AROMATIC GLYCOSIDES FROM BERCHEMIA RACEMOSA

SHOGO INOSHIRI, MANAMI SASAKI, HIROSHI KOHDA, HIDEAKI OTSUKA and KAZUO YAMASAKI*

Institute of Pharmaceutical Sciences, School of Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734, Japan

(Received 10 February 1987)

Key Word Index—Berchemia racemosa; Rhamnaceae; lignan; aromatic glycoside; nudiposide; secoisolariciresinol glucoside; isotachioside; tachioside; syringic acid glucosyl ester; ¹³C NMR.

Abstract—Two new aromatic glucosides have been isolated from the stems of *Berchemia racemosa* together with the known glycosides, nudiposide, (-)-secoisolariciresinol- $O-\beta$ -D-glucopyranoside and methoxyhydroquinone-1- $O-\beta$ -D-glucopyranoside (isotachioside). The structures of the new glucosides were found to be β -D-glucopyranosyl syringate, and methoxyhydroquinone-4- $O-\beta$ -D-glucopyranoside on the basis of chemical and spectral evidences.

INTRODUCTION

The stems of *Berchemia racemosa* Sieb. et Zucc. are used in Japan for the treatment of gall stones, liver diseases, neuralgia and stomach cramp. The related plant, *B. floribunda*, has been used in traditional Chinese medicine as an antipyretic, a diuretic and for the treatment of rheumatism and lumbago [1].

From the methanol extract of the stems of *B. racemosa*, we have recently isolated 2,6-dimethoxybenzoquinone (1) as the physiologically active constituent which inhibits histamine release from rat mast cells induced by compound 48/80 and by concanavalin A [2]. In the course of further studies on the constituents of the above plant, two new aromatic glucosides (4 and 6) along with three known glycosides (2, 3 and 5) have been isolated from the butanol-soluble fraction of the methanol extract.

RESULTS AND DISCUSSION

Compound 2, $C_{27}H_{36}O_{12}$, showed ¹³C NMR signals for tetra- and penta-substituted benzene rings, four methoxyl carbons, pentose carbons and six sp³ carbons, two of which were O-substituted (Table 1). This strongly suggested that 2 had a lignan glycoside skeleton. The carbon signals of the aglycone portion were similar to those reported for lyoniresinol 3α -O- β -D-glucopyranoside (2c) [3]. Methanolysis of 2 followed by GC analysis of the TMS derivative established that the sugar moiety was xylose.

Nudiposide (2a) and lyoniside (2b) are diastereomeric xylosides of enantiomeric lyoniresinols, isolated from *Enkianthus nudipus* and reported without ¹³C NMR data [4]. A comparison of the ¹³C NMR spectra of 2 with authentic samples of 2a, 2b and 2c was undertaken. In referring to the spectral data of 2c, (in pyridine- d_5) [3], we assigned ¹³C NMR signals of 2a and 2b as listed in Table 1 using CD₃OD as solvent. The data of 2a is identical with that of 2 within a difference of 0.1 ppm for

each corresponding carbon signal, while in the data of 2b, small but significantly different shifts from the data of 2 are observed for C-4 (upfield shift by 0.5 ppm) and the anomeric carbon, C-1" (downfield shift by 0.4 ppm).

The specific optical rotation of $2(-66.3^{\circ})$ is virtually the same as that of $2a(-68.9^{\circ})$ and differs from that of 2b(+28.5°). Other physicochemical properties of 2, such as ¹H NMR, IR, UV, melting point and R_f value on TLC are consistent with those of 2a. Consequently, 2 is identified with $3-\alpha-O-\beta-D$ -xylopyranoside of (-)-lyoniresinol (nudiposide, 2a).

Compound 3 showed ¹³C NMR signals for two sets of 1,2,4-trisubstituted benzene rings, two $CH_2O-(\delta 70.4 \text{ and}$ 62.8), and four sp³ carbons [δ 44.0 (d), 41.6 (d), and 35.5 $(t \times 2)$]. In addition, one set of β -glycopyranosyl carbon signals was observed (Table 2). These data suggested that compound 3 was a diphenylbutane-type lignan glucoside. Glucose was detected after hydrolysis of 3 followed by GLC analysis of the liberated sugar as its TMS derivative. The ¹³CNMR signals of the aglycone moiety (in CD₃OD) corresponded closely with those reported for secoisolariciresinol (3a in CDCl₃) with a large shift of C-8' and C-9' (-2.1 and +9.9 ppm, respectively) [5]. The above data was reminiscent of (-)-secoisorariciresinol-9'- $O-\beta$ -D-glucopyranoside with which compound 3 was identified by direct comparison with an authentic sample [6] by means of ¹H NMR, ¹³C NMR and optical rotation. Compound 4, C₁₃H₁₈O₈ and 5, C₁₃H₁₈O₈ were

