Derivatives of 1,8-Diphenylanthracene¹

HERBERT O. HOUSE,* DON KOEPSELL, AND WAYNE JAEGER

School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

Received October 2, 1972

Two additional polyphenylated anthracenes, the 1,8,10-triphenyl derivative 5 and the 1,8,9,10-tetraphenyl derivative 6, have been prepared by reaction of the diphenylquinone 2 with phenyllithium followed by reduction and dehydration. Mononitration of 1,8-diphenylanthracene (1d) yielded the 10-nitro derivative 13. Derivatives 12 of 1,8-diphenylanthracene with a substituent at C-9, a location allowing interaction of the substituent with the π orbitals of the two phenyl rings, were obtained by the methylation or acetylation of the anthrone 11. Studies of the oxidation and reduction of the various hydrocarbons 1, 5, 6, and 20 by polarography and cyclic voltammetry provided a measure of the relative ease of adding or removing one or more electrons from these hydrocarbons. In general, the cation radicals and dianions formed were relatively unstable, but the anion radicals had substantial lifetimes even in partially aqueous solutions.

In earlier publications,² we have described the preparation of various derivatives of anthracene 1 and naphthalene 20 with phenyl substituents in one or more of the peri positions C-1, C-8, and C-9.³ Of special interest were those compounds 1c, 1e, and 20b with two or more adjacent phenyl substituents held in a sterically crowded face-to-face relationship to one another and 1,8-phenylanthracene (1d), a molecule that exists primarily in a conformation (see Chart I) with the two phenyl rings approximately perpen-

dicular to the plane of the anthracene ring. This latter molecule offers the interesting possibility that appropriate substituents at C-9 will be in an environment that is shielded from attack by external reagents and yet in a favorable location for interaction with the π orbitals of the two phenyl rings. This paper describes several methods that we have explored for the introduction of substituents at the 9 position of the 1,8-diphenylanthracene system and describes certain physical properties of the derivatives prepared by us.

The most useful intermediate that we have found for preparing various 1,8-diphenylanthracene derivatives is the diphenylquinone 2 (Scheme I), prepared from the diodide 19d and a lithium di- or triphenylcuprate.² Several other possible synthetic precursors (Chart II), including 18, 19b, and 19c, were prepared but were found to be less satisfactory than the diiodoquinone 19d. As expected from earlier reduction studies,² reaction of the quinone 2 with a limited amount of phenyllithium introduced a phenyl group at the less hindered C-10 carbonyl group to form the keto alcohol 3. With excess phenyllithium the diol 4 became the major product. Each of these alcohols 3 and 4 could be reduced and dehydrated to form the polyphenylanthracene derivatives 5 and 6. The nmr spectra of

⁽³⁾ For a review of the properties of naphthalenes with peri substituents, see V. Balasubramaniyan, *Chem. Rev.*, **66**, 567 (1966).

these derivatives (see Experimental Section) were analogous to those observed previously² for the phenyl-anthracene derivatives 1d and 1e. In the triphenyl

⁽¹⁾ This research has been supported by Public Health Service Grant No. RO1-CA-12634 from the National Cancer Institute,

⁽²⁾ H. O. House, D. G. Koepsell, and W. J. Campbell, J. Org. Chem., 87, 1003 (1972), and references cited therein.

derivative 5, with no phenyl rings in a crowded faceto-face arrangement, all of the phenyl signals were at relatively low field (δ 7.1–7.9) analogous to the spectrum observed for 1,8-diphenylanthracene (1d). In the tetraphenyl derivative 6, the signal for one phenyl group (at C-10) was in the usual low-field location (δ 7.60) but the remaining three phenyl groups (at C-1, C-8, and C-9) exhibited relatively high-field signals (δ 6.3–6.9) analogous to the spectrum observed for 1,8,9-triphenylanthracene (1e).

One satisfactory method for preparing 1,8-diphenylanthracene derivatives with C-9 substituents consisted of the O-methylation or the O-acetylation of the anthrone 11 to form the derivatives 12 (Scheme II). Table I summarizes the locations of the nmr methyl

TABLE I NMR METHYL SIGNALS FOR THE 9-METHOXYANTHRACENES AND THE 9-ACETOXYANTHRACENES

Functional	δ values (CDCl: solutions)			
group	8	10	12	
CH ₃ CO ₂	2.53	1.52	0.28	
CH3O	4.10	3.25	2.37	

signals for the C-9 methoxy or acetoxyl substituent when two (12), one (10), or no (8) adjacent phenyl substituents are present. The substantial upfield shift (ca. 2 ppm) of the methyl signal in the diphenylanthracene derivatives 12 indicates that the C-9 substituents are suitably located to be capable of interaction with the π orbitals of the two phenyl rings.⁴

To examine the preferred site of electrophilic substitution in 1,8-diphenylanthracene (1d), the hydrocarbon was subjected to nitration under mild conditions. Like anthracene, which undergoes nitration to form the 9-nitro derivative 16a, we expected the major product to be either the 10-nitro derivative 13 or possibly the 9-nitro isomer. In fact, the mononitro compound proved to be 13 and further nitration led to substitution at C-4 in the anthracene ring to form the dinitro derivative 14. Thus, there appears to be appreciable steric hindrance to electrophilic substitution at C-9 in the hydrocarbon 1d. The location of the nitro group in 13 was established by hydrogenation and acetylation to form the dihydroamide 15a. Dehydrogenation with dichlorodicyanobenzoquinone yielded the aromatic amide 15b. Since the nmr spectrum of the amide 15b exhibited a methyl signal (at δ 2.80) comparable in location to the signal from 9-acetamidoanthracene (2.34), we conclude that the acetamide function is at C-10 (structure 15b) and not at C-9, where a distinct upfield shift (ca. 2 ppm) would be expected (cf. 12b, Table I).

The ease of reduction and of oxidation of the various hydrocarbons 1, 5, 6, and 20 were compared by the polarographic measurements summarized in Tables II and III. The potentials required for oxidation to the cation radical and for reduction to the anion radical were both relatively insensitive to the number and the location of the phenyl substituents. The second reduction potential (corresponding to reduction of the anion radical to a dianion) was also relatively insensitive to the location and number of phenyl substituents present except for the two anthracene derivatives 1e and 6. For these materials, each of which has three phenyl groups in adjacent peri positions (C-1, C-8, and C-9), the second reduction potential was ca. 0.3 V less negative than would be expected from the values for related materials. This second reduction step may be facilitated by the formation of a nonplanar dianion which relieves strain in these sterically crowded molecules.

The lifetimes of the various ions formed by oxidation and reduction were estimated from the cyclic voltammetry studies summarized in Table IV. In general, both the dianions and the cation radicals were very reactive with half-lives of the order of 10^{-2} sec or less. However, the anion radicals were relatively

⁽⁴⁾ Because the two C-9 substituents described (CH₃O- and CH₃COO-) are not linear, the methyl groups are probably not located properly to exhibit the maximum upfield shift from the ring currents of the two adjacent phenyl rings.

