Di- and Tri-metallic Complexes containing Two Bridging Cyclodiphosphazane Ligands: the Crystal Structure of $[Mo_2(CO)_8\{\mu\text{-}cis\text{-}[PhNP(OC_6H_4Me\text{-}p)]_2\}_2]^{\dagger}$

Venkata S. Reddy, Setharampattu S. Krishnamurthy* and Munirathinam Nethaji
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India

The reactions of the mononuclear cyclodiphosphazane complexes, cis- $[Mo(CO)_4(cis$ - $[PhNP(OR)]_2)_2]$ with $[Mo(CO)_4(nbd)]$ (nbd = norbornadiene), $[Mo(CO)_4(nHC_5H_{10})_2]$ or $[MCl_2(cod)]$ (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes, $[Mo_2(CO)_8\{\mu\text{-}cis\text{-}[PhNP(OR)]_2\}_2]$ (R = $C_6H_4Me\text{-}p$ 5 or CH_2CF_3 6) or the heterobimetallic complexes, $[Mo(CO)_4\{\mu\text{-}cis\text{-}[PhNP(OR)]_2\}_2MCl_2]$ (R = $C_6H_4Me\text{-}p$; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, $cis\text{-}[M(CO)_4(A)\{cis\text{-}[PhNP(OC_6H_4Me\text{-}p)]_2\}]$ with $[M'Cl_2(cod)]$ afforded the trinuclear complexes, $cis\text{-}[M'Cl_2[M(CO)_4(A)\{cis\text{-}[PhNP(OC_6H_4Me\text{-}p)]_2\}]_2]$ (M' = Pd, M = Mo, A = P(OMe)_3 10; M' = Pt, M = Mo, A = P(OMe)_3 11; M' = Pd, M = W, A = NHC_5H_{10} 12; M' = Pt, M = W, A = NHC_5H_{10} 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.

The co-ordination chemistry of cyclodiphosphazanes $(1,3,2\lambda^3,4\lambda^3$ -diazadiphosphetidines), $(RNPX)_2$ has been investigated to a limited extent as compared to analogous studies with acyclic diphosphazanes, $RN(PX_2)_2$. Reactions of cyclodiphosphazanes with Group 6 metal carbonyl moieties are complex but recent studies from our laboratory ^{3,4} have helped to unravel the complexity by a combination of high-field ³¹P NMR spectroscopy and X-ray crystallography. Mono- and dimetallic complexes featuring a monoco-ordinated or bridging cyclodiphosphazane in its *cis* or *trans* isomeric forms have been isolated and characterized. In this paper, we report the synthesis of di- and tri-metallic complexes bearing two bridging cyclodiphosphazane ligands by using mononuclear complexes as building blocks.

Experimental

All reactions were carried out under dry nitrogen by Schlenk techniques.⁵ Solvents were purified and dried by standard methods and distilled under nitrogen prior to use.⁶ NMR spectra were recorded on a Bruker ACF 200 (¹⁹F NMR operating at 188.3 MHz, solvent CDCl₃, standard CFCl₃) or Bruker AMX 400 (¹H NMR, solvent CDCl₃, standard SiMe₄; ³¹P NMR operating at 161.3 MHz, solvent CDCl₃, standard 85% H₃PO₄) spectrometers. Positive chemical shifts are downfield from the standard. Infrared spectra were recorded in Nujol mulls on a Hitachi-270-50 spectrometer. Microanalyses (C, H, N) were performed on a Heraeus CHN O-Rapid analyser.

The transition-metal precursors such as cis-[Mo-(CO)₄(nbd)]⁷ {nbd = norbornadiene (bicyclo[2.2.1]hepta-2,-5-diene)}, cis-[Mo(CO)₄(NHC₅H₁₀)₂],⁸ cis-[Mo(CO)₄(NH-C₅H₁₀){P(OMe)₃}],⁸ cis-[MCl₂(cod)] (M = Pd ⁹ or Pt ¹⁰. cod = cycloocta-1,5-diene), cis-[Mo(CO)₄{cis-[PhNP(OC₆-H₄Me-p)]₂}] 1,³ cis-[Mo(CO)₄{cis-[PhNP(OCH₂CF₃)]₂}] 2,³ cis-[Mo(CO)₄{P(OMe)₃}{cis-[PhNP(OC₆+M₄Me-p)]₂}] 3³

and cis-[W(CO)₄(NHC₅H₁₀){cis-[PhNP(OC₆H₄Me-p)]₂}]³ **4** were prepared by published methods.

Syntheses.—[{Mo(CO)₄[μ -cis-{PhNP(OC₆H₄Me-p)}₂]}₂] **5**. A solution of **1** (0.30 g, 0.27 mmol) and [Mo(CO)₄-(NHC₅H₁₀)₂] (0.10 g, 0.27 mmol) in dichloromethane (25 cm³) was heated under reflux for 24 h. The solution was filtered and the filtrate evaporated to dryness under reduced pressure. The residue was extracted with dichloromethane–hexane (1:1 v/v) and the extract filtered through a column (10 × 2 cm) of Celite. Solvent was removed *in vacuo* and the residue crystallized from dichloromethane–hexane (6 cm³, 1:1 v/v) to afford an analytically pure colourless crystalline solid **5** in 70% (0.25 g) yield. M.p. 191–193 °C (decomp.) (Found: C, 54.2; H, 3.7; N, 4.3. Calc. for C₆₀H₄₈Mo₂N₄O₁₂P₄: C, 54.1; H, 3.6; N, 4.2%). IR(Nujol): v(CO) 2038 (sh), 1971s, 1935s and 1913vs cm⁻¹. NMR(CDCl₃): ¹H, δ 2.13 (s, 12 H, CH₃) and 6.5–7.3 (m, 36 H, C₆H₄ and Ph); ³¹P, δ 155.5 (s).

