
2-DIALKYLAMINOPYRIDINIUM SALTS AS NEW TYPE OF CATALYSTS IN TWO-PHASE ALKYLATION REACTION

Toshio TANAKA and Teruaki MUKAIYAMA Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

2-Dialkylaminopyridinium salts, derived from 2-halopyridinium salts and primary or secondary amines, were effectively employed as catalysts in the two-phase alkylation reaction of active methylene compounds with alkyl halides to afford the corresponding alkylated products in good yields.

Since onium compounds were efficiently used as catalysts in the two-phase reaction, a number of studies^{1,2)} in this field have led this reaction to a useful technique in organic synthesis. In the previous communications,³⁾ we reported the synthetic utilities of 2-halopyridinium salts and, in connection with these observations, we now wish to report that 2-dialkylaminopyridinium salts ($\underline{3} - \underline{9}$), readily derived from various 2-halopyridinium salts and primary or secondary amines, catalyze the two-phase alkylation reaction of active methylene compounds with alkyl halides to afford the corresponding alkylated products in good yields.

The following procedure is representative for the preparation of 2-dialkylaminopyridinium salts (Scheme). A solution of hexadecylamine (1.20 g, 5.0 mmol) and triethylamine (505 mg, 5.0 mmol) in dichloromethane (25 ml) was slowly added at room temperature to a stirred solution of 2-chloro-1,3-dimethylpyridinium methylsulfate (1.27 g, 5.0 mmol) in dichloromethane (5 ml), and then the resulting mixture was refluxed for 1 hr. After evaporation, the residue was treated with 10% aqueous sodium hydroxide (20 ml) at room temperature for 2 hr and the mixture was extracted with dichloromethane (3 x 20 ml). The organic layers were combined, washed with water, dried (Na₂SO₄), and concentrated to give almost pure 2-hexadecylimino-1,3-dimethyl-1,2-dihydropyridine (1.71 g, 4.9 mmol, 98%). The iminopyridine reacted with triethyloxonium tetrafluoroborate (950 mg, 5.0 mmol) in dichloroethane (5 ml) to give Scheme

2-ethylhexadecylamino-1,3-dimethylpyridinium tetrafluoroborate (5) (2.08 g, 4.5 mmol, 90%). Similarly, 2-dialkylaminopyridinium salts were prepared from the corresponding pyridinium salts in good yields as illustrated in the scheme.

In a typical procedure for the two-phase alkylation of active methylene compounds, a mixture of phenylacetonitrile $(\underline{10})$ (234 mg, 2.0 mmol), ethyl bromide (262 mg, 2.4 mmol), and pyridinium salt $\underline{5}$ (19 mg, 0.04 mmol) was vigorously stirred with 50% aqueous sodium hydroxide (1.0 ml, 12.5 mmol) at room temperature for 24 hr. The resulting mixture was filtered by a short column packed with anhydrous sodium sulfate and silica gel, and the column was washed with dichloromethane. The filtrate and washings were concentrated to leave a mixture (270 mg) of mono- and dialkylated products (90% and 3%, estimated by nmr spectroscopy). The monoalkylated product ($\underline{11}$)

