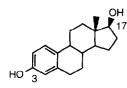


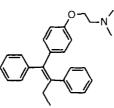
PII: S0960-894X(97)00130-3

VERSATILE RALOXIFENE TRIFLATES

Michael J. Martin,* Timothy A. Grese, Andrew L. Glasebrook, Ken Matsumoto, Lewis D. Pennington, D. Lynn Phillips, and Lorri L. Short


Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285

Abstract: Methodology has been employed that permits the differentiation of the phenols of raloxifene. Transition metal mediated transformations of raloxifene triflates have subsequently provided a number of analogs that were evaluated further in two in vitro models predictive of estrogen receptor mediated biological activity. © 1997 Elsevier Science Ltd.


The effect of naturally occurring estrogens, such as 17β -estradiol, on numerous tissues has long been recognized. In postmenopausal women, specifically, estrogen production is dramatically diminished, and the loss of its protective effects on the skeleton is a major health concern.^{1a} Decreased estrogen levels have also been implicated in other pathologies, such as depression and schizophrenia,^{1b} cardiovascular disease,^{1c} and Alzheimer's disease.^{1c}

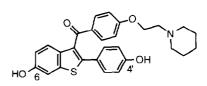
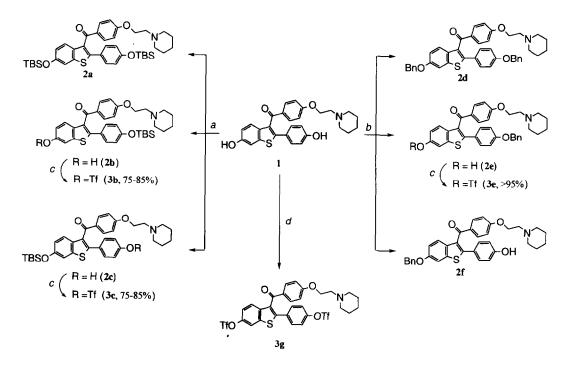

Hormone replacement therapy can restore estrogen levels to a protective state, but reproductive cancer risks and side effects preclude widespread acceptance.^{la-c} Nonsteroidal "antiestrogens" like tamoxifen that act through the estrogen receptor (ER) have been developed to antagonize the negative effects of estrogens in, for example, breast tissue.^{ld-g} Of particular interest are "antiestrogens" that exhibit antagonist effects in reproductive tissues but mimic estrogen in the skeletal and cardiovascular systems. Raloxifene **1** has been identified as a nonsteroidal, selective estrogen receptor modulator (SERM), and is currently under evaluation for the treatment and prevention of osteoporosis.^{2a-e}

Figure 1

17-β-estradiol

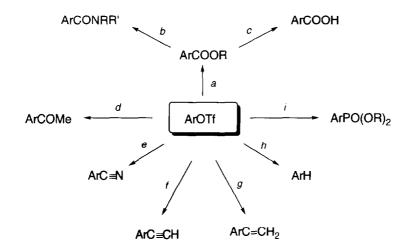

tamoxifen

raloxifene, 1

The importance of the hydroxyl groups of 17β -estradiol, specifically the phenol at position-3, in ER binding has been detailed.^{1f,g} It is probable that the phenolic moieties present in raloxifene mimic the hydroxyl functionalities of 17β -estradiol, as has been described for other ER modulators.^{1d-g} In an attempt to clarify the role of the individual phenols of raloxifene, we have employed methodology that differentially transforms these residues. The resulting raloxifene analogs were then examined in two in vitro assays predictive of estrogen receptor mediated biological activity. Specifically, agents were assayed for their ability to bind to the estrogen receptor and to inhibit estrogen-stimulated proliferation of a mammary tumor cell line.

Chemistry

A variety of raloxifene analogs substituted at the 6- and 4'-phenolic positions were synthesized via transition metal (Pd and Ni) catalyzed reactions of substituted raloxifene triflates, as detailed below.