[{Mo(CO)₄[μ -cis-{PhNP(OCH₂CF₃)₂]₂] 6. A solution of **2** (0.30 g, 0.092 mmol) and [Mo(CO)₄(nbd)] (0.28 g. 0.092 mmol) in dichloromethane (15 cm³) was heated under reflux for 24 h, and the reaction mixture worked up as described above for **5** to give **6** in 65% yield. The compound was recrystallized from dichloromethane–hexane (6 ml, 1:1 v/v). M.p. 174–176 °C (decomp.). IR(Nujol): v(CO) 2044 (sh), 1992vs, 1956s and 1941s cm⁻¹. NMR (CDCl₃): ¹H, δ 4.28 (m, 8 H, CH₂) and 6.96–7.25 (m, 20 H, Ph); ¹⁹F, δ -75.71 [t, ³J(HF) = 7.9 Hz, CF₃]; ³¹P, δ 157.9 (s). Satisfactory C, H, N analyses could not be obtained for this compound.

[Mo(CO)₄{ μ -cis-[PhNP(OC₆H₄Me-p)]₂}₂PdCl₂] 7. A solution of 1 (0.20 g, 0.18 mmol) and [PdCl₂(cod)](0.047 g, 0.18 mmol) in dichloromethane (25 cm³) was stirred at room temperature for 24 h. The reaction mixture was filtered through a Celite column (6 × 2 cm) and the filtrate evaporated to dryness under reduced pressure. The orange-yellow residue was crystallized from dichloromethane–hexane (9 cm³, 1:2 v/v) to afford compound 7 in 62% (0.23 g) yield. M.p. 187–188 °C (decomp.) (Found: C, 50.8; H, 3.9; N, 5.2. Calc. for C₅₆H₄₈Cl₂MoN₄O₈P₄Pd: C, 51.7; H, 3.7; N, 4.3%). IR(Nujol): v(CO) 2038 (sh), 1956s, 1935vs and 1905s cm⁻¹. NMR(CDCl₃): 1 H, δ 2.11 [s, δ H, CH₃(PMo)], 2.26 [s, δ H, CH₃(PPd)] and

[†] Organometallic Chemistry of Diphosphazanes. Part 12.¹ Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

6.7–7.4 (m, 36 H, C_6H_4 and Ph); ³¹P, δ 112.0 [s, P(Pd)] and 177.9 [s, P(Mo)].

[Mo(CO)₄{ μ -cis-[PhNP(OC₆H₄Me-p)]₂}₂PtCl₂] **8**. A solution of **1** (0.20 g, 0.18 mmol) and [PtCl₂(cod)] (0.066 g, 0.18 mmol) in dichloromethane (25 cm³) was stirred at room temperature for 24 h and the reaction mixture worked up as described above for **7** to afford compound **8** (yield 0.140 g, 58%). IR(Nujol): ν (CO) 2047 (sh), 1972s, 1962s and 1943vs cm⁻¹. M.p. 192–194 °C (decomp.). NMR (CDCl₃): 1 H, δ 1.86 [s, 6 H, CH₃(PPt)], 2.20 [s, 6 H, CH₃(PMo)] and 6.18–7.45 (m, 36 H, C₆H₄ and Ph); 31 P, δ 92.1 [t, 2 J(PP) = 24.5, 1 J(PtP) = 5513, P(Pt)], 163.2 [t, 2 J(PP) = 24.5 Hz, P(Mo)].

In the above reaction, in addition to the dinuclear complex **8**, the mononuclear complex, trans-[PtCl₂{cis-[PhNP(OC₆-H₄Me-p)]₂}₂] **9** was formed as indicated by ³¹P NMR spectroscopy. Satisfactory C, H, N analyses could not be obtained for **8** as it was admixed with **9** as an impurity.

The reaction of *cis*-[PtCl₂{*cis*-[PhNP(OC₆H₄Me-*p*)]₂}₂] and [Mo(CO)₄(nbd)] (1:2 molar ratio) under refluxing conditions in dichloromethane for 24 h yields the dinuclear complex [Mo₂(CO)₈{μ-*cis*-[PhNP(OC₆H₄Me-*p*)]₂}₂] 5 as a major product (40% yield) in addition to other products (³¹P NMR evidence) which could not be characterized.