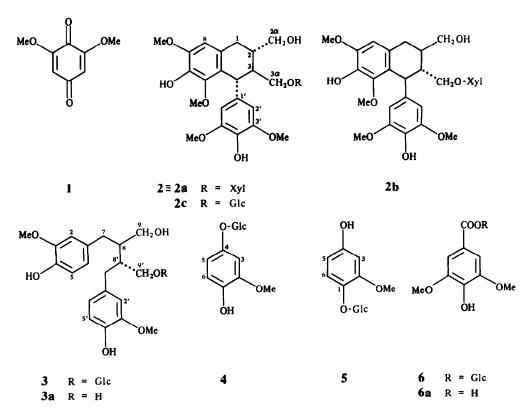
Compound 4, $C_{13}H_{18}O_8$ and 5, $C_{13}H_{18}O_8$ were closely related compounds and showed similar behavior on TLC and silica gel column chromatography. Final separation was achieved by preparative reversed-phase HPLC. The ¹³C NMR spectra of both compounds were very similar, and showed the presence of β glucopyranosyl carbons, trisubstituted benzene ring carbons and a methoxyl carbon (Table 3). In addition, a phenolic hydroxyl proton, and 1,2,4-trisubstituted aromatic protons were observed by ¹H NMR. Acid hydrolysis of 4 and 5 afforded glucose, which was confirmed by the GC analysis of its TMS derivatives. They also afforded the same aglycone, methoxyhydroquinone, which was identified by HPLC with an authentic sample. This procedure also discriminated between the alternative

^{*}Author to whom correspondence should be addressed.

		314	indard)		
	2	2a	2b	2c	2c ³
с	(CD ₃ OD)	(CD ₃ OD)	(CD ₃ OD)	(CD ₃ OD)	(C ₅ D ₅ N)
1	34.0 (t)	34.0 (t)	33.9 (t)	32.4 (t)	33.9 (t)
2	40.7 (d)	40.6 (d)	40.4 (d)	38.8 (d)	41.2 (d)
2α	66.0 (t)	66.0 (t)	65.9 (t)	65.5 (t)	66.2 (t)
3	46.9 (d)	46.8 (d)	46.7 (d)	45.8 (d)	46.6 (d)
3α	71.0 (t)	71.0 (t)	70.9 (t)	71.4 (t)	71.9 (t)
4	43.4 (d)	43.3 (d)	42.9 (d)	42.2 (d)	43.3 (d)
5	148.7 (s)	148.8 (s)	148.8 (s)	147.6 (s)	148.6 (s)
6	138.9 (s)	138.8 (s)	138.8 (s)	138.5 (s)	138.8 (s)
7	147.5 (s)				
8	107.5 (d)	107.6 (d)	107.7 (d)	107.3 (d)	107.8 (d)
9	130.1 (s)	130.0 (s)	130.0 (s)	129.3 (s)	130.3 (s)
10	126.3 (s)	126.2 (s)	126.4 (s)	126.2 (s)	126.2 (s)
1'	139.6 (s)	139.5 (s)	139.3 (s)	138.9 (s)	139.5 (s)
2′	106.9 (d)	106.9 (d)	106.8 (d)	107.1 (d)	107.1 (d)
3'	148.9 (s)	148.8 (s)	148.8 (s)	148.6 (s)	148.9 (s)
4'	134.4 (s)	134.4 (s)	134.4 (s)	135.1 (s)	134.6 (s)
5'	148.9 (5)	148.8 (s)	148.8 (s)	148.6 (s)	148.9 (s)
6'	106.9 (d)	106.9 (d)	106.8 (d)	107.1 (d)	107.1 (d)
1″	105.0 (d)	104.9 (d)	105.4 (d)	104.5 (d)	104.2 (d)
2"	74.9 (d)	74.8 (d)	74.8 (d)	74.8 (d)	75.1 (d)
3″	78.0 (d)	77.9 (d)	77.9 (d)	78.1 (d)	77.9 (d)
4″	71.3 (d)	71.2 (d)	71.1 (d)	71.4 (d)	71.5 (d)
5″	67.1 (t)	67.0 (t)	66.9 (t)	78.1 (d)	78.2 (d)
6″				62.5 (t)	62.7 (t)
5-0-Me	59.9 (q)	59.8 (q)	60.0 (q)	59.6 (q)	60.1 (q)
-O-Me	56.6 (q)	56.5 (q)	56.5 (q)	56.1 (q)	56.6 (q)
-O-Me	56.8 (q)	56.7 (q)	56.8 (q)	56.5 (q)	56.9 (q)
-O-Me	56.8 (q)	56.7 (q)	56.8 (q)	56.5 (q)	56.9 (q)