DERIVATIVES OF 1,8-DIPHENYLANTHRACENE

TABLE	II
-------	----

POLAROGRAPHIC OXIDATION POTENTIALS FOR PHENYL
DERIVATIVES OF NAPHTHALENE AND ANTHRACENE
IN CHCl ₂ CONTAINING 0.2 M n-Pr ₄ N +CF ₂ SO ₃ -

Compd (concn. $M \times 10^3$)	$E^{1/_2}$ vs. sce, V	n value
Naphthalene (0.60)	1.76^{a}	0.7
20a (0.67)	1.67	0.7
20b (0.63)	1,64	0.7
Anthracene (1.2)	1.35^b	0.8
la (0.66)	1.35	0.7
1b (1.2)	1.32^{b}	0.7
1c (0.61)	1.30	0.7
1d (1.6)	1.34	0.7
1e (0.46)	1.25°	0.6
5 (0.41)	1.30	0.7
6 (0.62)	1.21^{d}	0.8

^a The reported value in CH₃CN containing NaClO₄ is 1.54 V: E. S. Pysk and N. C. Yang, J. Amer. Chem. Soc., 85, 2124 (1963). ^b The reported values in DMF containing *n*-Bu₄NI are 1.34 V for anthracene and 1.30 V for 1b: A. J. Bard, K. S. V. Santhanam, J. T. Maloy, J. Phelps, and L. O. Wheeler, Discuss. Faraday Soc., 45, 167 (1968). ^c A second poorly defined wave was also observed at ca. 1.60 V. ^d A second poorly defined wave was also observed at ca. 1.67 V.

TABLE III

Polarographic Reduction Potentials for Phenyl Derivatives of Naphthalene and Anthracene in DMF Containing $0.5~M~n-Bu_4N+BF_4-$

Compd (concn, $M \times 10^{s}$)	$\frac{-E_{1/2} vs. sce,}{\text{First wave}}$	V (n value) Second wave
Naphthalene $(15.2)^a$	-2.49(0.9)	
20a $(9.2-13.7)^a$	-2.37(0.9)	-2.61(1.3)
20b (3.5) ^{a,b}	-2.23(1.0)	-2.50(1.2)
Anthracene $(8.9)^{a}$	-1.93(1.0)	-2.48(0.9)
$1a (3.5)^{a,c}$	-1.86(1.0)	-2.35(1.1)
1b $(7.8)^a$	-1.87(1.0)	-2.43(0.9)
1c $(1.9)^{a,d}$	-1.83(0.9)	-2.21(1.0)
$1d (3.2)^a$	-1.84(0.9)	-2.34(1.1)
1e $(2.7)^a$	-1.83(0.9)	-2.05(1.2)
5 (0.50-0.64)	-1.79(1.0)	-2.28(1.0)
6(0.91-1.1)	-1.77(0.9)	-2.00(1.2)

 a Data from ref 11. b A third wave was observed at -2.78 V. c A third wave was observed at -2.70 V. d A third wave was observed at -2.69 V.

stable (half-lives typically 30 sec or more), not only in anhydrous media but also in the presence of added 1 M H₂O. Consequently, it would appear practical to isolate salts of certain of these anion radicals provided that they are kept in an oxygen-free environment. A study of the properties of certain of these anion radicals will be subject of a separate paper.

Experimental Section⁵

1,8-Diphenyl-9,10-anthraquinone (2).—The following procedure represents an improvement on the previously reported² method. The CuBr used in this procedure was purified by first dissolving 35 g of commercial CuBr (Fisher Scientific Co.) in

150 ml of saturated aqueous KBr followed by decolorizing with charcoal and dilution with 1000 ml of H₂O. The CuBr that precipitated was collected, washed successively with EtOH and with hexane, and then dissolved in 125 ml of freshly distilled n-Bu₂S [bp 74-75° (14 mm)]. The resulting solution was filtered through a sintered glass funnel to remove ca. 0.3 g of insoluble residue and the filtrate was then heated to $140-160^\circ$ under 10-20mm pressure to remove the n-Bu₂S, leaving 27.5 g of purified CuBr. Spectrographic analysis indicated that this procedure removed small amounts of impurities containing Fe, Mg, Ag, Pb, Sn, and Ca. A solution of Li₂Ph₃Cu was prepared by treating 3.50 g (24.4 mmol) of purified CuBr with 76.6 mmol of PhLi in 170 ml of Et₂O. This solution was cooled to -10° and a cold solution of 2.00 g (4.35 mmol) of the diiodoquinone 19d in 600 ml of THF was added rapidly with stirring. After the resulting solution had been stirred at -10° for 4 min, a stream of oxygen was bubbled through the reaction solution for 7 min while the temperature was maintained at 0 to -10° . The resulting mixture was treated with aqueous NH₄Cl + NH₃ (pH 8), the organic layer was separated, and the aqueous phase was extracted with Et₂O. The combined organic solutions were concentrated and the residual vellow semisolid was triturated with ether to remove 0.4 g of an insoluble, high-melting by-product. The Et₂O solution was concentrated and the residue was heated to 60-70° (0.05 mm) to remove the bulk of the relatively volatile biphenyl. The residue (1.567 g) was chromatographed on silica gel with CH_2Cl_2 as an eluent to separate 818 mg (52%) of the crude diphenylquinone 2, mp 190-196°. Recrystallization (i-PrOH) afforded the pure quinone 2, mp 200-201°. A small amount (20 mg) of the starting diiodide 19d was also recovered from the chromatography column.

Preparation of the Triphenyl- and Tetraphenylanthracenes 5 and 6.—To a solution of 1.005 g (2.79 mmol) of the quinone 2 in 80 ml of PhH was added 3.0 ml of an Et₂O solution containing 3.3 mmol of PhLi. The resulting solution was stirred at 25° for 30 min and poured into aqueous NH₃ and NH₄Cl (pH 8). The combined organic layer and CH₂Cl₂ extract of the aqueous phase were concentrated to leave 1.34 g of yellow semisolid. Trituration with CH₂Cl₂ left 231 mg of the crude diol 4, which was recrystallized (EtOH) to separate 149 mg (10%) of the diol 4 in fractions melting within the range of 266–271.5°.

Repetition of this reaction with 319 mg (0.89 mol) of the quinone 2 in 10 ml of PhH and excess PhLi (17.7 mmol in 16 ml of Et₂O) afforded 319 mg (70%) of the diol 4 as white needles from EtOH, mp 262-272.5°.

Recrystallization from EtOH separated one stereoisomer of the diol 4 as white needles: mp 282.5-283.5°; ir (KB pellet) 3480 and 3350 cm⁻¹ (OH); uv (95% EtOH) intense end absorption (ϵ 80,000 at 210 m μ) with an inflection at 222 m μ (ϵ 53,300); mass spectrum m/e (rel intensity) 516 (M⁺, 0.5) 483 (43), 482 (100), 405 (24), and 326 (18).

Anal. Calcd for C₃₈H₂₈O₂: C, 88.34; H, 5.46. Found: C, 88.15; H, 5.60.

The residue (1.088 g) from the mother liquors, after separating the diol 4, was chromatographed on silica gel with CHCl₃ as the eluent. The early chromatographic fractions were triturated with hexane and fractionally recrystallized from EtOH to separate 82 mg (6%) of a second stereoisomer of the diol 4 as white needles: mp 276-277.5°; ir (KBr pellet) 3490 cm⁻¹ (OH); uv (95% EtOH) intense end absorption (ϵ 62,000 at 210 m μ) with inflections at 223 m μ (ϵ 48,000) and 265 (7800); nmr (C₆D₆) δ 5.9-8.1 (multiplet, OH and aryl CH); mass spectrum m/e (rel intensity) 516 (M⁺, 1), 501 (25), 500 (38), 499 (16), 483 (34), 469 (29), 468 (100), 424 (28), and 423 (67). On the (silica gel coating, CH₂Cl₂ eluent) the $R_{\rm f}$ values for the isomeric diols 4 were 0.76 (mp 276-277.5°) and 0.10 (mp 282.5-283.5°).