cis-[PdCl₂{Mo(CO)₄[P(OMe)₃](cis-[PhNP(OC₆H₄Me-p)]₂)₂] **10**. A mixture of **3** (0.20 g, 0.026 mmol) and [PdCl₂(cod)] (0.036 g, 0.013 mmol) in dichloromethane (20 cm³) was stirred at 25 °C for 24 h. The resultant solution was concentrated (ca. 5 cm³) and n-pentane (20 cm³) was added. The precipitate was filtered off and dried in vacuo to obtain compound **10** in 60% (0.140 g) yield as a greenish-yellow powder. M.p. 119–120 °C (decomp.) (Found: C, 40.8; H, 3.9; N, 3.0. Calc. for C₆₆H₆₆Cl₂Mo₂N₄O₁₈P₆Pd: C, 45.1; H, 3.8; N, 3.2%). IR(Nujol): v(CO) 2044 (sh) and 1947vs, br cm⁻¹. NMR (CDCl₃): ¹H, δ 1.86 [s, 6 H, CH₃(PMo)], 2.21 [s, 6 H, CH₃(PPd)], 3.25 [d, ²J(PH) = 11.3, 18 H, OCH₃] and 6.47–7.69 (m, 36 H, C₆H₄ and Ph); ³¹P-{¹H}, δ 99.9 [dd, ²J(PP) = 11.2, ²J(PP) = 16.3, PPd), 157.4 [d, ²J(PP) = 43.5 Hz, P(OMe)₃] and 167.9 [m, P(Mo)].

cis-[PtCl₂{cis-Mo(CO)₄[P(OMe)₃](cis-[PhNP(OC₆H₄Me-p)]₂)}₂] 11. Compound 11 was prepared as described above for 10, by the reaction of 3 and [PtCl₂(cod)] in 60% yield. M.p. 143–146 °C (decomp.) (Found: C, 43.2; H, 3.9; N, 4.2. Calc. for $C_{66}H_{66}Cl_2Mo_2N_4O_{18}P_6Pt$: C, 42.9; H, 3.6; N, 3.0%). IR(Nujol): v(CO) 2044 (sh), 1964s and 1929s, br cm⁻¹. NMR (CDCl₃): 1 H, δ 2.04 [s, 6 H, CH₃(PMo)], 2.22 [s, 6 H, CH₃(PPt)], 3.26 [d, 2 J(PH) = 11.3, 18 H, OCH₃] and 5.97–7.87 (m, 36 H, C_6H_4 and Ph); 3 1P-{ 1 H}, δ 74.2 [d, 2 J(PP) = 24, 1 J(PtP) = 5316, P(Pt)], 157.2 [d, 2 J(PP) = 44, P(OMe)₃] and 165.1 [dd, 2 J(PP) = 44, 2 J(PP) = 24 Hz, P(Mo)].

 $\textit{cis-}[PdCl_2\{W(CO)_4(NHC_5H_{10})(\textit{cis-}[PhNP(OC_6H_4Me-CO)]\}) = 0$ $p(x)_{2}$ 12. A mixture of 4 (0.20 g, 0.024 mmol) and [PdCl₂(cod)] (0.034 g, 0.012 mmol) was stirred in dichloromethane (25 cm³) at 25 °C for 45 h. The resultant solution was filtered through a Celite column (2 × 2 cm) and solvent was removed from the filtrate under reduced pressure. The yellow residue was recrystallized from dichloromethane-pentane (8 cm³, 1:1) at 0 °C to obtain complex 12 in 75% (0.17 g) yield as a yellow crystalline solid. M.p. 125-128 °C (decomp.) (Found: C, 44.6; H, 3.9; N, 5.1. Calc. for $C_{70}H_{70}Cl_2N_6O_{12}P_4PdW_2$: C, 45.3; H, 3.8; N. 4.5%). IR(Nujol): v(CO) 2032 (sh), 1935s, 1911s and 1875s cm⁻¹. NMR (CDCl₃): ¹H, δ 1.10 (m, 4 H, p-CH₂), 1.25 (m, 8 H, m-CH₂), 1.91 [s, 6 H, CH₃(PW)], 2.25 [s, 6 H, CH₃(PPt)], 2.35 (m, 4 H, NCH₂), 3.05 (m, 4 H, NCH₂) and 6.07–7.91 (m, 36 H, C_6H_4 and Ph); $^{31}P-^{1}H$, δ 89.2 [t, $^{2}J(PP) = 12$ (virtual coupling), PPd] and 134.0 [t, $^{1}J(PW) =$ 404 Hz, P(W)].

cis-[PtCl₂{ $\overline{W}(CO)_4(NHC_5H_{10})(cis$ -[PhNP(OC₆H₄Me-p)]₂)}₂] **13**. A mixture of **4** (0.30 g, 0.36 mmol) and [PtCl₂(cod)] (0.066 g, 0.18 mmol) in dichloromethane (25 cm³) was stirred at 25 °C for 45 h and the reaction mixture worked up as described above for **12** to afford complex **13** in 65% yield. M.p. 125–

130 °C (decomp.) (Found: C, 43.7; H, 3.9; N, 5.4. Calc. for $C_{70}H_{70}Cl_2N_6O_{12}P_4PtW_2$: C, 43.2; H, 3.6; N, 4.3%). IR(Nujol) v(CO) 2020 (sh), 1917s, 1896s and 1860s cm⁻¹. NMR(CDCl₃): ¹H, δ 0.90 (m, 4 H, p-CH₂), 1.25 (m, 8 H, m-CH₂) 1.89 [s, 6 H, CH₃(PW)], 2.25 [s, 6 H, CH₃(PPd)], 2.40 (m, 4 H, NCH₂), 3.06 (m, 4 H, NCH₂) and 6.11–7.92 (m, 36 H, C₆H₄ and Ph); ³¹P-{¹H}, δ 62.9 [d, ²J(PP) = 23, ¹J(PtP) = 5344, PPt] and 132.4 [d, ²J(PP) = 23, ¹J(PW) = 404 Hz, PW].