Table 1. ¹³C NMR data of compound 2 and related compounds (25 MHz, TMS as int. standard)

candidates, 4-methoxyresorcinol and 4-methoxycatechol. Thus, 4 and 5 are regio-isomers of methoxyhydroquinone glycoside. One of them, methoxyhydroquinone-1-O- β glucopyranoside (isotachioside) has been isolated from the liverwort, Isotachis japonica Steph [7]. The reported physicochemical properties of isotachioside are identical with those of 5. From these evidences, the other isomeric glucoside (4) is assigned the structure of Since methoxyhydroquinone-4-O- β -glucopyranoside. this is a new compound, we propose to name it tachioside, rather than isoisotachioside. The structures of these compounds were consistent with the ¹³C NMR substitution induced shift trends: β -Glucosylation shift value of arbutin $[\Delta \delta = \delta \text{ (arbutine)} - \delta \text{ (hydroquinone)}]$ on the ipso, ortho, meta and para carbons were +0.5, +1.9, -0.3and +2.3, respectively (in DMSO- d_6). These $\Delta\delta$ values were used to calculate the expected chemical shift of both glucosides of methoxyhydroquinone. On going from the methoxyhydroquinone (δ C(1-6) = 138.9, 148.1, 100.7, 150.3, 106.3 and 115.7, in DMSO-d₆ respectively), the calculated chemical shifts of all carbons of 4 and 5 were within 0.4 ppm from the observed value.


Compound 6, $C_{15}H_{20}O_{10}$ was obtained as colourless crystals. Methanolysis of 6 followed by GC analysis of the TMS derivative showed the presence of glucose. The ¹³C NMR spectrum of 6 showed the presence of 1,3,4,5tetra-substituted symmetrical aromatic ring carbons, two equivalent methoxyl carbons, carbonyl carbon and one set of β -glucopyranosyl carbons. The chemical shift of anomeric carbon (δ 96.4) was characteristic of esterified glucose. Acid hydrolysis of 6 afforded an aglycone, which was identified with syringic acid (6a) by means of ¹H NMR and ¹³C NMR spectroscopy. Compound 6 could thus be designated as syringic acid β -D-glucopyranosyl ester. Although the isomeric glucoside, glucosyringic acid is a known compound, to our knowledge, 6 has not been reported in Nature (Table 4).

EXPERIMENTAL

Mp: uncorr; ¹H NMR and ¹³C NMR: 100 and 25 MHz, respectively; MS: 75 eV.

Plant material. Berchemia racemosa Sieb. et Zucc was collected in the vicinity of Taishaku-kyo, Hiroshima Prefecture, Japan. A specimen is deposited at the Herbarium of Experimental Station of Medicinal Plants, Hiroshima University School of Medicine.

Extraction and separation of the constituent of B. racemosa. Dried stems of the plants (2.0 kg) were crushed and extracted with *n*-hexane and MeOH successively. The MeOH extract was suspended in H_2O and extracted with *n*-hexane, Et_2O , EtOAc, BuOH and H_2O successively. From the EtOAc fraction, 1 was obtained [1]. The BuOH-soluble fraction (20.2 g) was chromatographed on the highly porous polymer, Diaion-HP-20, H_2O

Xyl $\beta - D - Xy$ lopyranosyl

Glc $\beta - D - Glucopyranosyl$

Table 2	. ¹³ CNMI	R data of	compounds 3
and 3a	(25 MHz,	TMS as i	nt. standard)