Anal. Calcd for C₃₈H₂₈O₂: C, 88.34; H, 5.46. Found: C, 88.22; H, 5.76.

The mother liquors from the early chromatographic fractions and the intermediate chromatographic fractions were crystallized from EtOH to separate 146 mg (15%) of the starting quinone 2, mp 196-199°. The later chromatographic fractions were recrystallized from EtOH or from MeOH to separate 385 mg (32%) of the hydroxy ketone 3, mp 221-225°. Recrystallization from MeOH afforded the pure ketol 3 as colorless prisms: mp 227-228°; ir (CHCl₃) 3570 (OH) and 1678 cm⁻¹ (conjugated C==O); uv max (95% EtOH) 222 m μ (shoulder ϵ 43,000) and 291 (10,200); nmr (CDCl₃) δ 7.85 (2 H d of d, J = 1.8 and 8 Hz, aryl CH), 7.55 (2 H t, J = 8 Hz, aryl CH), 7.1-7.4 (17 H m, aryl CH), and 3.07 (1 H s, OH); mass spectrum m/e (rel intensity) 438 (M⁺,

⁽⁵⁾ All melting points are corrected and all boiling points are uncorrected. Unless otherwise stated MgSO₄ was employed as a drying agent. The ir spectra were determined with a Perkin-Elmer Model 237 or Model 257 infrared recording spectrophotometer fitted with a grating. The uv spectra were determined with a Cary Model 14 or a Perkin Elmer Model 202 recording spectrophotometer. The nmr spectra were determined at 60 MHz with a Varian Model A-60 or Model T-60 nmr spectrometer. The chemical shift values are expressed in δ units (parts per million) relative to a MesSi internal standard. The mass spectra were obtained with an Hitachi (Perkin-Elmer) or a Varian Model M-66 mass spectrometer. All reactions involving strong bases or organometallic intermediates were performed under a nitrogen atmosphere.

$\mathbf{T}_{\mathbf{A}\mathbf{B}\mathbf{L}\mathbf{E}} \ \mathbf{I}\mathbf{V}$
STUDIES OF THE OXIDATION (0.2 M n-Pr4N +CF2SO3- IN CH2Cl2) AND REDUCTION (0.5 M n-Bu4N +BF4- IN DMF)
OF PHENYL DERIVATIVES OF NAPHTHALENE AND ANTHRACENE BY CYCLIC VOLTAMMETRY

	Potentials (vs. sce) and half-lives	(values obtained with	th added $H_2O)^a$	
$E_{1/2}, V$	$t^{1/2}$, sec	$E^{1/2}, V$	t1/2, sec	$E^{1/2}$, V	$t^{1/_{2}}$, sec
-2.56	>30			1.81	< 0.1
(-2.55)	(>30)				
-2.36	3	-2.59	<10-2		
(-2.37)	(2)	(2.37)			
-2.25	~ 13	-2.51^{b}	<10-2	1.59	<10-2
(-2.25)	(7)	(-2.50)			
-1.96	>30	-2.53	< 0.02	1.35	<0.05
(-1.95)	(>30)	(-2.47)			
-1.91	>30	-2.40°	$<10^{-2}$		
(-1.90)	(>30)	(-2.35)			
-1.93	>30	-2.47	<0.03	1.31	7×10^{-3}
(-1.93)	(>30)	(-2.42)		(1.31)	(7×10^{-3})
-1.90	>30	-2.34^{d}	<0.04		
(-1.88)	(>30)	(-2.23)			
-1.88	>30	-2.37°	<0.04	1.30	$7 imes 10^{-3}$
(-1.88)	(>30)	(-2.30)		(1.29)	(3×10^{-3})
-1.85	3	-2.03'	$<10^{-2}$	1.26	0.05
(-1.85)		(-2.00)		(1.23)	(0.04)
-1.81	~ 22	-2.310	$< 10^{-2}$		
-1.77	~ 8	-2.03^{g}	$< 10^{-2}$		
	$ \begin{array}{c} \hline & \mathbb{B}^{1/_{21}}, \mathbb{V} \\ & -2.56 \\ (-2.55) \\ & -2.36 \\ (-2.37) \\ & -2.25 \\ (-2.25) \\ & -1.96 \\ (-1.95) \\ & -1.91 \\ (-1.90) \\ & -1.93 \\ (-1.93) \\ & -1.93 \\ (-1.88) \\ & -1.88 \\ & -1.88 \\ (-1.88) \\ & -1.85 \\ (-1.85) \\ & -1.81 \\ & -1.77 \end{array} $	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c c } \hline Potentials (vs. sce) and half-lives \\ \hline Reduction \\ \hline Reduction \\ \hline Reduction \\ \hline E^{1/2}, V & t^{1/2}, sec & E^{1/2}, V \\ \hline -2.56 & >30 & \\ (-2.55) & (>30) & \\ -2.36 & 3 & -2.59 & \\ (-2.37) & (2) & (2.37) & \\ -2.25 & \sim 13 & -2.51^b & \\ (-2.25) & (7) & (-2.50) & \\ -1.96 & >30 & -2.53 & \\ (-1.95) & (>30) & (-2.47) & \\ -1.91 & >30 & -2.40^c & \\ (-1.90) & (>30) & (-2.42) & \\ -1.93 & >30 & -2.47 & \\ (-1.93) & (>30) & (-2.42) & \\ -1.90 & >30 & -2.34^d & \\ (-1.88) & (>30) & (-2.23) & \\ -1.88 & >30 & -2.37^* & \\ (-1.88) & (>30) & (-2.30) & \\ -1.85 & 3 & -2.03^f & \\ (-1.81 & \sim 22 & -2.31^c & \\ -1.77 & \sim 8 & -2.03^g & \\ \hline \end{tabular}$	Potentials (vs. sce) and half-lives (values obtained with the colspan="2">Reduction Reduction $E^{1/_2}$, V $t^{1/_2}$, sec $E^{1/_2}$, V $t^{1/_2}$, sec -2.56 >30 (-2.55) (>30) -2.36 3 -2.59 $<10^{-2}$ (-2.57) (2) (2.37) (-2.37) -2.25 ~ 13 -2.51^{5} $<10^{-2}$ (-2.37) (2) (2.37) (-2.50) -2.25 ~ 13 -2.51^{5} $<10^{-2}$ (-2.25) (7) (-2.50) (-2.25) -1.96 >30 -2.53 <0.02 (-1.95) (>30) (-2.47) (-1.91) -1.91 >30 -2.40° $<10^{-2}$ (-1.93) (>30) (-2.42) (-1.93) -1.93 >30 -2.47 <0.03 (-1.93) (>30) (-2.42) (-1.93) -1.90 >30 -2.34^{4} <0.04 (-1.88)	Potentials (vs. sce) and half-lives (values obtained with added $H_2O)^a$ Reduction $E^{1/2}$, V -2.56 2.56 -2.56 2.36 -2.36 3 -2.37 -2.25 (2) (2) (2.37) -2.25 (2) (2) (2.37) -2.25 (2) (2.37) -2.25 (2) (2) (2.37) -2.25 (2) (2) (2.37) -2.25 (2) (2) (2.37) -2.25 (2) (2) (2.37) -2.25 (2) (2) (2.37) (3.30) (-2.47) (-1.93) (2.30) (-2.47) (-1.93) (2.30) (-2.42) (1.31) (-1.93) (2.30) (-2.42) (1.31) (-1.93) (-2.30) (-2.30) (1.29) (-1.88) (-2.00) (-2.30) $(-2.3$

^a The solutions for reduction contained 1.0 M H₂O and the solutions for oxidation contained 0.2 M H₂O. ^b An additional peak was observed at -2.80 V. ^c An additional peak was observed at -2.75 V. ^d An additional peak was observed at -2.72 V. ^e An additional peak was observed at -2.76 V. ^f An additional peak was observed at -2.78 V.