(a) TBSCI, DMAP, THF, DMF, chromatography, ~20% each;
(b) BnCI, NaH, DMF, chromatography, ~20% each;
(c) Tf₂NPh, Et₃N, CH₂Cl₂;
(d) Tf₂O, Et₃N, ClCH₂Cl, 51%

As summarized in Scheme 1, raloxifene was differentially protected by treatment with TBSCI and DMAP to provide a 1:1:1 mixture of chromatographically separable silvl ethers 2a-c.³ This procedure was equally

effective using benzyl chloride and NaH to afford a similar mixture of benzyl ethers **2d-f**. Triflates **3b-c**, **e** and **g** were then prepared by treating raloxifene phenol derivatives with *N*-phenyltrifluoromethanesulfonimide or $Tf_2O.^4$

Raloxifene triflates 3 were then converted into various analogs, as illustrated in Figure 2. Esters 4a-b, 5a-c, and 6a-c (see Table) were prepared by palladium mediated carbonylation, with yields ranging from 27% to >95%.⁵ Partial deprotection of silyl ethers occurred in situ with both congeners, but reprotection of the exposed phenol group was easily effected for further transformation. Utilization of a benzyl ether at position-4' provided robust protection throughout the carbonylation (and subsequent) steps.

Figure 2. Raloxifene Triflate Derivatives

(a) Pd(OAc)₂, bis-diphenylphosphinopropane (dppp), Et₃N, DMF, ROH, CO, 27-95%; (b) Me₃AlNRR⁺HCl, PhCH₃ or NH₃, MeOH or NaNH₂, THF, 21-72%; (c) LiOH, THF or EtOH, 30-51%; (d) Pd(OAc)₂, dppp, Et₃N, DMF, butylvinyl ether, 41-50%; (e) Ni(dppp)Cl₂, KCN, Zn, MeCN, <15%; (f) Pd(OAc)₂, dppp, Et₃N, DMF, TMS-C≡CH, 22-45%; (g) Pd(OAc)₂, dppp, Et₃N, DMF, vinyl acetate, <7%; (h) Pd(OAc)₂, dppp, Et₃N, DMF, HCO₂H, 60-71%; (i) Pd(PPh₃)₄, HPO(OEt)₂, MeCN, 31-86%

Note Yields include desilylation (where appropriate) using TBAF/CH2Cl2 or aq HCI/THF

Methyl esters 4a and 5a were derivatized further to provide additional analogs. Amides 4d-f and 5e were prepared primarily using the aminolysis procedure of Weinreb in 21-72% yield.⁶ Carboxylic acids 4c and 5d were obtained by saponification with LiOH in 30-51% yield. Conversion of the phenols of derivatives 4a and 5a into the respective triflates, followed by palladium mediated reduction with 95% HCOOH, afforded the hydro analogs 6b,c in 60-71% yield.⁷

Other analogs were also available via these versatile aryl triflates. Monotriflates **3b,c** were converted under palladium catalysis into the acetyl⁸ **4g**, **5f** and diethylphosphonyl⁹ **4h**, **5g** derivatives, with overall yields ranging from 31-86%. The 4'-nitrile congener **4k** was prepared in modest yield (<15%) from triflate **3b**, ¹⁰ and reaction of 4'-monotriflate **3b** with vinyl acetate afforded the 4'-vinyl derivative **4j** in low yield (<7%).¹¹ Interestingly, the attempted nitrile and vinyl transformations at position-6 using triflate **3c** failed uniformly. Finally, treatment of raloxifene monotriflates **3b,c** with TMS-C=CH afforded the respective ethynyl analogs **4i** and **5h** in 22-45% yield.¹²

Biology¹³

Compounds were evaluated to determine ER binding affinity in an MCF-7 cell lysate through competitive displacement of tritiated 17 β -estradiol. Relative binding affinities are presented (RBA) as an average of at least two (2) determinations with an accuracy of $\pm 10\%$. Antagonist effects in breast tissue were assayed by inhibition of estrogen stimulated MCF-7 cell proliferation. Data are presented (IC₅₀) as the dose required to give 50% inhibition of a maximally effective dose (10⁻¹¹ M) of 17 β -estradiol. Values represent an average of at least three (3) determinations with an accuracy of $\pm 10\%$. These data are summarized in the Table.