		3	3a
с	(CD ₃ OD) (C ₅ D ₅ N)	(CDCl ₃)
1	134.0	133.2	132.4
2	113.4ª	113.5 [#]	111.7
3	148.8	148.5	146.6
4	145.4	146.1	143.7
5	115.7	116.2	114.3
6	122.7	122.5	121.5
7	35.5	35.0	35.8
8	44.0	43.8	43.7
9	62.8	61.7 ^c	60.5
1′	134.0	132.9	132.4
2′	113.6 ^a	113.7 ^a	111.7
3'	148.8	148.5	146.6
4'	145.4	146.1	143.7
5'	115.7	116.2	114.3
6'	122.7	122.5	121.5
7'	35.5	35.0	35.8
8′	41.6	41.5	43.7
9′	70.4	70.4	60.5
1″	104.6	105.3	
2″	75.2	75.4	_
3″	78.0 ^b	78.5 ^b	
4″	71.7	71.7	_
5″	78.2 ^b	78.6 ^b	—
6″	62.8	62.8 ^c	_
–OMe	56.3 × 2	55.9 × 2	55.7 × 2

^{a, b, c}Assignments may be interchanged between the same superscripts.

with 10, 20, 30, ... 90% MeOH and 100% MeOH). The 20% MeOH eluent was chromatographed again on Diaion HP-20 (H₂O-MeOH), then subjected to silica gel CC, Sephadex LH-20 CC (MeOH) and prep. HPLC (TSK gel ODS 120T, H₂O-MeOH-MeCN) to afford compound 4 (7 mg) and 5 (6 mg) along with 1 (6 mg).

The 50% MeOH eluent from the first Diaion column was subjected to CC (silica gel, $CHCl_3-MeOH-H_2O$), DCC ($CHCl_3-MeOH-H_2O$, 5:6:4) and DCC again ($CHCl_3-MeOH-H_2O$ -propan-1-ol, 5:6:4:1) to give compound 6 (21 mg).

The 60% MeOH eluent from the first Diaion column was subjected to silica gel CC (CHCl₃-MeOH-H₂O), DCC (CHCl₃-MeOH-H₂O), silica-gel CC (solvent:

Table 3. ¹³C NMR data of compounds 4 and 5 (25 MHz, DMSO-d₆, TMS as int. standard)

c	4	5
1	141.2 (s)	139.3 (s)
2	147.7 (s)	149.8 (s)
3	102.4 (d)	100.8 (d)
4	150.6 (s)	152.6 (s)
5	107.9 (d)	105.9 (d)
6	115.1 (d)	117.2 (d)
1′	101.6 (d)	101.4 (d)
2′	73.2 (d)	73.2 (d)
3'	76.9 (d)	76.8 (d)
4'	69.9 (d)	69.7 (d)
5'	76.6 (d)	76.7 (d)
6'	60.8 (t)	60.7 (t)
-OMe	55.4 (q)	55.5 (q)

Table 4. ¹³ CNMR data of	compounds 6
and $6a$ (25 MHz, $C_5D_5N_5$,	TMS as int.
standard)	

с	6	62
1	119.6 (s)	122.0 (s)
2	108.5 (d)	108.3 (d)
3	148.6 (s)	148.7 (s)
4	143.2 (s)	142.2 (s)
5	148.6 (s)	148.7 (s)
6	108.5 (d)	108.3 (d)
-COOH	166.0 (s)	169.2 (s)
1′	96.4 (d)	
2′	74.1 (d)	_
3′	79.4 (d)	_
4′	71.0 (d)	
5'	78.3 (d)	
6'	62.1 (t)	_
2 × –OMe	56.3 (q)	56.3 (q)

CHCl₃-MeOH-H₂O), Sephadex LH-20 CC (MeOH), low pressure LC (Lichroprep RP-8: H₂O-MeOH), prep HPLC (TSK gel ODS 120T, H₂O-MeOH) and silica gel CC (CHCl₃-MeOH-H₂O) to afford compound 2 (15 mg).

From the other fraction recovered from DCC of the 60% MeOH eluent, compound 3 (11 mg) was obtained by Sephadex LH-20 CC (MeOH), silica gel CC (CHCl₃-MeOH-H₂O) and Lichroprep RP-8 (H₂O-MeOH).