48), 437 (39), 422 (60), 421 (100), 420 (39), 361 (24), 344 (29), and 171 (16).

Anal. Calcd for $C_{32}H_{22}O_2$: C, 87.64; H, 5.06. Found: C, 87.43; H, 4.99.

A mixture of 253 mg (0.58 mmol) of the ketol 3, 1.0 g of Zn dust (activated with 6 mg of CuSO₄),⁶ 2 ml of aqueous 28% NH₃, 12 ml of aqueous 30% NaOH, and 20 ml of EtOH was refluxed with stirring for 24 hr. An additional 500 mg of Zn dust was added and refluxing and stirring were continued for 39 hr more. The reaction mixture was filtered and both the residue and the filtrate were extracted with CH_2Cl_2 . The combined CH_2Cl_2 extracts were concentrated and a solution of the residual white solid and 3 ml of aqueous 12 M HCl in 100 ml of i-PrOH was refluxed for $45 \min$. The resulting solution was concentrated and the residue was partitioned between aqueous NaHCO₃ and CH₂Cl₂. The organic phase was dried, concentrated, and chromatographed on silica gel with CH₂Cl₂ as the eluent. The early fractions contained 92 mg (38%) of the triphenylanthracene 5, mp 189-192°. Recrystallization (EtOH) separated the pure hydrocarbon 5 as yellow needles: mp 194–195°; ir (CHCl₃) no absorption in the 3- or 6- μ regions attributable to OH or C=O groups; uv max (95%) EtOH) 214 mµ (\$\epsilon 44,800), 261 (101,000), 343 (shoulder, 3660), 361 (7720), 380 (11,800), and 400 (10,300); nmr (CDCl₃) & 8.66 (1 H, partially resolved multiplet, aryl CH at C-9), 7.1-7.9 (21 H m, aryl CH); mass spectrum m/e (rel intensity) 406 (M⁺, 100) and 325 (11)

Anal. Calcd for C₃₂H₂₂: C, 94.54; H, 5.46. Found: C, 94.24; H, 5.77.

The later chromatographic fractions from the reaction mixture afforded 47 mg (23%) of the quinone 2, mp 195-199° (believed not to have been an impurity in the starting ketol 3), and 44 mg (17%) of the starting ketol 3, mp 217-220°.

A mixture of 319 mg (0.62 mmol) of the diol 4, mp 262–272°, 2.5 g of Zn dust (activated with 15 mg of CuSO₄),⁶ 5 ml of aqueous 28% NH₃, 25 ml of aqueous 30% NaOH, and 60 ml of *i*-PrOH was refluxed with stirring for 48 hr. The resulting mixture was filtered, the filtrate was treated with an additional 500 mg of Zn dust and 25 ml of *i*-PrOH, and refluxing and stirring were continued for 48 hr more. The previously described isolation procedure was followed, including reaction of the reduced intermediate with 3 ml of aqueous 12 M HCl in 100 ml of boiling *i*-PrOH for 45 min. The crude organic product was chromatographed on silica gel with a hexane-CH₂Cl₂ (7:3, v/v) eluent. Recrystallization of the early fractions from hexane separated 86 mg (29%)

(6) E. Martin, J. Amer. Chem. Soc., 58, 1438 (1936).

of the tetraphenylanthracene 6 as pale yellow plates: mp 220–221°; ir (CHCl₈) no absorption in the 3- or 6- μ regions attributable to OH or C=O groups; uv max (95% EtOH) 229 m μ (inflection, ϵ 34,000), 270 (71,500), 369 (inflection, 7750), 391 (11,800), and 409 (11,000); nmr (CDCl₈) δ 7.5–7.8 (7 H m, two anthracene CH and C-10 phenyl at δ 7.60), 6.9–7.4 (4 H m, anthracene CH), and 6.3–6.9 (15 H m, three phenyl groups at C-1, C-8, and C-9); mass spectrum m/e (rel intensity) 483 (20), 482 (M⁺, 100), 405 (13), and 326 (10).

Anal. Calcd for $C_{38}H_{26}$: C, 94.57; H, 5.43. Found: C, 94.65; H, 5.40.

Later fractions from the chromatography of the reaction mixture contained (ir analysis) 205 mg (64%) of the crude diol 4, mp 243-250°.

Preparation of the 9-Acetoxyanthracene Derivatives 8b, 10b, and 12b.—A mixture of 3.013 g (15.5 mmol) of anthrone (7), 5 ml of Ac₂O, and 20 ml of collidine was heated to 100° for 2.5 hr and then cooled and poured with stirring into a mixture of ice and aqueous HCl. The resulting suspension was filtered and the residue was fractionally crystallized from EtOH to separate 309 mg (10%) of the starting anthrone 7, mp 286-288°, and 2.22 g (60%) of the acetate **8b** as white needles, mp 134-137°. Re-crystallization afforded the pure acetate **8b**: mp 135.5-137° (lit.⁷ mp 130-133°); ir (CHCl₃) 1765 cm⁻¹ (ester C=O); uv max (95% EtOH) 216 mµ (ε 11,300), 219 (11,000), 246 (shoulder, 101,000), 252 (192,000), 315 (shoulder, 1320), 329 (2980), 345 (5800), 363 (8780), and 383 (8150); nmr (CDCl₃) δ 8.30 (1 H s, aryl CH at C-10), 7.2-8.1 (8 H m, aryl CH), and 2.53 (3 H s, CH₃CO); mass spectrum m/e (rel intensity) 236 (M⁺, 3), 194 (51), 193 (31), 165 (100), 164 (24), 163 (43), 139 (17), and 43 (52).

The same reaction and isolation procedures were followed with 241 mg (0.89 mmol) of the anthrone 9, 1 ml of Ac₂O, and 3 ml of collidine. Recrystallization of the crude product from EtOH separated 219 mg (79%) of the acetate 10b, mp 188-194°. The pure acetate 10b crystallized from EtOH as colorless prisms: mp 194-195°; ir (CHCl₃) 1764 cm⁻¹ (ester C=O); uv max (95% EtOH) 214 m μ (ϵ 21,800), 256 (127,000), 319 (shoulder, 1270), 335 (3060), 351 (6090), 369 (9150), and 389 (7970); nmr (CDCl₃) δ 8.40 (1 H s, aryl CH at C-10), 7.1-8.2 (12 H m, aryl CH), and 1.52 (3 H s, CH₃CO); mass spectrum m/e (rel intensity) 312 (M⁺, 3), 270 (80), 269 (42), 268 (84), 241 (38), 240 (20), 239 (100), 237 (38), 213 (20), and 43 (39).

(7) J. S. Meek, P. A. Monroe, and C. J. Bouboulis, J. Org. Chem., 28, 2572 (1963).

DERIVATIVES OF 1,8-DIPHENYLANTHRACENE

Anal. Calcd for C22H16O2: C, 84.59; H, 5.16. Found: C, 84.59; H, 5.24.

