Novel Bonding of Tertiary Diphosphines to Metal Ring Carbonyl Complexes

David A. Brown,* ^a John Burns, ^a Ibrahim El-Gamati, ^a William K. Glass, ^a Khaled Kreddan, ^a Mabrouk Salama, ^a Desmond Cunningham, ^b Tim Higgins ^b and Patrick McArdle ^b

- ^a Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- ^b Department of Chemistry, University College Galway, Galway, Ireland

Tertiary diphosphines form complexes with various metal ring carbonyl cations of new and novel structural types including ring adducts, e.g. $[(\eta^4-C_7H_9-5-exo-\eta^1-PPh_2CH_2PPh_2)Fe(CO)_3]BF_4$ diphosphine bridged ring dimers, e.g. $Ph_2P(CH_2)_2PPh_2[(\eta^4-C_7H_9)Fe(CO)_3]_2[BF_4]_2$ and diphosphine bridged ring-metal dimers, e.g. $[(\eta^5-C_5H_5)Fe(CO)_2PPh_2(CH_2)_3PPh_2(exo-\eta^6-C_7H_7)Cr(CO)_3][BF_4]_2$.

Tertiary diphosphines such as bis(diphenylphosphino)-methane {PPh₂(CH₂)_nPPh₂, n=1, dppm} are ubiquitous ligands in organometallic chemistry. Invariably, they bond to a particular metal centre in either an η^1 or η^2 mode or bridge two metal centres in polynuclear complexes.¹ In this note we report a number of new complexes† with hitherto unobserved structures illustrating first, the bonding of a diphosphine to a ring carbon atom in a mononuclear metal ring carbonyl complex as in $[(\eta^4-C_7H_9-5-exo-\eta^1-PPh_2CH_2PPh_2)Fe(CO)_3]BF_4$, 1, and $[(\eta^6-C_7H_7-exo-dppm)Cr(CO)_3]BF_4$, 2. Secondly, diphosphine linked ring dimers as in $Ph_2P-(CH_2)_2PPh_2[(\eta^4-C_7H_9)Fe(CO)_3]_2[BF_4]_2$, 3 and, lastly, diphosphine bridged ring-metal dimers as in $[(\eta^5-C_5H_5)Fe(CO)_2PPh_2(CH_2)_3PPh_2(exo-\eta^6-C_7H_7)Cr(CO)_3][BF_4]_2$, 4.

Complex 1‡ was obtained by reaction of dppm with $[(\eta^5-C_7H_9)Fe(CO)_3]BF_4$ in MeCN at room temperature.

Based on ¹H, ¹³C and ³¹P NMR§ data and confirmed by the X-ray structure determination (Fig. 1), we have identified 1 as the 5-exo-ring adduct of the starting cation with dppm. Prolonged reflux (3 days) gives the metal chelate, [(η⁵-

Ph₂P(CH₂)_nPPh₂

$$n = 1,2$$
Ph₂P(CH₂)_n PPh₂

$$n = 1$$
Refluxing for 3 hours
$$n = 1$$
OC C
Ph₂P(CH₂)₃PPh₂

$$C$$
Co
Co
Co
Scheme 2

 $\$ Selected spectroscopic data for compounds 1–4 and 6. 1 H, 13 C and 31 P NMR data (270 MHz; J values in Hz). Spectra run in $[^{2}$ H₆]acetone solvent unless otherwise stated. 31 P δ values quoted relative to H₃PO₄.

For 1 ¹H NMR (CDCl₃), δ 2.67 (dd, H4), 3.53 (dt, H5), 1.72 (br, H6_{endo}), 0.92 (m, H6_{exo}), 3.73 [t, HA(CH₂)], 3.36 (t, HB(CH₂)). ¹³C, δ 46.9 (d, C4) (J_{C-P} 7.6), 34.3 (d, C5) (J_{C-P} 37.6), 22.5 (s, C6), 19.5 (t, CH₂) (J_{C-P} 46.2). ³¹P, δ +31.9 (d, P-C5), -29.2 (d, P pendant) (J_{P-P} 61.1).