Nudiposide (2). Colourless needles from benzene-Me₂CO, mp 169-172°, $[\alpha]_D - 66.3°$ (MeOH; c 0.48), lit [4] mp 175-178°, $[\alpha]_D - 68.9°$ (MeOH; c 0.65). IR v_{max}^{KBr} cm⁻¹: 3360, 2900, 1610, 1515, 1500, 1315, 1212, 1110; UV λ_{max}^{EOH} nm (loge): 230 inf. (4.27), 280 (3.60); ¹H NMR (CD₃OD): δ 1.80-2.20 (2H, m), 2.69 (2H, d, J = 8 Hz), 3.62 (2H, d, J = 5 Hz), 3.74 (9H, s, -OMe), 3.84 (3H, s, -OMe), 4.09 (1H, d, J = 7 Hz, anomeric H), 4.22 (1H, d, J = 7 Hz), 6.41 (2H, s), 6.56 (1H, s); ¹³C NMR (CD₃OD): see Table 1. Identified by comparison with an authentic sample (¹H NMR, ¹³C NMR, IR, UV, $[\alpha]_D$ mmp, TLC).

(-)-Secoisolariciresinol-9'-O-β-D-glucopyranoside (3). Amorphous powder, $[\alpha]_D - 22.9^\circ$ (EtOH, c 0.50), lit [5] $[\alpha]_D - 20.5^\circ$ (MeOH, c 3.2). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 2900, 1600, 1512, 1450, 1370, 1270, 1028, UV $\lambda_{\text{EtOH}}^{\text{EtOH}}$ nm (loge): 223 sh (4.26), 282 (3.88); ¹H NMR (CD₃OD): δ 1.80-2.30 (2H, m), 2.45-2.80 (4H, m), 3.61 (2H, br d), 3.75 (6H, s, -OMe), 4.20 (1H, d, J = 7 Hz, anomeric H), 6.45-6.80 (6H, m); ¹³C NMR (CD₃OD): see table 2. Identified by comparison with an authentic sample (¹H NMR, ¹³C NMR, $[\alpha]_D$ TLC).

Tachioside (Methoxyhydroquinone-4-β-D-glucopyranoside, (4). Mp 211-213° (aq. MeOH, colourless needles, $[\alpha]_D - 55.4°$ (MeOH c 0.21); EIMS m/z (rel. int): 302.1001 $[M]^+$ (calc. 302.1001, C₁₃H₁₈O₈, 15), 140.0482 (calc. 140.0473, C₇H₈O₃, 100), 125.0279 (calcd 125.0239, C₆H₅O₃, 15); IR v_{max}^{KBr}cm⁻¹: 3600-3000, 1610, 1510, 1445, 1370, 1295, 1245, 1220, 1195, 1168, 1081, 1042, 995, 941, 840, 805; UV λ_{max}^{MOH} nm (logs): 206 (4.21), 220 sh (3.85), 227 sh (3.84), 285 (3.60); ¹H NMR (C₅D₅N, 270 MHz): δ 7.16 (1H, d, J = 2.5 Hz, H-3), 7.15 (1H, d, J = 8 Hz, H-5), 7.05 (1H, dd, J = 2.5, 8 Hz, H-5), 5.55 (1H, d, J = 7 Hz, H-1'), 4.59 (1H, br, d, J = 10 Hz, H-6'), 4.40 (1H, dd, J = 5, 10 Hz, H-6'), 4.45-4.29 (3H, m, H-2', 3', 4'), 4.12 (1H, br, s, H-5'), 3.71 (3H, s, -OMe), 8.55 (1 H, OH); ¹³C NMR: see Table 3.

Isotachioside (methoxyhydroquinone-1- β -D-glucopyranoside, (5). Mp 195–197° (aq. MeOH), colourless needles, $[\alpha]_D - 54.5°$ (MeOH c 0.15), EIMS m/z (rel. int.): 302 [M]⁺ (<1), 140.0461 (calc. 140.0473, $C_7H_8O_3$, 100), 125.0211 (calc. 125.0239, $C_6H_5O_3$, 100); $IR \nu_{max}^{KB}cm^{-1}$: 3600–3000, 1610, 1510, 1460, 1360, 1305, 1285, 1260, 1220, 1200, 1160, 1130, 1081, 1030, 995, 955, 840, 805; $UV \lambda_{max}^{MOOH}$ nm (loge): 206 (4.30), 223 (3.95), 231 inf (3.88), 285 (3.56); ¹H NMR (C_5D_5N , 270 MHz): δ 7.55 (1H, d, J = 9 Hz, H-6), 6.92 (1H, d, J = 3 Hz, H-3), 6.71 (1H, dd, J = 3, 8 Hz, H-5), 5.56 (1H, d, J = 5, 10 Hz, H-6'), 4.48–4.27 (3H, m, H-2', 3', 4'), 4.07 (1H, br, s, H-5'), 3.70 (3H, s, –OMe), 9.08 (1H, OH). (Identical with the reported ones [7].) ¹³C NMR: see Table 3.

