

Polyhedron Vol. 17, No. 21, pp. 3735–3738, 1998 © 1998 Elsevier Science Ltd All rights reserved. Printed in Great Britain 0277-5387/98 \$19.00+0.00

Preparation and crystal structure of new onedimensional Ta selenide: [Ta(Se₂)₂]₂TaBr₆

PII: S0277-5387(98)00172-7

Maxim Sokolov,^{ab} Hideo Imoto,^b Taro Saito^{b,*} and Vladimir Fedorov^a

^aInstitute of Inorganic Chemistry of the Russian Academy of Sciences, pr. Lavrentyeva 3, 630090 Novosibirsk, Russia

^bDepartment of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

(Received 16 January 1998; accepted 22 April 1998)

Abstract—Compound [Ta(Se₂)₂]₂TaBr₆ was prepared from elements by high temperature (450°C) stoichiometric reaction in high yield. The structure has been determined by single crystal X-ray diffraction. It contains infinite positively charged chains $Ta(Se_2)_2$... separated by octahedral $TaBr_6^-$ anions. The slightly alternating Ta-Ta distances within the chains [3.182(2)-3.234(2) Å] show a considerable degree of metal-metal interaction along the chain. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: crystal structure; tantalum complexes; selenium complexes; bromides; one-dimensional materials.

INTRODUCTION

Chemistry and solid state physics of low-dimensional materials is a well established field of research activity [1, 2]. Chalcogenides and chalcohalides of Group 5 transition elements have so far furnished dozens of one-dimensional materials, the prominent examples being TaSe₃ [3] and a remarkable family of "intercalated" selenides $(NbSe_4)_{v}I(v = 2-4)[4]$. The polymeric NbS_2Cl_2 has a $Nb_2(S_2)_2^{4+}$ core and was one of the first well-characterized transition metal chalcohalides [5]. It has recently been shown to be a convenient lead-in compound into the still largely unexplored area of molecular niobium chalcogen complexes [10, 11]. The corresponding Ta chemistry is far less developed. Well characterized products are Ta(Te₂)₂I [6], $[Ta(Te_2)_2]_4I_2(TaI_6)$ [7], $[Ta(Se_2)_2]_2I$ [12] and $[Ta(Te_2)_2]_6I_4(TaI_6)$ [9]. Here we report synthesis and crystal structure of a novel one-dimensional Ta selenide bromide, [Ta(Se₂)₂]₂TaBr₆ (1) as a result of our investigations in $Ta/Se/X_2$ (X = Cl, Br) systems.

EXPERIMENTAL

A mixture of Ta powder (1.00 g, 5.53 mmol), gray Se (1.16 g, 14.69 mmol) and Br₂ (0.28 ml, 5.43 mmol) was placed in a quartz tube which then was sealed under vacuum and heated at 450°C for 1 week. A temperature gradient was maintained. The tube was cooled at 20° C h⁻¹ rate to promote crystal growth. After cooling down, almost complete transport into the cooler end of the tube was observed. The compound crystallizes in the form of long (up to 1 cm), thin black needles. The yield was 90%. The elemental analysis agreed with the formula $Ta_3Se_8Br_6$ (1). The compound can be handled in air for a limited period but must be stored under nitrogen to avoid degradation which releases HBr and H₂Se in moist air.

Small amounts of bronze-colored TaSe₂ and red TaBr₅ (less than 5%) also form as byproducts but can be easily separated manually from the main product.

The electrical conductivity of crystals of 1 at room temperature was measured by a two-point contact method; $\sigma = 10^{-4} \Omega^{-1} \text{ cm}^{-1}$.

Crystal structure determination of 1

The structure was determined by the single crystal X-ray crystallography. X-ray data were measured at 295K on a Rigaku AFC-5R diffractometer with

¹Further details of the crystal structure can be ordered from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (e-mail: crysdata@fiz-karlsruhe.de) under the depository number CSD-408596.