cis-[PtCl₂{cis-[PhNP(OC₆H₄Me-p)]₂}₂]. The mononuclear platinum complex, cis-[PtCl₂{cis-[PhNP(OC₆H₄Me-p)]₂}₂] was prepared by the reaction of [PtCl₂(cod)] with 2 molar equivalents of the cyclodiphosphazane, [PhNP(OC₆H₄Me-p)]₂ in dichloromethane under refluxing conditions (4 h) (Found: C, 52.2; H, 4.3; N, 4.8. Calc. for C_{5.2}H_{4.8}Cl₂N₄O₄P₄Pt: C, 52.8; H, 4.1; N, 4.7%). NMR: ¹H (CDCl₃), δ 2.18 [s, 6 H, CH₃(PPt)], 2.24 [s, 6 H, CH₃, P(free)] and 6.8–7.4 (m, 36 H, C₆H₄ and Ph); ³¹P (CD₂Cl₂), δ 64.0 [s, ¹J(PtP) = 5214, PPt] and 120.1 [s, ³J(PtP) = 21 Hz, P(free)].

Reaction of 1 with cis-[W(CO)₄(NHC₅H₁₀)₂].—A dichloromethane solution of 1 and cis-[W(CO)₄(NHC₅H₁₀)₂] (1:1 molar ratio) was heated under reflux for 48 h. Light petroleum (b.p. 60–80 °C) was added and the solution was passed through a column of silica gel. Solvent was removed from the filtrate in vacuo to obtain a residue which consisted of the following compounds as shown by NMR spectroscopy; (i) the dinuclear molybdenum complex [Mo₂(CO)₈{μ-cis-[PhNP(OC₆H₄Me-p)]₂}₂] 5; NMR, ³¹P δ 154.8 (s), ¹H δ 2.13 (s) and 7.2 (m) (major product), (ii) the mononuclear tungsten complex cis-[W(CO)₄(NHC₅H₁₀){cis-[PhNP(OC₆H₄Me-p)]₂}] 4; NMR, ³¹P δ 121.8 [d, ²J(PP) = 7.0, P(free)], 132.7 [d, ²J(PP) = 7.0, ¹J(WP) = 374 Hz, P(W)], ¹H δ 0.7–3.0 (complex multiplets) due to NHC₅H₁₀ protons, 2.16 (s) and 2.22 (s) due to CH₃ protons along with C₆H₅ and C₆H₄ resonances, (iii) the free ligand cis-[PhNP(OC₆H₄Me-p)]₂ (³¹P NMR δ 137.0) and the unreacted starting material 1.

The dinuclear molybdenum complex 5 and the unreacted starting material 1 were first separated from the mixture by fractional crystallization from CH_2Cl_2 -light petroleum (1:5 v/v) at 0 °C; complex 5 was separated by recrystallizing the resultant residue from CH_2Cl_2 -n-pentane (1:2 v/v) at 0 °C. The complex cis-[W(CO)₄(NHC₅H₁₀){cis-[PhNP(OC₆H₄Me-p)]₂}] was separated from the residue by cooling the CH_2Cl_2 -n-pentane (1:1 v/v) solution at 0 °C.

X-Ray Crystal Structure Determination of 5.—Colourless crystals of 5 suitable for X-ray diffraction study were obtained from CH_2Cl_2 -hexane (1:1 v/v) at 0 °C. A crystal was affixed to a glass fibre with an epoxy glue and mounted on an Enraf-Nonius CAD-4 diffractometer. Cell constants and an orientation matrix for the data collection (at 290 \pm 2 K) were obtained from a least-squares refinement of the setting angles of 25 high-order reflections that had been accurately centred by using the CAD-4 software. Three check reflections were measured for every 100 reflections; these showed no decay in intensity over a period of the data collection. Intensity data were corrected for Lorentz and polarization effects. The crystal data and the experimental details of the structure determination are given in Table 1.

The structure was solved by direct methods using the SHELXS 86¹¹ program and subsequent refinements were carried out using SHELX 76.¹² The refinement was carried out first with isotropic thermal parameters and subsequently with anisotropic thermal parameters for all non-hydrogen atoms. Following three cycles of full-matrix least-squares refinement, hydrogen positions could be readily located in a difference map and were refined isotropically. The final positional parameters are listed in Table 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Table 1 Crystal data for 5 and details of structure determination

Formula	$C_{60}H_{48}Mo_2N_4O_{12}P_4$
M	1332.83
Crystal system	Triclinic
Space group	P^{\uparrow}
a/Å	12.133(2)
$b/ ext{Å}$	12.196(2)
$c/ ext{\AA}$	12.400(6)
α/°	105.24(3)
β/°	117.01(4)
γ/°	100.40(2)
$U/\text{\AA}^3$	1478(1)
$D_{\rm c}/{ m g~cm^{-3}}$	1.28
Z	1
F(000)	782
μ/cm ⁻¹	1.85
Radiation"	$Mo-K\alpha (\lambda = 0.710 69 \text{ Å})$
Range θ/°	1–25
Scan type	ω–2θ
Unique data	4989
Data with $F_o > 5\sigma(F_o)$	4331
No. of parameters	466
Largest shift/e.s.d. in final cycle	0.124
R^b	0.031
R' c	0.036