HPLC analysis of aglycones of 4 and 5. Methoxyhydroquinone was purchased from Tokyo-Kasei Co. Ltd (Tokyo). Authentic 4methoxyresorcinol (mp 72-74°, δc (1-6) = 140.6, 147.4, 103.7, 151.8, 104.8 and 114.1, respectively) was synthesized from isovanillin by Baeyer-Villiger oxidation and then alkaline hydrolysis of the formate. [8, 9]. Selective methylation of 1,2,4hydroxybenzene gave 4-methoxycatechol [10], colourless oil, δc (1-6) = 139.1, 145.8, 102.5, 152.6, 103.3 and 115.6, respectively. About 1 mg of 4 and 5 was hydrolysed with 1 M H₂SO₄ at 100° for 30 min and the aglycones thus liberated, was taken up in Et_2O . The soln was evapd to dryness and subjected to HPLC analysis (column: Toyo-Soda ODS-120A (10 μ m) 4 × 150 mm; MeOH-H₂O 1:9, at 25°, 1.5 ml/min; detection: UV at 290 nm). R_t (min) of authentic methoxyhydroquinone, 4-methoxyresorcinol and 4-methoxycatechol were 4.00, 6.05 and 8.00. The aglycone from the hydrolysates of 4 and 5 was eluted at the same R, as methoxyhydroquinone (4.00 min).

Syringic acid β -D-glucopyranosyl ester (6). Mp 122-126° (benzene-MeOH), colourless needles, $[\alpha]_D - 19.5°$ (pyridine; c 0.44); found: C, 46.05; H, 6.11. $C_{15}H_{20}O_{10} \cdot 3/2H_2O$ requires: C, 46.51; H, 5.99%). IR ν_{max}^{KBr} cm⁻¹: 3600-3000 (-OH), 1702 (C=O), 1606, 1515, 1460, 1425, 1335, 1220, 1115, 1100, 1080, 1040, 1030, 1015, 765. UV $\lambda_{max}^{\text{EudP}}$ nm (loge): 222 (4.36), 281 (4.11); ¹H NMR (C₅D₅N) 7.72 (2H, s, H-2, 6), 3.76 (6H, s, -OMe), 4.70-4.00 (sugar moiety), 6.64 (1 H, br, s, H-1'), ¹³C NMR: see Table 4.

Acknowledgements—We thank Prof. Y. Ogihara, Nagoya City University, for samples of 2a and 2b, Prof. I. Nishioka, Kyushu University, for a sample of 2c, Prof. O. Theander, Agricultural College of Sweden, for a sample of 3, Prof. Y. Asakawa, Tokushima Bunri University, for a sample and NMR of methyl ether of 5, and Dr H. Kanamori and Dr I. Sakamoto for the measurement of MS.

REFERENCES

- In Directory of Chinese Materia Medica (Zhong Yao Da Ci Dian) (1977) (Jiangsu New Medical College, ed.) p. 2068. Shanghai Scientific and Technological Publisher, Shanghai.
- 2. Inoshiri, S., Sasaki, M., Hirai, Y., Kohda, H., Ostuka, H. and Yamasaki, K. (1986) Chem. Pharm. Bull. 34, 1333.
- 3. Miyamura, M., Nohara, T., Tomimatsu, T. and Nishioka, I. (1983) Phytochemistry 22, 215.
- Ogawa, M. and Ogihara, Y., (1976) Chem. Pharm. Bull. 24, 2102.
- 5. Achenbach, R., Waibel, R. and Addae-Mensah, I. (1983) *Phytochemistry* 22, 749.
- 6. Popof, T. and Theander, O. (1977) Acta Chem. Scand. B31, 329.
- 7. Asakawa, Y., Toyota, M. and Harrison, L. (1985) Phytochemistry 24, 1509.
- Camps, F., Coll, J., Messeguer, A. and Pericas, M. A. (1981) Tetrahedron Letters 22, 3895.
- 9. Camps, F., Colomina, O., Coll, J. and Messeguer, A. (1982) Tetrahedron 38, 2955.
- 10. Scheline, R. R. (1966) Acta Chem. Scand. 20, 1182.