^{*} Author to whom correspondence should be addressed. Fax: +81-3-3814-2627; E-mail: imoto@chem.s.u-tokyo. ac.jp.

graphite-monochromated MoK_x radiation ($\lambda = 0.71069$ Å) with the $\omega - 2\theta$ scan mode. The DIFABS program was used for absorption correction. A slight decay (5.42% in intensity) was detected during the data collection and the data were corrected accordingly. The structure was solved by direct methods (SHELX-86) [18]. The full-matrix refinements were performed with the teXsan programs [19]. Crystal data and refinement results are given in Table 1. Selected interatomic distances are given in Table 2.

RESULTS AND DISCUSSION

Figure 1 shows the ORTEP drawing of the structure of 1. The Ta atoms form linear chains running along the c-axis with slightly alternating Ta-Ta distances 3.198(2), 3.234(2) and 3.182(2)Å. The sequence is Ta(1)-Ta(1)-Ta(2)-Ta(2)-Ta(1)-Ta(1)..., Ta(1)-Ta(2) being the largest distance. Se(1) and Se(2) are bridging Ta(1) atoms, two Ta(2) atoms are bridged by Se(3) and Se(4) whereas four non-equivalent Se atoms [Se(5), Se(6), Se(7) and Se(5)] connect Ta(1) with Ta(2). The closest analog to 1 is $[Ta(Se_2)_2]_2I$, where all the distances are equal at 3.206(1) Å [12]. Each Ta atom is coordinated to eight Se atoms of four diselenide bridges. The Se-Se distances in the Se₂ ligands vary between 2.35–2.38 Å which can be compared with 2.40 Å in [Ta(Se₂)₂]₂I [12]. It has already been pointed that Se2 groups are rather flexible and use their π -antibonding orbitals to serve as an electronic pool for adjacent metal chains [1]. The significantly shorter Se-Se distance in 1 than in closely related [Te(Se₂)₂]₂I can thus be explained by stronger

1a(1)-	I a(1)	3.198(2)	1a(1) - Se(5)	2./13(3)
Ta(1)-7	Γa(2)	3.234(2)	Ta(1)-Se(2)	2.626(2)
Ta(1)-5	Se(1)	2.653(3)	Ta(1)-Se(6)	2.593(3)
Ta(1)-5	Se(7)	2.690(3)	Ta(1)-Se(8)	2.593(2)
Ta(2)-7	Γa(2)	3.182(2)	Ta(2)-Se(3)	2.625(2)
Ta(2)-5	Se(4)	2.654(3)	Ta(2)-Se(7)	2.595(3)
Ta(2)-5	Se(5)	2.602(3)	Ta(3)–Br(1)	2.518(3)
Ta(2)-5	Se(8)	2.698(2)	Ta(3)–Br(2)	2.520(3)
Ta(2)-5	Se(6)	2.731(3)	Ta(3)–Br(5)	2.490(3)
Ta(3)-l	Br(3)	2.466(3)	Ta(3)–Br(6)	2.498(3)
Ta(3)-l	Br(4)	2.516(3)	Se(5)–Se(8)	2.364(4)
Se(1)-S	e(2)	2.345(4)	Se(6)–Se(7)	2.375(4)
Se(3)-S	e(4)	2.353(4)		
Ta(1)-Ta(1)-Ta(2)			179.35(6)	
Ta(1)-Ta(2)-Ta(2)			179.36(6)	
Ta–Se–Ta			61.21(8)-75.44(7)	
Se(7)–Ta(2)–Se(6)			52.89(8)	
Se(7)–Ta(2)–Se(8)			81.03(8)	
Se(5)-Ta(2)-Se(7)			107.71(8)	
Se(2)–Ta(1)–Se(5)			165.25(9) and 78.88(8)	
Se(1)-Ta(1)-Se(8)			93.30(8) and 130.67(9)	
Br–Ta–Br (cis)			87.9(1)-93.0(1)	
Br–Ta–Br (trans)			175.3(1)-178.1(1)	