A comparable reaction of 232 mg (0.802 mmol) of the anthrone 11 with 1 ml of Ac₂O and 3 ml of collidine for 4.5 hr yielded 258 mg of crude product. Recrystallization from EtOH afforded 203 mg (65%) of the acetate 12b, mp 274-282°. An additional rerystallization from EtOH afforded the pure acetate as white needles: mp 282–282.5°; ir (CHCl₃) 1760 cm⁻¹ (ester C==0); uv max (95% EtOH) 213 mµ (ϵ 31,000), 261 (133,000), 342 (shoulder, 3280), 359 (6520), 377.5 (9540), and 398 (7920); nmr (CDCl₃) δ 8.48 (1 H s, aryl CH at C-10), 8.02 (2 H d of d, J = 1.6 and 8.4 Hz, aryl CH), 7.1-7.6 (14 H m, aryl CH), and 0.28 (3 H s, CH₃CO); mass spectrum, m/e (rel intensity) 388 (M⁺, 4), 347 (17), 346 (100), 345 (22), 344 (28), 313 (16), 268 (21), 239 (19), and 43 (19).

Anal. Calcd for C28H20O2: C, 86.57; H, 5.19. Found: C, 86.27; H, 5.10.

Preparation of the 9-Methoxyanthracene Derivatives 8a, 10a, and 12a.-To a refluxing solution of 259 mg (0.96 mmol) of the anthrone 9 and 6 ml of aqueous 20% NaOH in 8 ml of *i*-PrOH was added, portionwise with stirring, 1.21 g (6.5 mmol) of Me-OTs. The resulting mixture was refluxed for 20 min and then diluted with 15 ml of H₂O and allowed to cool. The crude crystalline product (167 mg) that separated was collected and recrystallized from EtOH to separate 154 mg (57%) of the methoxyanthracene 10a as pale yellow plates: mp 138.5-139.5°; ir $(CHCl_3)$ no absorption in the 3- or 6- μ regions attributable to OH or C=O groups; uv max (95% EtOH) 212 m μ (ϵ 23,000), 258 (105,000), 340 (shoulder, 3090), 356 (5960), 375 (8620), and 394 (7720); nmr (CDCl_3) δ 8.30 (1 H s, aryl CH at C-10), 7.1–8.2 (12 H m, aryl CH), and 3.25 (3 H s, OCH_3); mass spectrum m/e(rel intensity) 285 (23), 284 (M⁺, 100), 270 (18), 269 (99), 268 (91), 229 (15), and 124 (20).

Anal. Calcd for C21H16O: C, 88.70; H, 5.67. Found: C, 88.47; H, 5.95.

A comparable reaction with 190 mg (0.55 mmol) of the anthrone 11, 6 ml of aqueous 20% NaOH, 8 ml of i-PrOH, and 1.21 g (6.5 mmol) of MeOTs yielded 115 mg (60%) of the methoxyanthracene 12a as pale yellow needles from EtOH: mp 241-242.5°; ir (CHCl₃) no absorption in the 3- or $6-\mu$ regions at-242.5; if (CHCl₃) ho absorption in the 3- or $6-\mu$ regions attributable to OH or C=O groups; uv max (95% EtOH) 215 m μ (ϵ 31,900), 254 (shoulder, 67,600), 262 (112,000), 346 (shoulder, 3280), 369 (6760), 384 (9530), and 406 (8300); nmr (CDCl₃) δ 8.35 (1 H s, aryl CH at C-10), 7.1–8.2 (16 H m, aryl CH) and 2.27 (2 H s, OCH); mass spacetrum m (ϵ (cell intersection) CH), and 2.37 (3 H s, OCH₈); mass spectrum m/e (rel intensity) $361(30), 360(M^+, 100), 346(16), 345(69), 344(49), and 268(12).$ Anal. Calcd for C27H20O: C, 89.97; H, 5.59. Found: C,

89.79; H, 5.70.

The same procedure was applied⁸ to anthrone (7) to produce 9-methoxyanthracene (8a) in 51% yield as yellow needles from i-PrOH: mp 95-96° (lit.⁷ mp 95-96°); nmr (CDCl₈) & 7.3-8.5 (9 H m, aryl CH) and 4.10 (3 H s, OCH₃).

Nitration of Anthracene and 1,8-Diphenylanthracene (1d).--A mixture of 968 mg (10.8 mmol) of aqueous 70% HNO₃, 8 ml of CH₂Cl₂, and 306 mg (1.72 mmol) of anthracene was stirred at $0\text{-}3^\circ$ for 1 hr and then partitioned between CH_2Cl_2 and aqueous NaHCO₃. The organic layer was dried and concentrated and the residual yellow oil (432 mg) was chromatographed on silica gel with PhH as an eluent. The early fractions, containing (tlc) 9-nitroanthracene (16a), were recrystallized from EtOH to separate 208 mg (55%) of the nitro derivative 16a as yellow needles: mp 145.5–147.5° (lit.º mp 146°); ir (CHCl₃) 1520 and 1370 cm⁻¹ (NO₂); uv (95% EtOH) 217 m μ (ϵ 14,300), 245 (shoulder, 102,000), 250 (120,000), 333 (shoulder, 2480), 347 (3840), 364 (4640), 383 (3950), and 402 (shoulder, 2180); nmr (CDCl₃) & 8.51 (1 H s, aryl CH at C-10) and 7.2-8.1 (8 H m, aryl CH); mass spectrum m/e (rel intensity) 223 (M⁺, 100), 193 (48), 177 (69), 176 (76), 165 (51), 151 (21), and 88 (34).

To a refluxing solution of 1.018 g (4.52 mmol) of the nitro compound 16a in 20 ml of HOAc was added, dropwise and with stirring, a solution of 8 g of $\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$ in 8 ml of aqueous 12 M HCl. The resulting solution was refluxed for 30 min, cooled, and filtered to separate the amine-tin complex. This residue was washed with HOAc and then triturated with aqueous NH3 and extracted repeatedly with Et_2O . The Et_2O extract was concentrated and the residual crude amine was dissolved in 30 ml of cold (0°) Ac₂O. This cold solution was stirred for 15 min

and then poured onto ice and allowed to stand. The crude amide 16b (835 mg or 78%, mp 282-284°) was collected and recrystallized from PhH to separate the pure amide 15b as 737 mg of white needles: mp 283-284° dec (lit.¹⁰ mp 280-281°); ir (KBr pellet) 3190 (amide NH) and 1637 cm⁻¹ (amide C=O); uv max (95% EtOH) 214 mµ (\$ 14,000), 247 (shoulder, 95,600), 10. max (95.00), 214 mµ (e 14,000), 247 (shoulder, 95,000), 253 (158,000), 315 (shoulder, 1160), 330 (2740), 346 (5350), 364 (7700), and 383.5 (6950); nmr ($C_6D_5NO_2$ at 120°) δ 8.34 (1 H s, aryl CH at C-10), 7.2–8.3 (8 H m, aryl CH), and 2.34 (2 H s, aryl CH) at C-10 (2 CUCUCU) (2 CUCUCUU) (2 CUCUCUU) (2 CUCUCUU) (2 CUCUCUU) (2 CUCUCUU) (2 CUCUCUU) (2 CUCUU) (2 CUUU) (2 CUUUU) (2 CUUU) (2 CUUU) (2 CUUU) (2 CUUUU) (2 CUUUU) (2 CUUUU) (2 (3 H s, CH₃CO); in Cl₂CHCHCl₂ solution at ca. 35° the Cmethyl singlet is located at δ 1.83. In CDCls solution, the methyl signal appears as two peaks at δ 1.68 and 2.49, suggesting that in this solvent both the acetamido and acetimido tautomers are present. Exposure of this CDCl₃ solution to gaseous HCl resulted in a change in the relative positions and intensities of the peaks with the predominant peak appearing at δ 2.18, mass spectrum m/e (rel intensity) 235 (M⁺, 38), 194 (18), 193 (100), 192 (28), and 43 (26).