For **2** ¹H NMR, δ 5.78 (dd, H7), 3.83 (t, H1,6). ¹³C, δ 36.7 (d, C7) (J_{C-P} 33.3), 55.5 (s, C1,6), 16.89 (m, CH₂). ³¹P, δ + 20.8 (d, P–C7) (J_{P-P} 58), -27.8 (d, P pendant).

For **3** ¹H NMR (CDCl₃), δ 2.73 (dd, H4), 3.48 (dt, H5), 1.64 (br, H6_{endo}), 0.89 (m, H6_{evo}), ¹³C, δ 46.6 (dd, C4) (J_{C-P} 3.2 Hz), 35.5 (d, C5) (J_{C-P} 37.4), 22.4 (s, C6). ³¹P, δ +31.8. For **4** ¹H NMR, δ 5.49 [S, 5H(C₅H₅)], 5.76 (dd, H7), 3.79 (t, H1,6).

For $4^{1}H$ NMR, δ 5.49 [S, 5H(C₅H₅)], 5.76 (dd, H7), 3.79 (t, H1,6). ^{13}C , δ 89.5 (s, C_5H_5), 36.5 (d, C7) (J_{C-P} 30.09), 55.3 (s, C1,6), 210.7 (d, CO–Fe) (J_{C-P} 24.7), 221.8 (s, CO–Cr). ^{31}P , δ +22.3 (d, P–C7), δ +59.5 (P–Fe].

For $\dot{\mathbf{6}}$ ¹H NMR ([²H₃]acetonitrile), δ 5.79 (s, 7H), 4.75 [m, HA (CH₂)], 3.56 [m, HB(CH₂)]. ¹³C, δ 97.8 (s, C₇ ring), 42.3 (m, CH₂), ³¹P, δ +36.5.

[†] Satisfactory elemental analyses were obtained for all the new compounds.

[‡] Crystal data for 1: Crystal of $C_{35}H_{31}BF_4FeO_3P_2\cdot(CHCl_3)_2$, M=942.98, triclinic space group $P\overline{1}$, a=12.727(1), b=13.457(2), c=14.767(2), Å, $\alpha=97.75(2)$, $\beta=114.26(2)$, $\gamma=108.67(2)$, U=2077.98 Å³, Z=2, $\lambda=0.7093$ Å, $\mu(Mo-K_{\alpha})=14.36$ cm⁻¹, F(000)=956. Data were corrected for Lorentz and polarization effects but not for absorption. Direct methods (SHELX-86), 4368, with $I>3\sigma(I)$ unique data ($2<2\theta<52^{\circ}$) used in the refinement and 320 parameters in the model (SHELX76). Final R=0.0840 and $R_{\rm w}=0.0963$ with minimization of $[\Sigma W||F_0|-|F_c||^2/\Sigma W|F_0|^2]^{1/2}$ with $W=1/[\sigma^2(F_0)-0.00023\ F_0^2]$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

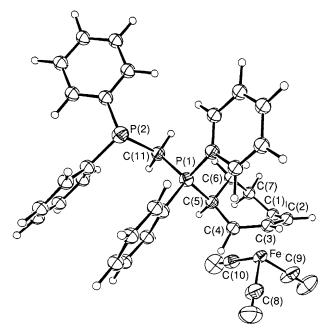


Fig. 1 Molecular structure of $[(\eta^4-C_7H_9-5-exo-\eta^1\text{-dppm})\text{Fe}(\text{CO}_3)]$ BF₄, 1. Selected bond distances (Å): Fe-C(4) 2.110(6), Fe-C(3) 2.035(8), Fe-C(2) 2.040(8), Fe-C(1) 2.134(7), P(1)-C(5) 1.856(6), P(1)-C(11) 1.796(7), C(4)-C(5) 1.550(1), C(5)-C(6) 1.510(9), C(6)-C(7) 1.534(9). Bond angles (°) C(6)-C(5)-P(1) 107.2(4), C(3)-Fe-C(10) 134.8(3), C(6)-C(5)-C(4) 114.3(6), C(2)-Fe-C(10) 132.1(4), C(4)-C(5)-P(1) 106.8(5), C(1)-Fe-C(9) 90.4(3), C(6)-C(7)-C(1) 114.3(7), C(4)-Fe-C(8) 89.8(3), C(4)-Fe-C(10) 96.8(3), C(3)-Fe-C(8) 94.6(4), C(1)-Fe-C(10) 93.5(4), C(2)-Fe-C(9) 93.0(4), C(4)-Fe-C(3) 40.8(3), P(1)-C(11)-P(2) 109.6(4), C(1)-Fe-C(2) 40.0(3), C(2)-Fe-C(3) 39.4(3).