Table 2. Bond lengths (Å) and some characteristic angles (°)

electronic demand of metal chains in the bromine compound. The four Se atoms of each bridging pair of the Se₂ ligands lie approximately in planes perpendicular to the chains of Ta atoms, thus forming a

Table 1. Crystal data and refinement results for 1

Formula	Ta ₃ Se ₈ Br ₆
a (Å)	11.239 (2)
b (Å)	12.847 (2)
<i>c</i> (Å)	7.201 (1)
α (°)	102.51 (1)
β (°)	98.04 (1)
γ (°)	70.49(1)
$V(Å^3)$	954.2 (3)
Ζ	2
Formula weight	1653.95
Space group	P1 (No. 2)
F_{000}	1402.00
Calculated density (g cm ⁻³)	5.756
$\mu ({\rm cm}^{-1})$	411.52
Reflections collected	5823
Unique	5561
Observed $[I > 2.00\sigma(I)]$	3970
Reflections/parameters ratio	25.78
R^{a}	0.063
$R_{ m w}{}^{ m b}$	0.058

 $^{\mathrm{a}}R = \Sigma |F_{\mathrm{o}} - F_{\mathrm{c}}| / \Sigma F_{\mathrm{o}}. \label{eq:relation}$

$${}^{\rm b}R_{\rm w} = [\Sigma w (F_{\rm o} - F_{\rm c})^2 / \Sigma w F_{\rm o}^2]^{1/2}.$$

Fig. 1. ORTEP drawing of two repeating units of **1**. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. Structure projection on the xyO plane.

rectangle with two short and two long sides. The dihedral angles between each pair of adjacent Se₄ units are close to 45° to minimize repulsion between Se atoms and to increase the overlap with 5d orbitals of Ta [6]. These restrictions still leave enough room for different modes of stacking of the Se₄ rectangles in the chain [6]. In 1 (Fig. 2) the stacking pattern is the same as found in the structure of [Nb(Te₂)₂]I [6] but differs from those observed for other Ta(Se₂)₂ and Ta(Te₂)₂ chains [6, 12]. The chains are separated by slightly distorted TaBr₆⁻ anions (the Ta-Br distances are in the range 2.47–2.52 Å). In a relevant complex

[TaBr₄(diars)₂][TaBr₆], this anion forms almost perfect octahedron (Ta–Br 2.49 Å) [14]. The distortions may be due to additional Se...Br contacts (the shortest one, between Se(5) and Br(5), is 3.162(4) Å), which may also favor the observed stacking pattern for the Se₄ rectangles. The contacts of this kind fall well shorter than the corresponding sum of van-der Waals radii and are a well established feature in the chemistry of heavier chalcogens [15].

Since the bond distances in the anion show the oxidation state of the Ta atom in the $TaBr_6^-$ unit to be five, a positive charge +1 should he assigned to the $[Ta(Se_2)_2]_2$ unit. It means that the Ta atoms have the oxidation state +4.5 which leaves 0.5e per one Ta-Ta bond (if we consider the diselenium bridges as Se_2^{2-}). If we take into account the donation of an extra electron density from the bridging ligands it will give us less negative charge on the Se₂ unit and correspondingly stronger bonding interaction between tantalum atoms. This is in keeping with the observed distances of about 3.20 Å for 1 and $[Ta(Se_2)_2]_2I$ with the same formal oxidation state. It is thus considerably shorter than that in $[Ta(Te_2)_2]I$ (3.33-3.35 Å) where the oxidation state is +5 which implies zero bonding order. Accordingly, preliminary resistivity measurements on the single crystals of 1 gave value which may indicate semiconductive behavior.

The prepared material thus belongs to the by now extensive family of one-dimensional structures, hav-

Fig. 3. Unit cell drawing of 1.

ing positively charged metal-dichalcogen chains separated by counteranions (Fig. 3). As for the latter, both simple small anions (like I⁻) and large complex ones (PtI₆²⁻ [8], TaI₆⁻ [7, 9], TaBr₆⁻) are effective in the stabilization of this type of structure. It seems possible that other anions of various shape and size may be good candidates as well.