A cold (0°) mixture (two phases) of 204 mg (0.619 mmol) of 1.8-diphenylanthracene (1d), 15 ml of CH_2Cl_2 , and 500 mg (5.5 mmol) of aqueous 70% HNO₃ was stirred for 2 hr at 0° and then for 20 min at 25°. After the mixture had been treated with NaHCO₃, the CH₂Cl₂ solution was separated and stirred with an ddipional 500 mg (5.5 mmol) of acuto and the contract of the additional 500 mg (5.5 mmol) of aqueous 70% HNO3 for 2 hr at 0° and 30 min at 25°. Solid NaHCO3 was again added and the CH₂Cl₂ solution was separated, concentrated, and chromatographed on silica gel with CH₂Cl₂ as the eluent. The early fractions were combined and recrystallized from hexane to separate 111 mg (48%) of the nitro derivative 13, mp 245-252°. Recrystallization from EtOH afforded the pure nitro compound Recrystanization from EtOH anorded the pure intro compound 13 as yellow needles: mp 250.5–252°; ir (CHCl₃) 1525 and 1367 cm⁻¹ (NO₂); uv max (95% EtOH) 257 m μ (ϵ 71,700), 359 (shoulder, 3840), 382 (5190), and 400 (shoulder, 4770); nmr (CDCl₃) δ 8.75 (1 H s, aryl CH at C-9), 7.95 (2 H, d of m, J = 8Hz, aryl CH at C-4 and C-5), and 7.3-7.8 (14 H m, phenyl CH and aryl CH at C-2, C-3, C-6, and C-7); mass spectrum m/e(rel intensity) 376 (26), 375 (M⁺, 100), 345 (11), 329 (14), 328 (14), and 326 (18).

Anal. Calcd for C₂₆H₁₇NO₂: C, 83.18; H, 4.56; N, 3.73. Found: C, 83.15; H, 4.65; N, 3.65.

The later chromatography fractions (41 mg or 16%) contained the crude dinitro compound 14, mp 193.5-195°. Recrystallization from hexane and then from EtOH separated the pure dinitro compound 14 as orange prisms: mp 199-200°; ir (CHCl₈) 1530 and 1355 cm⁻¹ (NO₂); uv max (95% EtOH) 245 m μ (ϵ 30,400), 272 (44,500), and 426 (8420); nmr (CDCl₂) δ 8.83 (1 H s, aryl CH at C-9), 8.0–8.4 [2 H, a doublet (J = 8 Hz) of multiplets for the proton at C-5 and a doublet (J = 7.5 Hz) for the proton at C-3], and 7.1-8.0 (13 H m, phenyl CH and aryl CH at C-2, C-6, and C-7); mass spectrum m/e (rel intensity) 420 (M⁺, 26), 375 (18), 374 (71), 345 (21), 344 (82), 316 (66), 315 (100), 314 (28), 313 (70), and 239 (18).

Anal. Calcd for C28H16N2O4: C, 74.28; H, 3.84; N, 6.66.

Found: C, 74.31; H, 3.87; N, 6.55. A 21.2-mg (0.057 mmol) sample of the mononitro compound 13 was treated at 25° for 2.5 hr with a mixture of 2 ml of CH_2Cl_2 and 0.2 g (2 mmol) of aqueous 70% HNO₃. The crude product, isolated as previously described, was recrystallized from EtOH to separate 15.1 mg (63%) of the dinitro compound 14, mp 197.5-198.5°, identified with the previously described sample by a mixture melting point determination and by comparison of nmr and mass spectra.

A solution of 113 mg (0.302 mmol) of the nitro compound 13 in 85 ml of HOAc and 15 ml of Ac₂O was hydrogenated for 10 hr at 25° and atmospheric pressure over the catalyst from 100 mg of Pt₂O. The resulting mixture was filtered and concentrated and the residue was chromatographed on silica gel with CHCl₃ as an eluent. Recrystallization of the appropriate chromatographic fractions from EtOH separated 95 mg (80%) of the crude di-hydroamide 15a as white needles: mp $235-240^{\circ}$; ir (CHCl₃) 3430 (NH) and 1670 cm⁻¹ (amide C=O); uv (95% EtOH) shoulders at 235 mµ ($\epsilon 20,800$) and 260 (7930) with intense end absorption (ϵ 64,100 at 210 m μ); nmr (CDCl₃) δ 7.0-7.6 (16 H m, aryl CH), 6.0-6.4 (2 H m, NH and CH), 3.5-4.2 (2 H m, benzylic CH₂), and 2.17 (3 H s, CH₃CO). A solution of 88 mg (0.23 mmol) of the crude dihydro amide 15a and 58 mg (0.26 mmol) of 2,3-dichloro-5,6-dicyanobenzoquinone in 7 ml of PhH

⁽⁸⁾ This experiment was performed in our laboratories by Dr. David S. Crumrine. (9) O. Dimroth, Ber., **84**, 219 (1901).

⁽¹⁰⁾ J. Rigaudy, H. Canquis, G. Izout, and J. Baranne-Lafont, Bull. Soc. Chim. Fr., 1842 (1961).

was refluxed for 24 hr and then the solvent was removed. The residue was chromatographed on silica gel with first CH₂Cl₂ and then CHCl₃ as eluents. The fractions containing the crude amide then CHCl₃ as eitents. The flactions containing the crude annucle 15b were recrystallized from EtOH to separate 40 mg (46%) of the crude amide 15b as colorless plates, mp 319–323°. Re-crystallization afforded the pure amide 15b: mp 324–325.5°; ir (KBr pellet) 3240 (NH) and 1650 cm⁻¹ (amide C=O); uv max (95% EtOH) 212 mµ (\$\epsilon 39,800), 260 (111,000), 362 (6880), 380.5 (10,500), and 400.5 (9030); mass spectrum m/e (rel intensity), 387 (M⁺, 86), 345 (84), 344 (31), 190 (28), and 43 (100); nmr $(C_6D_5NO_2) \delta$ 7.2–8.6 (17 H m, aryl CH) and 2.80 (3 H s, CH₃CO); in Cl₂CHCHCl₂ solution the C-methyl singlet was at δ 1.89. As was the case with the model amide 16b, a solution of the amide 15b in CDCl₃ exhibited two peaks at δ 2.52 and 1.75; after exposure of the solution to gaseous HCl, the major peak was located at 8 2.03.

Anal. Calcd for C23H21NO: C, 86.79; H, 5.46; N, 3.62. Found: C, 86.52; H, 5.40; N, 3.45.