"Graphite monochromator. " $k = \sum ||F_o| - |F_c|| / \sum |F_o|.$ $||\Sigma w(|F_o| - |F_c|)|^2 / \sum |F_o|^2]^{\frac{1}{2}}; w = [\sigma^2(F_o)^2 + 0.001(F_o)^2]^{-1}.$

Results and Discussion

The reaction of 1 with an equimolar quantity of cis-[Mo(CO)₄(NHC₅H₁₀)₂] in dichloromethane yields the dinuclear complex $[Mo_2(CO)_8\{\mu\text{-}cis\text{-}[PhNP(OC_6H_4Me\text{-}p)]_2\}_2]$ 5. Analogous reactions of 1 with [MCl₂(cod)] give complexes of the type $[Mo(CO)_4\{\mu-cis-[PhNP(OC_6H_4Me-p)]_2\}_2MCl_2]$ (M = Pd 7 or Pt 8) (Scheme 1). In the reaction of $[PtCl_2(cod)]$, the reaction mixture also contained another product which could not be isolated but was tentatively identified by ³¹P NMR spectroscopy as the mononuclear complex trans-[PtCl₂{cis-PhNP(OC₆H₄Me-p)]₂}₂] 9. The ³¹P NMR spectrum of 9 shows two resonances (AA'XX'M spectral pattern) centred at δ 105.6 [${}^{1}J(PtP) = 3587 \text{ Hz}$] and δ 136.2, which are assigned to co-ordinated and unco-ordinated phosphorus nuclei of the cyclodiphosphazane respectively. The smaller value of ${}^{1}J(PtP)$ compared to that for cis-[PtCl₂{cis-[PhNP(OC₆H₄Me-p)]₂}₂] (see Experimental section) suggests that the two cyclodiphosphazanes which are co-ordinated to the platinum centre are trans to each other.

The reaction of cis-[PtCl₂{cis-[PhNP(OC₆H₄Me-p)]₂}₂] with [Mo(CO)₄(nbd)] affords the dinuclear complex 5 (δ_P 155.5) as the major product (\approx 40%) in addition to several other products (^{31}P NMR evidence) which could not be characterized. The mononuclear complex cis-[Mo(CO)₄{cis-[PhNP(OCH₂CF₃)]₂}₂] 2 is synthesized by isomerizing the trans-cyclodiphosphazane, [PhNP(OCH₂CF₃)]₂ into its cis-form under thermal conditions 3 and then treating the solution with [Mo(CO)₄(nbd)]. Further reaction of 2 with 1 molar equivalent of [Mo(CO)₄(nbd)] gives the dinuclear complex, [Mo₂(CO)₈{ μ -cis-[PhNP(OCH₂CF₃)]₂}₂] 6.

The reaction of the mononuclear complex cis-[Mo(CO)₄{P(OMe)₃}{cis-[PhNP(OC₆H₄Me-p)]₂}] 3 with [MCl₂(cod)] affords cis-[MCl₂{cis-Mo(CO)₄[P(OMe)₃] (cis-[PhNP(OC₆H₄Me-p)]₂)}₂] (M = Pd 10 or Pt 11). Similarly, cis-[W(CO)₄(NHC₅H₁₀){cis-[PhNP(OC₆H₄Me-p)]₂}] 4 reacts with [MCl₂(cod)] (M = Pd or Pt) under mild conditions in dichloromethane to give the trinuclear complexes cis-[MCl₂{cis-W(CO)₄(NHC₅H₁₀)(cis-[PhNP(OC₆H₄Me-p)]₂)}₂] (M = Pd 12 or Pt 13); (Scheme 2).

Infrared and NMR Spectroscopic Data.-The infrared

Table 2 Fractional atomic coordinates $(\times 10^4)$ for non-hydrogen atoms of 5

Atom	X/a	Y/b	Z/c
Mo	3766.4(3)	4841.0(2)	6595.3(3)
P(1)	5276(1)	3892(1)	6219(1)
P(2)	6411(1)	4112(1)	4907(1)
$\hat{N(1)}$	6760(3)	4687(2)	6492(2)
N(2)	5023(3)	3203(2)	4689(2)
O(1)	1199(3)	2527(3)	4474(3)
O(2)	6127(3)	7163(3)	9089(3)
O(3)	1862(4)	6037(4)	7065(4)
O(4)	3663(3)	3907(3)	8697(3)
O(5)	5763(2)	3009(2)	6970(3)
O(6)	7374(2)	3373(2)	4875(2)
C(1)	2132(4)	3347(4)	5189(4)
C(2)	5331(4)	6344(3)	8167(4)
C(3)	2553(4)	5619(4)	6892(4)
C(4)	3762(4)	4194(3)	7928(4)
C(5)	8002(3)	5362(3)	7681(3)
C(6)	8117(4)	5595(3)	8899(3)
C(7)	9330(5)	6257(4)	9960(4)
C(8)	-9568(4)	6691(4)	9999(4)
C(9)	-9676(4)	6470(4)	8810(4)
C(10)	9111(3)	5803(3)	7645(3)
C(11)	3982(3)	2229(3)	3504(3)
C(12)	4230(4)	1232(3)	2965(4)
C(13)	3257(4)	317(3)	1772(4)
C(14)	2015(4)	376(4)	1106(4)
C(15)	1764(4)	1353(4)	1652(4)
C(16)	2729(3)	2281(3)	2842(4)
C(17)	5067(4)	2289(3)	7331(3)
C(18)	5664(4)	2484(3)	8645(4)
C(19)	5042(5)	1719(4)	9007(4)
C(20)	3872(4)	771(4)	8097(4)
C(21)	3214(6)	-111(5)	8472(6)
C(22)	3296(4)	622(3)	6792(4)
C(23)	3895(4)	1371(3)	6400(4)
C(24)	1962(3)	7268(3)	4416(3)
C(25)	2501(4)	8013(3)	3987(3)
C(26)	1771(4)	8651(3)	3361(4)
C(27)	536(4)	8557(4)	3164(4)
C(28)	-261(5)	9228(5)	2459(6)
C(29)	36(4)	7803(4)	3612(5)
C(30)	740(4)	7154(4)	4235(4)

