCl₃): δ = 7.72 (d, 1 H, J = 3.8 Hz), 7.63 (d, 1 H, J = 4.8 Hz), 7.42 (m, 8 H), 7.29 (t, 2 H), 7.13 (t, 1 H, J = 4.4 Hz). ¹³C NMR (CDCl₃): δ = 169.3, 145.8, 142.1, 133.5, 133.1, 130.1, 128.4, 126.5, 122.3, 97.1, 73.9.

Benzoyl(N,N-diphenylamino)acetylene (5c):

To a stirred solution of diphenylamine (0.51 g, 3.0 mmol) of Et₂O (40 mL), BuLi (1.2 mL, 2.5 M, 3.0 mmol) was added at $-78\,^{\circ}$ C under N₂. The benzoylethynyl(phenyl)iodonium triflate (1.44 g, 3.00 mmol) was added all at once and the solution was stirred for 1 h. The reaction was eluted through silica gel with CH₂Cl₂ and the volume reduced on a rotary evaporator. Silica gel radial chromatography (200–400 mesh, 2 mm plate, CH₂Cl₂) and removal of the solvent by rotary evaporation afforded 0.16 g (66%) of benzoyl(N,N-diphenylamino)acetylene as a red oil; yield: 0.16 g (66%). IR (neat): $\nu = 302$, 2171, 1572, 1507, 1470, 1438, 1308, 1155, 1014, 990 cm⁻¹.

¹H NMR (CDCl₃): $\delta = 8.02$ (m), 7.85 (m).

¹³C NMR (CDCl₃): δ = 176.8, 141.9, 137.5, 132.9, 129.7, 128.9, 128.4, 126.0, 121.8, 98.3, 74.5.

HRMS (FAB) (calc. for $C_{21}H_{15}ON$): m/z = 297.1154. Found: 299.1166 (M⁺).

2,2-Dimethylpropanoyl(N,N-diphenylamino)acetylene (5d):

To a stirred solution of diphenylamine (0.366 g, 2.16 mmol) in Et₂O (50 mL), BuLi (0.87 mL, 2.5 M, 2.16 mmol) was added at -78 °C under N₂. The 2,2-dimethylpropanoylethynyl(phenyl)iodonium triflate (1.00 g, 2.16 mmol) was added all at once and the solution was stirred for 1 h. The reaction was eluted through silica gel with CH₂Cl₂ and the volume reduced on a rotary evaporator. Silica gel radial chromatography (200–400 mesh, 2 mm plate, CH₂Cl₂) and removal of the solvent by rotary evaporation afforded 0.38 g (63 %) of 2,2-dimethylpropanoyl(N,N-diphenylamino)acetylene as a red oil; yield: 0.38 g (63 %).

IR (neat): v = 3043, 2181, 1459, 1378, 1080, 996 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.40$ (t), 7.31 (d), 7.23 (t) 1.22 (s). ¹³C NMR (CDCl₃): δ = 193.3, 142.6, 130.1, 126.3, 122.1, 97.2, 73.5, 44.4, 27.0.

HRMS (FAB) (calc. for $C_{19}H_{19}ON$): m/z = 277.1466. Found: 277.1437 (M⁺).

N,N-Diphenylamino(p-toluenesulfonyl)acetylene (5e):

To a stirred solution of phenyl(p-toluenesulfonylethynyl)iodonium triflate (0.250 g, 0.47 mmol) in CH₃CN (50 mL), sodium diphenylamine (0.090 g, 0.47 mmol) was aded at -45° C under N₂ and the reaction was stirred for 5 min. The reaction mixture was warmed to 20°C and the volume reduced on a rotary evaporator. The resultant solid was dissolved in CH₂Cl₂ (10 mL) and filtered to remove the sodium triflate. Addition of hexane (10 mL) afforded N,N-diphenylamino(p-toluenesulfonyl)acetylene as a red solid; yield: 0.093 g (57%).

IR (neat): v = 2197, 1671, 1666, 1492, 1290, 1030 cm⁻¹.

¹H NMR (CDCl₃): δ = 7.87 (t), 7.72 (t), 7.25 (m), 6.80 (d), 2.44 (s). ¹³C NMR (CDCl₃): δ = 147.2, 143.7, 136.2, 133.8, 133.4, 130.8, 129.5, 127.4, 114.2, 103.4, 22.1.

HRMS (FAB): (calc. for $C_{21}H_{17}SO_2N$): m/z = 347.0914. Found: 347.0980 (M⁺).

Financial support by the National Cancer Institute of the NIH (2RO1CA16903) is gratefully acknowledged.

- (1) Himbert, G. In *Houben-Weyl*, 4th ed., Vol. E15/3; Kropf, H.; Schaumann, E., Eds.; Thieme: Stuttgart, 1993; pp 3146-3461.
- (2) The Chemistry of the Triple-Bonded Functional Group, Supplement C2, Vols 1 and 2, S. Patai, Ed.; Wiley, Chichester, 1994.
- (3) Hafner, K.; Neuenschwander, M. Angew. Chem., Int. Ed. Engl. 1968, 6, 459.
- (4) Buyle, R.; Viehe, H.G. Tetrahedron 1969, 25, 3447.
- (5) Kuehne, M. E.; Sheeran, P.J. J. Org. Chem. 1960, 33, 4406.
- (6) Himbert, G.; Feustelm, M.; Jung, M. Liebigs Ann. Chem. 1981, 1907
- (7) Stang, P.J. Angew. Chem., Int. Ed. Engl. 1992, 31, 274.
- (8) Williamson, B.L.; Stang, P.J.; Arif, A.M. J. Am. Chem. Soc. 1993, 115, 2590.