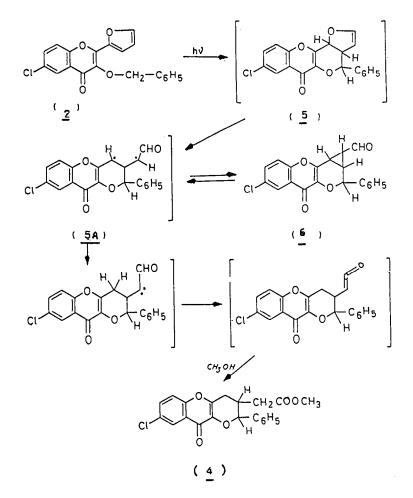

NOVEL PHOTOREORGANISATION OF 4-OXO-4H-1-BENZOPYRANS: SYNTHESIS OF PYRANOBENZOPYRONES

> N.S. Yadav and S.C. Gupta Chemistry Department, Kurukshetra University, Kurukshetra - 132119 (India)

Summary. 2-Styryl- and 2-furyl-3-benzyloxy-4-oxo-4<u>H</u>-1-benzopyran on photolysis in benzene and MeOH, respectively, yield 2,3-pyranobenzopyrones via H-abstraction.


2-Methyl-3-methoxy-4-oxo-4<u>H</u>-1-benzopyran¹ on photolysis yields a dimeric oxetanol; in contrast 2-phenyl-3-methoxy (or benzyloxy) derivatives produce angular tetracyclic compounds². These reactions invoke the intermediacy of γ -hydrogen abstraction, producing 1,4-biradicals in turn. In this communication, we report an interesting and novel photoreorganisation of two benzopyrans namely 2-styryl- (<u>1</u>) and 2-furyl-3-benzyloxy-4-oxo-4<u>H</u>-1-benzopyrans (<u>2</u>) to 2,3-pyranobenzopyrones (<u>3</u> and <u>4</u>).

The 2-styryl derivative (<u>1</u>) on irradiation (benzene, pyrex filter) isomerised to (<u>3</u>), yield 20%; m.p. 188-89°; M⁺ 368 (100%); IR (Nujol), 1640 cm⁻¹ (C=0); PMR (CDCl₃), δ 2.45 (3H, s, CH₃), 3.10-3.35 (2H, m, C₁-2H¹s), 3.45-3.62 (1H, m, C₂-H), 5.0 (1H, d, J = 8.8 Hz, C₃-H)³, 7.10-7.50 (12H, m, Arom Hs), 8.10 (1H, s, broad; C₅-H).

Stilbenes and their heteroanalogues are known to photocyclise exclusively to multiringed angular carbocyclic and heterocyclic compounds.⁴ This is the first example as far as we know where a styryl derivative has been converted into a linearly fused ring compound.

On photolysis (2) in MeOH (pyrex filter) gave ($\frac{1}{2}$), yield 8%; m.p. 193-95°; M[±] 384 (86%); IR (Nujol), 1640 cm⁻¹ (C=O), 1735 cm⁻¹ (COOCH₃); PMR (CDCl₃), 2.31-2.43 (2H, <u>s</u>, CH₂COOCH₃), 2.60-3.20 (3H, m, C₁ and C₂-H's),

3.84 (3H, s, $-0CH_3$), 5.01 (1H, d, J = 6 Hz, C_3-H)³, 7.25-7.48 (6H, m, C_9-H and $C_3-C_6H_5$), 7.57 (1H, dd, C_8-H), 8.22 (1H, d, C_6-H).

The obtension of ($\underline{4}$) can be visualised to occur through the possible initial cyclisation of ($\underline{2}$) to dihydrofuryl derivative ($\underline{5}$) in a fashion shown for compound ($\underline{1}$) which under the photolytic conditions can cleave to a bi-radical (5A). This either can clip to produce cyclopropylaldehyde ($\underline{6}$) through a ring contraction and ring expansion⁵ process or can rearrange to ketene preceded by carbene⁶; then consequential addition of MeOH leads to tricyclic ester ($\underline{4}$). The proposed mechanism finds support from the observation that an irradiation of ($\underline{2}$) in benzene solvent led exclusively to ($\underline{6}$), yield 16%; m.p. 150-51°; M[‡] 352/354⁷; IR (Nujol), 1640 cm⁻¹ (C = 0) and 1695 cm⁻¹ (-CHO); PMR (CDCl₃), 2.56-2.79 (2H, m, C₆-H and C₃-H), 2.95-3.06 (1H, m, C₁-H), 5.57 (1H, s, C₄-H), 7.21-7.41 (6H, m, C₁₀-H and C₄-phenyl), 7.57 (1H, dd, C₉-H), 8.16 (1H, d, C₁₀-H), 9.80 (1H, d, C₁-CHO)⁸.

It is of interest to mention here that both (1 and 2) provide an easy route to the synthesis of 2,3-pyranobenzopyrones. Although literature abounds in the methods towards the construction of 5,6 or 6,7 or 7,8-pyranobenzopyrones⁹, no method seems to be available for the synthesis of 2,3-pyranobenzopyrones.

REFERENCES

1.	S.C.	Gupta	and	S.K.	Mukerjee,	<u>Tetrahedron</u>	Lett.,	1973.	5073
----	------	-------	-----	------	-----------	--------------------	--------	-------	------

- A.C. Waiss Jr., R.E. Lundin, A. Lee and J. Corse, <u>J. Amer. Chem. Soc.</u>, 1967, <u>89</u>, 6213; S.C. Gupta and N.S. Yadav, unpublished results;
 S.C. Gupta and S.K. Mukerjee, <u>Ind. J. Chem.</u>, 1973, <u>11</u>, 1202.
- 3. Decoupling of C2-H converts signals due to C3-H to a sharp singlet.
- F.R. Stermitz, Organic Photochemistry, Ed. O.L. Chapman, Marcel Dekker Inc. N.Y., 1967; I. Yokoe, K. Higuchi, Y. Shirataki and M. Komatsu, <u>J. Chem. Soc., Chem. Commun.</u>, 1981, 442.