spectra of the complexes 5–8 exhibit four strong carbonyl stretching frequencies in the region 2047–1905 cm⁻¹, characteristic of Group 6 tetracarbonyl metal complexes. The IR spectra of 10 and 11 exhibit two and three bands respectively in the terminal carbonyl stretching region whereas the spectra of 12 and 13 exhibit four strong ν (CO) stretching frequencies. The ν (CO) frequencies for 12 and 13 are observed at lower wavenumbers because of the presence of a strong σ -donor piperidinyl ring.

The ³¹P NMR spectra of both 5 and 6 show single resonances at δ 155.5 and 157.9 consistent with the proposed dinuclear structure in which the two metal centres are bridged by two four-membered P₂N₂ cyclodiphosphazane ligands. The two single resonances at δ 112.0 and 177.9 for 7 are assigned to the phosphorus nuclei co-ordinated to palladium and molybdenum centres respectively. The chemical shift of the phosphorus nuclei which are co-ordinated to molybdenum is considerably deshielded compared to that of the free ligand. The ³¹P NMR spectrum of 8 shows an AA'XX'M (M = Pt) spectral pattern. The apparent triplet centred at δ 163.2 has been assigned to the phosphorus which is co-ordinated to molybdenum whereas the other set of resonances centred at δ 92.1 with ${}^{1}J(PtP)$ of 5513 Hz has been assigned to the phosphorus nuclei coordinated to the platinum centre. The large coupling of ${}^{1}J(PtP)$ supports the cis-geometry around the platinum centre.

The ³¹P NMR spectral data for the complexes 5–13 are listed in Table 3. The ³¹P shifts of bridging *cis*-cyclodiphosphazanes

Scheme 1 (i) $[Mo(CO)_4(NHC_5H_{10})_2]$ or $[Mo(CO)_4(nbd)]$, CH_2Cl_2 ; (ii) $[MCl_2(cod)]$, CH_2Cl_2

Scheme 2 (i) $[M'(cod)Cl_2]$; $R = C_6H_4Me-p$

of dinuclear Group 6 metal complexes move to a 'higher-frequency' region compared to the chemical shifts of the free ligands.⁴ The same trend is observed for the dinuclear Mo₂(CO)₈ complexes bridged by two *cis*-cyclodiphosphazane ligands. The co-ordination shift varies from +15 to +41 ppm for the phosphorus which is co-ordinated to the molybdenum centre whereas the reverse trend is observed for the phosphorus which is co-ordinated to Pd^{II} and Pt^{II}.

The ³¹P NMR spectrum of **12** exhibits an AA'XX'RR' spectral pattern; that of **13** exhibits an AA'XX'RR'M (M = Pt, R = W) spectral pattern. The spectrum of **12** exhibits two apparent triplets at δ 89.2 with a ²J(PP) of 12 Hz and at δ 134.0 with a ²J(PP) of 12 Hz and ¹J(WP) of 404 Hz, and hence are assigned to the phosphorus nuclei which are co-ordinated to palladium and tungsten centres respectively. The spectrum of **13** shows two doublets at δ 62.9 [2 J(PP) = 23, 1 J(PtP) = 5344 Hz; AA' part) and at 132.4 [2 J(PP) = 23, 1 J(WP) = 404 Hz; XX' part]. These are assigned to phosphorus nuclei which are co-ordinated to platinum and tungsten centres respectively. Observation of an AA'MM'XX' and AA'MM'XX'R (R = Pt)

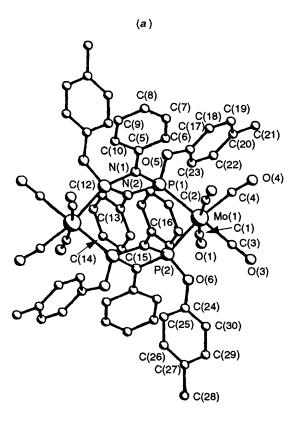
spectral pattern respectively for 10 and 11 supports the proposed structures for these complexes. The large $^1J(PtP)$ values (>5000 Hz) for 11 and 13 clearly show that the phosphorus nuclei co-ordinated to the platinum centre are *trans* to chloride ligands.