 $C_7H_9)$ Fe(CO)(η^2 -dppm)]BF₄, **5**. In contrast, dppe (n=2) and higher homologues do not form ring adducts but give instead diphosphine ring-bridged dimers as in **3** (Scheme 1). The 1H and ^{13}C NMR§ data for **3** confirmed 5-*exo*-ring addition and the ^{31}P NMR§ data showed the presence of only ring linked phosphorus atoms. The 1H and ^{13}C NMR§ spectra of **1** and **3**

are very similar to those of the analogous monophosphine 5-exo-ring adducts.2 Similar ring addition also occurs when $[(\eta^7-C_7H_7)C_7(CO)_3]BF_4$ reacts with dppm (and dppe) in acetone at room temperature to give $[(\eta^6-C_7H_7-exo$ dppm)Cr(CO)₃]BF₄, 2. Again the ¹H NMR§ spectra are similar to those of the analogous monophosphine ring adducts3 and the 31P NMR§ data confirm the presence of a ring-bonded phosphorus (δ_P +20.8) and a pendant phosphorus (δ_P -27.8). In contrast to the iron complex, 1, the chromium series, 2, readily form on reflux the metal chelate, $[(\eta^7-C_7H_7)Cr(CO)(\eta^2-dppm)]BF_4$, 6, and $[mer-(\eta^1-dppm)(\eta^2-dppm)Cr(CO)_3]$, 7.4 Complex 6 is the first example of carbonyl substitution by tertiary phosphines of the tropylium tricarbonylchromium cation. Finally, reaction of $[(\eta^7 - \eta^7 - \eta$ C_7H_7)Cr(CO)₃]BF₄, [(η^5 -C₅H₅)Fe(CO)₂(THF)]BF₄⁵ Ph₂P(CH₂)₃PPh₂ in acetone at room temperature gave salmon-pink crystals of the novel diphosphine bridged ringmetal dimer, $[(\eta^5-C_5H_5)Fe(CO)_2PPh_2(CH_2)_3PPh_2(exo-\eta^6 C_7H_7$)Cr(CO)₃][BF₄]₂, 4, (Scheme 2). The ¹H and ¹³C NMR§ data for 4 show clearly the single C₅H₅ resonance and four resonances for the η⁶-C₇H₇ ring very close to those of the ring adduct, 2. The ³¹P NMR§ shows one phosphorus atom bonded to a ring carbon atom (δ_P + 22.3) as in 2 and the other phosphorus coordinated to the iron atom ($\delta_P + 59.5$) similar to that reported for $[(\eta^5-C_5H_5)Fe(CO)_2(\eta^1-dppp)]BF_4.5$

Further studies of the stabilities and reactivity of these diphosphine complexes are in progress.

We thank Mrs G. Fitzpatrick and Dr A. Rous of the Chemical Services Unit, University College Dublin for their expert assistance in recording the NMR spectra.

Received, 30th January 1992; Com. 2/00526C

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12 (2), 99.
- 2 D. A. Brown, S. Chawla, W. Glass and F. Hussein, *Inorg. Chem.*, 1982, 21, 2726.
- 3 P. Hackett and G. Jaouen, Inorg. Chim. Acta, 1975, 12, 19.
- 4 A. Blagg, G. R. Cooper, P. G. Pringle, R. Robson and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1984, 933.
- 5 D. L. Reyer and C. Coleman, J. Organomet. Chem., 1977, 131, 153