In conclusion it may be mentioned that the synthesis of **1** is one of the rare cases when Nb and Ta do not behave in a similar way. Thus, in the reaction conditions similar to those used in the present study, Nb forms NbSe₂Br₂, a coordination polymer where Nb₂(Se₂)₂ cluster units are linked by bromine atoms similar to NbS₂Cl₂ [13]. On the other hand it was not possible to prepare the Ta analog of NbS₂Cl₂, only TaS₃ and TaCl₅ could be detected [13]. One of the reasons may be the greater reluctance of Ta to form low oxidation states, in keeping with the overall trend in the periodic table.

Acknowledgements—We thank the Japan Society for the Promotion of Science for a research fellowship to M. S. Financial support by the Russian Foundation for Basic Research (grant RFBR-9603-32954) is also acknowledged.

REFERENCES

- 1. Rouxel, J., Acc. Chem. Res., 1992, 25, 328.
- Rouxel, J. (ed.), Crystal Chemistry and Properties of Materials with Quasi-One Dimensional Structures. D. Reidel Publishing Company, Dordrecht, 1986, pp. 205–279.
- 2b. Fedorov, V. E., Refractory Metals Chalcogenides. Quasi One-Dimensional Compounds. Nauka, Novosibirsk, 1988.

- 3. Bjerkelund, E. and Kjekshus, A., *Acta Chem. Scand.*, 1965, **19**, 701.
- Gressier, P., Meerchaut, A., Guemas, L., Rouxel, L. and Monceau, P., *J. Solid State Chem.*, 1984, 51, 141.
- von Schnering, H.-G. and Beckmann, W., Z. Anorg. Allg. Chem., 1966, 347, 231.
- 6. Tremel, W., Chem. Ber., 1992, 125, 2165.
- Liu, S.-X., Huang, D.-P., Huang, C.-C. and Huang, J.-L., *Polyhedron*, 1996, 15, 2295.
- Tremel, W. and Stork, K.-L., Z. Naturforsch., 1993, 48b, 1155.
- Huang, J.-L., Liu, S.-X., Huang, D.-P., Huang, C.-C., *Jiegou Huaxue*, 1995, 14, 342.
- Sokolov, M., Virovets, A., Nadolinnyi, V., Hegetschweiler, K., Fedin, V., Podberezskaya, N. and Fedorov, V., *Inorg. Chem.*, 1994, **33**, 3503.
- Sokolov, M., Hernandez-Molina, R., Elsegood, M. R. J., Heath, S. L., Clegg, W. and Sykes, A. G., J. Chem. Soc. Dalton Trans., 1997, 2059.
- Gressier, P., Guemas, L. and Meerchaut, A., Acta Cryst. B, 1982, 38, 2877.
- 13. von Schnering, H.-G. and Beckmann, W., Z. Anorg. Allg. Chem., 1966, 347, 225.
- Drew, M. G. B., Walters, A. P. and Wilkins, J. D., Acta Cryst., 1975, 31b, 324.
- Krebs, B. and Ahlers, F.-P., in *Advances in Inorganic Chemistry*, Vol. 35, ed. A. G. Sykes. Academic Press, 1990, p. 235.
- Grenouilleau, J. P., Meerchaut, A., Guemas, L. and Rouxel, J., J. Solid State Chem., 1987, 66, 293.
- Gressier, P., Meerchaut, A., Guemas, L., Rouxel, J. and Monceau, P., *J. Solid State Chem.*, 1984, 51, 141.
- Sheldrick, G. M., in *Crystallographic Computing*, Vol. 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard. Oxford University Press, 1985, pp. 175– 189.
- 19. teXsan: Crystal Structure Analysis Package. Molecular Structure Corporation, 1985 and 1992.