Preparation of the Halogenated Anthracene Derivatives 17, 18, and 19b.—A cold (0°) solution of 15.0 g (77.7 mmol) of 1aminoanthracene in a mixture of 40 ml of concentrated H₂SO₄, 55 ml of H₂O, and 125 g of ice was diazotized at -10° by treatment with a solution of 14.0 g (203 mmol) of NaNO₂ in 60 ml of H_2O . The cold (-10°) slurry of the red diazonium salt was treated with a solution of 55 g (330 mmol) of KI in 75 ml of H_2O and the resulting mixture was warmed to complete the reaction with the diazonium salt. The crude solid product (37.5 g) was collected and chromatographed on silica gel with PhH as an eluent. The early fractions, containing (tlc) the iodide 17, were washed with aqueous Na₂S₂O₃, dissolved in CH₂Cl₂, dried, concentrated, and triturated with Et_2O to separate 6.66 g (27%) of the iodide 17, mp 81-96°. Recrystallization from EtOH separated the pure iodide 17 as yellow plates: mp 102.3-103°; ir $(CHCl_3)$ no absorption in the 3- or 6- μ regions attributable to OH or C=O groups; uv max (95% EtOH) 217 mµ (\$\$\epsilon\$ 12,600), 252 (130,000), 317 (shoulder, 1340), 331 (3020), 347 (5770), 365 (8170), and 385 (7780); nmr (CDCl₃) δ 8.61 (1 H s, aryl CH), 8.23 (1 H s, aryl CH), and 6.9-8.1 (7 H m, aryl CH); mass spectrum m/e (rel intensity) 304 (M⁺, 100), 177 (36), 176 (29), and 88 (14).

Anal. Calcd for C14H9I: C, 55.29; H, 2.98; I, 41.73. Found: C, 55.46; H, 2.99; I, 41.53.

A mixture of 2.515 g (9.10 mmol) of the dichloroquinone 19c, 12.5 g of Zn dust, and 50 ml of aqueous 20% NH₃ was heated on a steam bath with stirring for 30 min and then cooled and filtered. The residue and the filtrate were each extracted with CH₂Cl₂ and the combined CH₂Cl₂ extracts were concentrated. A solution of the residual white solid in 250 ml of *i*-PrOH containing 2 ml of aqueous 12 M HCl was refluxed for 3 hr and then concentrated and partitioned between CH₂Cl₂ and aqueous NaHCO₃. The organic layer was concentrated and the residue was recrystallized from *i*-PrOH to separate 1.655 g (74%) of the dichloride 18, mp 149–157°. Recrystallization afforded the pure dichloride 18 as pale yellow needles: mp $156.5-158^{\circ}$;¹¹ ir (CHCl₈) no absorption in the 3- or $6-\mu$ regions attributable to OH or C=O groups; uv max (95% EtOH) 218 m μ (ϵ 12,600), 252 (113,000), 256 (113,000), 319 (shoulder, 1340), 333 (2950), 350 (5550), 368 (8060), and 388 (7320); nmr (CDCl₈) & 9.19 (1 H s, aryl CH), 8.35 (1 H s, aryl CH), and 7.2-8.0 (6 H m, aryl CH); mass spectrum m/e (rel intensity) 250 (12), 248 (70), 246 (M⁺ for ³⁶Cl, 100), 176 (23), 123 (12), and 68 (13).

Anal. Calcd for C14H8Cl2: C, 68.05; H, 3.22; Cl, 28.80. Found: C, 67.78; H, 3.26; Cl, 28.69.

An attempt to apply this same reduction procedure to the diiodoquinone 19d resulted in the reductive cleavage of the C-I bonds to form anthracene in 68% yield. A solution of 5.48 g (24.5 mmol) of the diamine **19a** in a mixture

of 27 ml of concentrated H₂SO₄, 35 ml of H₂O, and 78 g of ice was diazotized at -15° by the slow addition of a solution of 8.8 g (128 mmol) of NaNO₂ in 38 ml of H₂O. To the resulting cold -15°) suspension was added a slurry of CuBr, prepared from (-15°) suspension was added a surry of CuBr, prepared from 4.70 g (18.8 mmol) of CuSO₄·5H₂O, 1.5 g (23.6 mg-atom) of Cu, 11.6 g (113 mmol) of NaBr, 2.4 ml of concentrated H₂SO₄, and 100 ml of H₂O. The resulting mixture was heated to 80° and then cooled and made basic with NaOH. The crude solid product was collected, washed successively with aqueous 10% HCl, aqueous NaHCO₃, and water, and then dried. Chromatography

on silica gel with PhH as the eluent separated 1.237 g (14%) of the crude dibromoquinone 19b, mp 213-225°. Recrystallization from EtOH separated the pure dibromide 19b as yellow needles: mp 233-234°; ir (CHCl₈) 1685 cm⁻¹ (conjugated C=O); uv max (95% EtOH) 213 m μ (ϵ 28,800), 255 (33,800), 351 (4480), and 416 (shoulder, 774); nmr (CDCl₃) δ 8.28 (2 H, d of d, J =7.6 and 1.3 Hz, aryl CH at C-4 and C-5), 8.06 (2 H, d of d, J =1.3 and 7.6 Hz, aryl CH at C-2 and C-7), and 7.55 (2 H t, $J \cong 8$ Hz, aryl CH at C-3 and C-6); mass spectrum m/e (rel intensity) 368 (52), 366 (100), 364 (M⁺ for ⁷⁹Br, 50), 150 (90), 75 (64), and 74 (29).

Anal. Calcd for C14H6Br2O2: C, 45.94; H, 1.65; Br, 43.66. Found: C, 45.89; H, 1.73; Br, 43.90.

Polarographic Measurements of Oxidation and Reduction **Potentials.**—These measurements were obtained at 25° with a Heath polarograph, Model EU-402V. The reductions were The reductions were performed at a dropping Hg electrode with a Pt counterelectrode in purified DMF¹² employing 0.5 M n-Bu₄N⁺BF₄⁻¹² as the supporting electrolyte and with a saturated calomel reference electrode that made contact with the reaction solution through intervening salt bridges containing aqueous $1 M \text{ NaNO}_3$ and 0.5 $M \text{ Et}_4\text{N}^+\text{BF}_4^-$ in DMF. The oxidations were performed at a rotating Pt wire anode (0.1 mm diameter, 600 rpm) with a fixed Pt counterelectrode in CH₂Cl₂ containing 0.2 M n-Pr₄N⁺-CF₃SO₂⁻¹³ as the supporting electrolyte. The CH₂Cl₂ was $CF_3SO_3^{-13}$ as the supporting electrolyte. The CH_2Cl_2 was purified by washing successively with aqueous 5% Na₂CO₃ and with H₂O and drying over CaCl₂. The solvent was then distilled under N_2 at atmospheric pressure and collected at 40-40.5°. The Pt wire anode was cleaned before each use by successive treatment with aqueous H_2CrO_4 and with aqueous 12 M HCl as described by Adams¹⁴ and then rinsed successively with H₂O, acetone, and CH₂Cl₂. The reference was a saturated calomel electrode with intervening salt bridges containing aqueous 1 MNaNO₂ and 0.5 *M n*-Bu₄N⁺BF₄⁻ in DMF. The $E_{1/2}$ values (vs. sce) and the *n* values were obtained from plots of E vs. log [i/(id - i)] and are presented in Tables II and III. Certain of the reduction potential values in Table III were described in an earlier paper.