Active methylene compound	Halide (eq.)	Catalyst (mol%)	Conditions			Yield	(%)*
			temp.	time	solvent	mono	di
<u>10</u>	C ₂ H ₅ Br (1.2)	none	70°C	7 hr		15	none
10	C_2H_5Br (1.2)	5 (1%)	70°C	5 hr		90	7
10	$C_2^{H_5}Br$ (1.2)	5 (2%)	r.t.	24 hr		90	3
10	$C_{2}H_{5}Br$ (1.2)	6 (3%)	r.t.	48 hr		46	none
10	C_2H_5Br (1.2)	7 (3%)	50°C	8 hr		28	none
10	$C_{2}H_{5}Br$ (1.2)	8 (2%)	r.t.	24 hr		37	none
10	C_2H_5Br (1.2)	9 (2%)	r.t.	24 hr		33	none
10	PhCH ₂ C1 (1.0)	5 (1%)	r.t.	24 hr		63	14
10	$CH_2 = CHCH_2Br(1.3)$	<u>5</u> (3%)	r.t.	24 hr		63	34
<u>10</u>	ⁿ BuBr (1.2)	<u>5</u> (3%)	70°C	7 hr		65	6
<u>10</u>	ⁱ PrBr (1.2)	<u>5</u> (3%)	70°C	7 hr		23	none
<u>11</u>	CH ₃ Br(excess)	<u>1</u> (3%)	r.t.	24 hr		96	
<u>11</u>	CH ₃ Br(excess)	<u>2</u> (4%)	r.t.	24 hr		63	
<u>11</u>	CH ₃ Br(excess)	<u>3</u> (3%)	r.t.	24 hr		93	
<u>11</u>	$CH_3Br(excess)$	<u>4</u> (4%)	r.t.	24 hr		89	
<u>11</u>	$CH_3Br(excess)$	5 (3%)	r.t.	20 hr		93	
<u>11</u>	$CH_3Br(excess)$	<u>7</u> (3%)	r.t.	24 hr		quant.	
<u>11</u>	$CH_{3}Br(excess)$	<u>8</u> (2%)	r.t.	24 hr		69	
<u>11</u>	PhCH ₂ C1 (2.0)	<u>3</u> (5%)	r.t.	24 hr		62	_
<u>11</u>	PhCH ₂ C1 (2.0)	<u>5</u> (2%)	r.t.	48 hr		81	—
<u>11</u>	$PhCH_2Br$ (2.0)	<u>2</u> (4%)	r.t.	24 hr		quant.	
<u>11</u>	$PhCH_2Br$ (2.0)	<u>4</u> (4%)	r.t.	24 hr		quant.	
11	$PhCH_2Br$ (2.0)	<u>4</u> (3%)	r.t.	24 hr	hexane	quant.	
<u>11</u>	$PhCH_2Br$ (2.0)	4 (3%)	r.t.	24 hr	benzene	36	
11	PhCH ₂ Br (2.0)	4 (3%)	r.t.	24 hr	ether	44	
12	PhCH ₂ Br (2.0)	5 (3%)	r.t.	24 hr		92	
13	PhCH ₂ Br (2.0)	none	r.t.	24 hr	CHC13	28	 .
<u>13</u>	PhCH ₂ Br (1.2)	<u>1</u> (3%)	r.t.	24 hr	CHC1 ₃	92	
13	PhCH ₂ Br (2.0)	2 (4%)	r.t.	24 hr	CHC1 ₃	76	
13	PhCH ₂ Br (1.2)	3 (3%)	r.t.	24 hr	CHC1 ₃	86	
13	PhCH ₂ Br (2.0)	4 (4%)	r.t.	24 hr	CHC1 ₃	93	
$\frac{13}{13}$	PhCH ₂ Br (2.0)	<u>4</u> (4%)	r.t.	24 hr	benzene	95	
13	$PhCH_2^2Br$ (1.2)	<u>5</u> (3%)	r.t.	24 hr	benzene	66	
13	PhCH ₂ Br (2.0)	<u>8</u> (2%)	r.t.	24 hr	CHC1 ₃	92	
13	PhCH ₂ Br (2.0)	<u>9</u> (2%)	r.t.	24 hr	CHC1 ₃	quant.	
13	$CH_2 = CHCH_2Br(1.2)$	$\frac{5}{5}$ (2%)	r.t.	24 hr	CHC1 ₃	57	

Table Two-phase Alkylation Reaction Catalyzed with 2-Dialkylaminopyridinium Salts

* Each product gave satisfactory spectral data.

was isolated in 90% yield by preparative thin layer chromatography (hexane-benzene) or fractional distillation (117-118°C/21 mmHg). In the case of the two-phase alkylation of 2-ethoxycarbonylcyclopentanone (13), the reaction was carried out with 10% aqueous sodium hydroxide (1.0 ml/mmol) in such a suitable solvent as benzene or chloroform (1.0 ml/mmol). In similar manners, active methylene compounds 10 - 13 were successfully alkylated with various alkyl halides as summarized in the table.

The present catalysts, <u>i.e.</u> quaternary salts $\underline{3} - \underline{9}$ and iminopyridine derivatives $\underline{1}$, $\underline{2}$, were found to accelerate the phase-transfer alkylation reaction although there were some differences in catalytic activities and substrate specificities as shown in the table. These alkylation reactions can be reasonably interpreted by the two-phase reaction mechanism.¹

It is noted that readily available 2-dialkylaminopyridinium salts are effective to catalyze the two-phase alkylation reaction under mild conditions. Further development focused on the asymmetric two-phase reaction⁵⁾ with chiral catalysts is now in progress.

REFERENCES

- For recent reviews on the two-phase reaction, see: M. Makosza, Pure and Appl. Chem., 43, 439 (1975), and reviews cited therein.
- For example, see: R. Fornasier, F. Montanari, G. Podda, and P. Tundo, Tetrahedron Lett., 1381 (1976), and references cited therein.
- 3) a) T. Mukaiyama and T. Tanaka, Chem. Lett., 303 (1976), and references cited therein;
 - b) S. Kobayashi, M. Tsutsui, and T. Mukaiyama, ibid., 373 (1976);
 - c) A. Ishida, T. Bando, and T. Mukaiyama, ibid., 711 (1976);
 - d) Y. Watanabe, S. Shoda, and T. Mukaiyama, ibid., 742 (1976).
- 4) M. Shiono, T. Shibanuma, and T. Mukaiyama, ibid., 1041 (1976).
- 5) J-C Fiaud, Tetrahedron Lett., 3495 (1975).

(Received August 20, 1976)

1262