The ¹H NMR spectra of all the complexes (10–13) are consistent with the proposed structures. Two resonances are observed for p-CH₃ protons; the high-field resonance is assigned tentatively ^{3,4} to the methyl group which is at the phosphorus centre co-ordinated either to molybdenum or tungsten, whereas the other resonance is assigned to the methyl group which is at the phosphorus centre which is either co-ordinated to Pd or Pt. The complex multiplets between δ 1.10 and 3.06 in both 12 and 13 are due to the piperidinyl protons which are assigned based on the assignments for complex 4 (see Experimental section). The doublets at δ 3.25 with a ³J(PH) of 11.3 Hz in the spectra of both 10 and 11 are assigned to the P(OMe)₃ protons.

In contrast to the reaction of 1 with cis-[Mo(CO)₄-(NHC₅H₁₀)₂] to give the dinuclear complex 5, the analogous

reaction of 1 with cis-[W(CO)₄(NHC₅H₁₀)₂] is complex as shown by the ³¹P NMR spectrum of the reaction mixture. The single resonance at δ 154.8 can be assigned to the dinuclear molybdenum complex 5; the two doublets at δ 121.8 [2J (PP) = 7.0 Hz] and 132.7 [2J (PP) = 7.0 Hz, 1J (WP) = 374 Hz] are due to cis-[W(CO)₄(NHC₅H₁₀){cis-[PhNP(OC₆H₄Me-p)]₂}] 4. In addition to the above two compounds, there is peak at δ 137.0 corresponding to the free ligand [PhNP(OC₆H₄Me-p)]₂ and also two peaks arising from a small amount of the unreacted starting material 1. All the above complexes are separated by fractional crystallization (see Experimental section). Under the above reaction conditions, the molybdenum complex 1 alone does not dissociate in the absence of [W(CO)₄(NHC₅H₁₀)₂]. Based on these observations, one can

Table 3 Phosphorus-31 NMR spectral data for complexes 5-13


Commound	2	Δδ
Compound	δ_{P}	(ppm)
$5 \left[Mo_2(CO)_8 (\mu - cis - L)_2 \right]^b$	155.5 (s)	18.5
6 $[Mo_2(CO)_8(\mu-cis-L')_2]^c$	157.9 (s)	15.7
7 [Mo(CO) ₄ (μ -cis-L) ₂ PdCl ₂]	$177.9 (s)^d$	40.9
	$112.0 (s)^{e}$	-15.0
8 [Mo(CO) ₄ (μ -cis-L) ₂ PtCl ₂]	$163.2 (t)^d$	26.2
	$92.1 (t)^f$	44.9
10 cis-[PdCl ₂ {cis-[Mo(CO) ₄ P(OMe) ₃ L]} ₂] ^b	99.9 (dd) e	-37.1
	$167.9 (d)^d$	30.9
	$157.4 (d)^g$	
11 cis-[PtCl ₂ {cis-[Mo(CO) ₄ P(OMe) ₃ L]} ₂] ^b	$74.2 (d)^f$	-62.8
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	157.2 (d) ⁹	
	165.1 (dd) ^d	28.1
12 cis-[PdCl ₂ {cis-[W(CO) ₄ (NHC ₅ H ₁₀)L]} ₂] ^b	$89.2 (t)^{e,h}$	-47.8
	$134.0 (t)^{i}$	-3.0
13 cis-[PtCl ₂ {cis-[W(CO) ₄ (NHC ₅ H ₁₀)L]} ₂] ^b	$62.9 (d)^f$	-74.1
	$132.4 (d)^{i}$	-4.6

 a $\Delta\delta = \delta_{\text{complex}} - \delta_{\text{ligand}}$. b $L = [PhNP(OC_6H_4Me-p)]_2$. c $L' = [PhN-P(OCH_2CF_3)]_2$. d Co-ordinated to Mo. e Co-ordinated to Pd. f Co-ordinated to Pt. g P(OMe) $_3$ group. h 2 $J(PNP) + ^2$ J(PWP). i P co-ordinated to W.

propose a plausible mechanism for this reaction (Scheme 3). The first step would be the formation of the dinuclear complex **A**, which then disproportionates into the mononuclear tungsten complex **4** and the 16-electron species **B**. Since the coordinatively unsaturated 16-electron molybdenum complex **B** would be highly reactive, two such units combine together to form the stable dinuclear molybdenum complex **5**. The formation of trace amounts of the free ligand probably occurs either during the disproportionation of the heterobimetallic complex **A** or by the dissociation of the 16-electron species **B**. The low reactivity of **4** and the difficulty of replacing the piperidine by a diphosphazane have been reported by us previously.³