Oxidation and Reduction Measurements by Cyclic Voltammetry.-The polarographic module employed was a custommade module utilizing solid-state amplifiers that followed the typical three-electrode design such as that found in a Heath polarograph. For slow scans the internal circuitry of the module was employed and for fast scans an external triangular wave form generator was employed to drive the polarography module. The current-potential curves were displayed on a storage oscilloscope (Tektronix RM 564 fitted with two differential amplifiers, type 2-A63) and were photographed with a Tektronix oscilloscope camera fitted with a Polaroid back. The potentials were calibrated against a previously calibrated digital voltmeter (United Systems Corp., Series 180) and the sweep time calibrations were made with the oscilloscope fitted with a previously calibrated time base (Tektronix type 2-B67). The oxidation measurements employed a spherical Pt anode (typical diameter 1.25 mm) that had been cleaned by heating it in an air-H2 flame. For reduction measurements, the cathode was the same spherical Pt electrode described above that had been coated with Hg as previously described.15 The same solvents, supporting electrolytes, counterelectrodes, and reference electrodes that were used in the above polarographic measurements were employed for these studies. The nitrogen was purified as previously described¹⁵ and the electrolysis cell was of all-glass construction with provision for passing purified nitrogen either through or over the solution being measured. The entire electrolysis cell was kept in a grounded steel drum during measurements to minimize electrical interference. In those reduction measurements where cathodic $(E_{\rm po})$ and anodic $(E_{\rm pa})$ waves were observed, the value of the reduction potential $(E_{1/2})$ was taken to be $^{1/2}(E_{pe} + E_{pa})$; as expected, the value corresponded to the cathodic potential where the cathodic

⁽¹¹⁾ E. Bergmann and A. Weizmann [J. Amer. Chem. Soc., 60, 1801 (1938)] have reported the dichloride 18 to melt at 185°.

⁽¹²⁾ H. O. House, E. Feng, and N. P. Peet, J. Org. Chem., 36, 2371 (1971).

⁽¹³⁾ K. Rousseau, G. C. Farrington, and D. Dolphin, J. Org. Chem., 37, 3968 (1972).

⁽¹⁴⁾ R. N. Adams, "Electrochemistry at Solid Electrodes," Marcel

<sup>Dekker, New York, N. Y., 1969, pp 201-202.
(15) K. W. Bowers, R. W. Giese, J. Grimshaw, H. O. House, N. H. Kolodny, K. Kronberger, and D. K. Roe, J. Amer. Chem. Soc., 92, 2783</sup> (1970).

NEW ROUTE TO ESTERS OF HALOHYDRINS

current had reached 85% of its peak value (i_{pe}) .¹⁶ Where no anodic current peak (i_{pa}) was observed, an estimate of the value of $E_{1/2}$ was obtained from the cathodic potential at which i_c reached 85% of the maximum value, i_{pe} . Comparable procedures were followed to obtain the oxidation potentials. Half-life estimates for the various oxidized and reduced species were obtained by a previously described procedure¹⁵ in which the scan rates and switching potentials (E_{λ}) in reductions were adjusted until $i_{pa} = 1/2(i_{pe})$. The half-life for reduced species was than taken to be the elapsed time as the potential was swept from E_{pe} to E_{pa} . In instances where the intermediate was either too unstable or too stable to allow a variation in i_{pa} with time, the minimum or maximum values of the half-life were estimated. Comparable procedures were followed for the oxidations. The results of these measurements are summarized in Table IV. The effect of added H₂O on the stability of various oxidized and

(16) R. S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964); 37, 178 (1965).

reduced species was explored by adding known amounts of $H_{2}O$ (1.0 *M* for reductions and 0.2 *M* for oxidations) to the anhydrous solution and then repeating the measurements previously described.

Registry No.—1a, 1714-09-6; 1b, 602-55-1; 1c, 1714-19-8; 1d, 33522-35-9; 1e, 33522-39-3; 2, 33522-27-9; 3, 38305-27-0; cis-4, 38309-51-2; trans-4, 38309-52-3; 5, 38305-28-1; 6, 38305-29-2; 7, 90-44-8; 8a, 2395-96-2; 8b, 784-04-3; 9, 1714-15-4; 10a, 38305-34-9; 10b, 38305-35-0; 11, 33522-37-1; 12a, 38305-37-2; 12b, 38305-38-3; 13, 38305-39-4; 14, 38305-40-7; 15a, 38305-30-5; 15b, 38305-31-6; 16a, 602-60-8; 16b, 37170-96-0; 17, 22362-90-9; 18, 14381-66-9; 19a, 129-42-0; 19b, 38313-16-5; 19c, 82-43-9; 19d, 30877-00-0; 20a, 605-02-7; 20b, 1038-67-1; anthracene, 120-12-7; 1-anthramine, 610-49-1.

The Reaction of Cyclic α-Ketal Acids with Phosphorus Pentachloride. A New Stereospecific Route to Esters of Halohydrins

MELVIN S. NEWMAN* AND CHIN H. CHEN¹

Chemistry Laboratory of The Ohio State University, Columbus, Ohio 43210

Received August 7, 1972

Treatment of a number of cyclic α -ketal acids containing 1,3-dioxolane, 1,3-dioxane, and 1,3-dioxepane rings with phosphorus pentachloride in methylene chloride yielded esters of 1,2-, 1,3-, and 1,4-chlorohydrins, respectively. Evidence is presented to show that 2-chloro-2-methyl-1,3-dioxolane (5) and 2-chloro-2,5,5-trimethyl-1,3-dioxane (9) are formed directly at -60° from 2-carboxy-2-methyl-1,3-dioxolane (4) and 2-carboxy-2,5,5trimethyl-1,3-dioxane (8), respectively. On warming to 0° 5 and 9 rearrange to 2-chloroethyl acetate (6) and 3-chloro-2,2-dimethylpropyl acetate (10), respectively. Similar reactions with optically active 1,3-dioxolanes yield stereospecific products in which inversion of configuration occurs at the carbon-oxygen bond which is converted to a carbon-chlorine bond. In unsymmetrical 1,3-dioxolanes, the regiospecific products of the reaction are those predicted by assuming an SN2 type mechanism for opening of the 1,3-dioxolane ring. The synthetic utility of these reactions for the synthesis of optically active epoxides is demonstrated.

In a preliminary communication, the conversion of several 2-carboxy-1,3-dioxolanes (1) and a 2-carboxy-1,3-dioxane (2) into esters of halohydrins by treatment

with phosphorus pentachloride in methylene chloride were described.² A more detailed account of this and additional work is presented herein.

The preparation of the requisite 2-carboxy-1,3dioxolanes and 1,3-dioxanes from diols and pyruvic and benzoylformic acids was accomplished in moderate yields under acid catalysis by either or both of two methods: A, treatment of the α -keto acid with excess diol; and B, treatment of the diol with excess α -keto acid.³ When method A was used an alkaline treatment was needed during the work-up to hydrolyze any ester formed. Yields of 1,3-dioxanes were better than those of 1,3-dioxolanes (see Table I, Experimental Section). In the only case of a 1,4-diol studied, 1,4-butanediol and pyruvic acid reacted to give 2-carboxy-2-methyl-1,3-dioxapane (3) in 63% yield. In a few cases, benzoyl-

formic acid afforded α -ketal acids in about the same yields as when pyruvic acid was used.

The reactions of the cyclic acids above described with phosphorus pentachloride or thionyl chloride in methylene chloride took place rapidly at room temperature or below. The evolution of hydrogen chloride and carbon monoxide occurred rapidly under all conditions. Comparable results were obtained when a suspension of the dried sodium salts of 1 and 2 in methylene chloride was treated with thionyl chloride or phosphorus pentachloride. In two cases when thionyl chloride was used, the results were qualitatively the same but the yields of pure halo esters obtained were inferior. Accordingly, in all further work only phosphorus pentachloride was used.

With regard to the mechanism of the reaction, we wished to know whether the acid chloride was formed and lost carbon monoxide or an alternate path was involved. Accordingly, a solution of 2-carboxy-2-

⁽¹⁾ Postdoctoral Fellow. This work was supported by Grant No. GP-12445X of the National Science Foundation.

⁽²⁾ M. S. Newman and C. H. Chen, J. Amer. Chem. Soc., 94, 2149 (1972).
(3) E. Vogel and H. Schinz, Helv. Chim. Acta, 83, 116 (1950).