It should be noted that all compounds substituted at position-6 and/or -4' of raloxifene showed a marked decrease in binding and MCF-7 antiproliferative activity versus raloxifene itself, although most demonstrated improved inhibition of proliferation versus tamoxifen. In general, replacement of the 4'-phenol was tolerated marginally better than the comparable transformation at position-6, suggesting that the 6-phenol of raloxifene may mimic the 3-phenol of 17β -estradiol in ER binding. Additionally, it appears that analogs bearing smaller groups at position-4' (4g and 4i-k) exhibit better binding and antiproliferative activity overall, implying steric constraints to ER binding. Replacement of both phenolic moieties of raloxifene effectively abated all binding and proliferation antagonism, providing further evidence for the requirement of these functional groups for in vitro ER activity.

Conclusion

The monotriflate route to raloxifene analogs is an expedient method for the synthesis of compounds that would be difficult to make by other routes. The availability of the starting material and the flexibility of these intermediates has provided unique opportunities for the timely preparation of a wide variety of derivatives.

While the binding data for these raloxifene analogs indicate decreased affinity for the ER, the antiproliferative data suggest these congeners merit further consideration. Additionally, the propensity of the phenolic residues of raloxifene to undergo glucuronidation is well established.¹⁴ In this light, the potential in vivo activity of these raloxifene analogs is intriguing. It is conceivable that reducing the metabolic liability incurred by a free phenol would improve bioavailability. Further results in this area will be reported in due course.¹⁵

			[³ H]-Estradiol RBA	Inhibition of MCF-7 Proliferation (IC ₅₀ , nM
	estra	adiol	1.00	inactive
1	ralo	kifene	0.34	0.2
	tamoxifen		0.010	530
	R ₆ CTs	$ \begin{array}{c} & & \\ & & $		
4a	НО	CO ₂ Me	0.07	50
4 b	НО	CO ₂ Et	0.06	50
4c	НО	CO ₂ H	0.012	325
4d	НО	CONH ₂	0.039	200
4e	НО	CONHMe	0.016	40
4f	HO	CONMe ₂	0.040	20
4g	НО	COMe	0.075	32
lh.	НО	PO(OEt) ₂	0.010	210
4i	НО	C≡CH	0.12	0.8
4j	IIO	CH=CH ₂	0.10	7
lk	НО	C≡N	0.18	8
5a	MeO ₂ C	ОН	< 0.01	30
5b	<i>n</i> -BuO ₂ C	ОН	< 0.01	40
5c	<i>i</i> -BuO ₂ C	ОН	< 0.01	40
5d	HO ₂ C	ОН	inactive	inactive
5e	H ₂ NOC	ОН	< 0.01	1000
5f	MeOC	ОН	0.008	60
5g	(EtO) ₂ OP	ОН	< 0.01	200
h	HC≡C	ОН	0.029	20
6a	MeO ₂ C	CO ₂ Me	< 0.01	1000
6b	П	CO ₂ Me	inactive	1000
6c	MeO ₂ C	Н	< 0.01	1000