Crystal Structure Analysis of 5.- The structure of the dimolybdenum complex 5 has been confirmed by X-ray crystallography. A perspective view of the molecule of 5 and its core structure with numbering scheme are illustrated in Fig. 1(a) and 1(b) respectively. Selected bond distances and bond angles are listed in Table 4. The aryloxy groups on each of the P₂N₂ ring are cis to each other. The molecule adopts a centrosymmetric structure and the asymmetric part of the unit cell comprises one half of the molecule. The geometry around the molybdenum is distorted octahedral and the two cyclodiphosphazanes are *cis* to each other. The angles C(3)-Mo-C(4) of 83.9(2)° and C(1)-Mo-C(2) of 173.0(2)° deviate significantly from the ideal octahedral angles of 90 and 180°, presumably because of the presence of bulky pmethylphenoxy groups on phosphorus atoms. The geometry around the ring nitrogen is planar and the sum of the angles is ca. 360°. The average P-N-P and N-P-N angles are respectively 98.7 and 80.9° and the average P-N distance is 1.712 Å. The four-membered P_2N_2 ring is slightly puckered; the two nitrogen atoms are slightly above (0.08 Å) and the two phosphorus atoms are slightly below (-0.02 Å) the plane defined by the four-membered P₂N₂ ring. The puckering is more pronounced than in the monoco-ordinated complex, $[W(CO)_4(NHC_5H_{10})\{PhNP(OC_6H_4Me-p)\}_2]^3 \quad \text{and} \quad \text{the heterodinuclear} \quad complex \quad [Mo(CO)_4\{P(OMe)_3\}\{\mu-Me-p\}_2]^3$ $[PhNP(OC_6H_4Me-p)]_2$ $W(CO)_4(NHC_5H_{10})]^4$ in which the

Scheme 3 (i) $-NHC_5H_{10}$; (ii) $\times 2$; R = C_6H_4Me-p

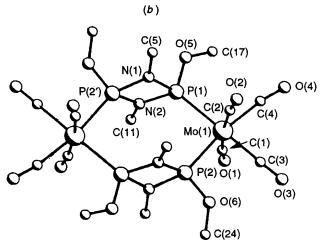


Fig. 1 (a) A perspective view of the structure of $[Mo_2(CO)_8\{\mu\text{-}cis-[PhNP(OC_6H_4Me-p)]_2\}_2]$ 5; (b) the core structure with the *ipso* carbons of the aryl rings only being shown

Table 4 Selected bond distances (Å) and angles (°) involving nonhydrogen atoms for 5

Mo-P(1)	2.484(2)	P(2')-N(2)	1.701(4)
Mo-P(2)	2.476(2)	P(2')-N(1)	1.716(3)
Mo-C(1)	2.044(4)	C(1)-O(1)	1.132(4)
Mo-C(2)	2.066(3)	C(2)-O(2)	1.134(4)
Mo-C(3)	2.004(6)	C(3)-O(3)	1.127(8)
Mo-C(4)	2.011(5)	C(4)-O(4)	1.145(7)
P(1)-N(1)	1.715(4)	P(2)-O(6)	1.607(3)
P(1)-N(2)	1.714(3)	P(1)-O(5)	1.623(3)
P(1)-Mo-P(2)	93.51(5)	Mo-C(1)-O(1)	175.0(5)
C(3)-Mo-C(4)	83.9(2)	Mo-C(1)-O(2)	173.5(5)
C(1)-Mo- $C(2)$	173.0(2)	Mo-C(3)-O(3)	178.6(5)
P(1)-Mo-C(4)	96.6(2)	Mo-C(4)-O(4)	171.5(5)
P(1)-Mo-C(3)	179.4(2)	P(1)-N(1)-P(2')	98.4(2)
N(1)-P(1)-N(2)	80.7(2)	P(1)-N(2)-P(2')	99.0(2)
N(1)-P(2')-N(2)	81.1(2)	P(2')-N(2)-C(11)	126.4(3)
P(1)-N(2)-C(11)	134.4(3)		

cyclodiphosphazane adopts cis geometry. In contrast, in the homodinuclear complex $[\{Mo(CO)_4[P(OMe)_3][\mu-\{PhNP-Pomeone]\}]$ $(OC_6H_4Me-p)_2]_2$ in which the cyclodiphosphazane ligand adopts trans geometry, the P2N2 ring is planar. The mean P-N distances in all the complexes show little variation from those observed for the free ligand. The N-P-N bond angle widens slightly upon co-ordination and the P-N-P angle is slightly less than that observed for the free ligand.

References

- 1 Part 11, R. P. Kamalesh Babu, S. S. Krishnamurthy and M. Nethaji, Organometallics, in the press.
- 2 M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. F. Nixon and J.C.T.R. Burkett St. Laurent, Coord. Chem. Rev., 1994, 129, 1.
- 3 V. S. Reddy, S. S. Krishnamurthy and M. Nethaji, J. Organomet. Chem., 1992, 438, 99.
- 4 V. S. Reddy, S. S. Krishnamurthy and M. Nethaji, J. Chem. Soc., Dalton Trans., 1994, 2661.
- 5 D. F. Shriver and M. A. Drezdzon, The Manipulation of Air-sensitive
- Compounds, 2nd edn., Wiley, New York, 1986.
 6 D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd edn., Pergamon, Oxford, 1988.
- 7 J. K. Eisch and R. B. King, Organomet. Synth., 1965, 1, 122, 124.
- 8 D. J. Darensbourg and R. L. Kemp, Inorg. Chem., 1978, 17, 2680.
- 9 D. Drew and J. R. Doyle, *Inorg. Synth.*, 1972, 13, 52.10 D. Drew and J. R. Doyle, *Inorg. Synth.*, 1972, 13, 48.
- 11 G. M. Sheldrick, SHELXS 86, A program for crystal structure solution, University of Göttingen, Göttingen, 1986.
- 12 G. M. Sheldrick, SHELX 76, A program for crystal structure determination, University of Cambridge, 1976.

Received 24th January 1995; Paper 5/00412H