Table. Binding and Antiproliferative Data for Raloxifene Derivatives

References and Notes

- (a) Riggs, B. C.; Melton, L. J. New Engl. J. Med. 1992, 327, 620; Dempster, D. W.; Lindsay, R. Lancet 1993, 341, 797; Lindsay, R. Lancet 1993, 341, 801; (b) Fink, G.; Sumner, B. E. H. Nature (London) 1996, 383, 306; (c) Pennisi, E. Science 1996, 273, 1171; (d) Love, R. R.; Mazess, R. B.; Barden, H. S., Epstein, S.; Newcomb, P. A.; Jordan, V. C.; Carbone, P. P.; DeMets, D. L. New Engl. J. Med. 1992, 326, 852; (e) Polossek, T.; Ambros, R.; von Angerer, S.; Brandl, G.; Mannschreck, A.; von Angerer, E. J. Med. Chem. 1992, 35, 3537; (f) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A. J. Med. Chem. 1989, 32, 2163; (g) Lovely, C. J.; Gilbert, N. E.; Liberto, M. M.; Sharp, D. W.; Lin, Y. C.; Brueggemeier, R. W. J. Med. Chem. 1996, 39, 1917.
- (a) Black, L. J.; Sato, M.; Rowley, E. R.; Magee, D. E.; Bekele, A.; Williams, D. C.; Cullinan, G. J.; Bendele, R.; Kauffman, R. F.; Bensch, W. R.; Frolik, C. A.; Termine, J. D.; Bryant, H. U. J. Clin. Invest. 1994, 93, 63; (b) Grese, T. A.; Bryant, H. U.; Cole, H. W.; Kim, J. R.; Magee, D. E.; Rowley, E. R.; Sato, M. J. Bone Miner. Res. 1995, 10, S458 (suppl 1); (c) Termine, J. D. Presented at the American Society of Bone and Mineral Research, 16th Annual Meeting, Kansas City, MO, 1994, Minisymposia A: Estrogens and Anti-estrogens; (d) Draper, M. W.; Flowers, D. E.; Huster, W. J.; Neild, J. A. Proceedings of the Fourth International Symposium on Osteoporosis, 1993, 119; (e) Grese, T. A.; Dodge, J. D. Ann. Reports Med. Chem. 1996, 31, 181.
- Dodge, J. A.; Lugar, C. W.; Cho, S.; Short, L. L.; Sato, M.; Yang, N. N; Spangle, L. A.; Martin, M. J.; Phillips, D. L.; Glasebrook, A. L.; Osborne, J. J.; Bryant, H. U.; Frolik, C. A. J. Steroid Biochem. Molec. Biol., in press.
- 4. Shakespeare, W. C.; Johnson, R. P. J. Am. Chem. Soc. 1990, 112, 8578.
- 5. Dolle, R. E.; Schmidt, S. J.; Kruse, L. I. J. Chem. Soc., Chem. Commun. 1987, 904.
- (a) Levin, J. I., Turos, E.; Weinreb, S. M. Synth. Commun. 1982, 12, 989; (b) Levi, E. M.; Mao, C. L.; Hauser, C. R. Can. J. Chem. 1969, 47, 3671.
- 7. Cabri, W.; De Bernardinis, S.; Francalanci, F.; Penco, S.; Santi, R. J. Org. Chem. 1990, 55, 350.
- Thurieau, C.; Simonet, S.; Paladino, J.; Prost, J. F.; Verbeuren, T.; Fauchere, J. L. J. Med. Chem. 1994, 37, 625.
- 9. Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem. 1990, 55, 3654.
- 10. Chambers, M. R. I.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. I 1989, 1365.
- 11. Cabri, W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem. 1992, 57, 3558.
- 12. Taylor, E. C.; Wong, G. S. K. J. Org. Chem. 1989, 54, 3618.
- Glasebrook, A. L.; Phillips, D. L.; Sluka, J. P. *J. Bone Miner. Res.* 1993, *8*, S268 (suppl 1); Thompson, E. W.; Reich, R.; Shima, T. B.; Albini, A.; Graf, J.; Martin, G. R.; Dickson, R. B.; Lippman, M. E. *Cancer Res.* 1988, *48*, 6764.
- 14. Lindstrom, T. D.; Whitaker, N. G.; Whitaker, G. W. Xenobiotica 1984, 14, 841.
- 15. Full experimental details and results from additional biological assays will be reported (Grese, T. A. in press).

(Received in USA 31 December 1996; accepted 3 March 1997)