Ferrocene-containing [2]- and [3]rotaxanes. Preparation *via* an end-capping cross-metathesis reaction and electrochemical properties

Yuji Suzaki and Kohtaro Osakada*

Received 22nd February 2007, Accepted 11th April 2007 First published as an Advance Article on the web 15th May 2007 DOI: 10.1039/b702785k

Cross-metathesis reactions of terminal olefins with acrylic esters catalyzed by a Ru–carbene complex $((H_2IMes)(PCy_3)Cl_2Ru=CHPh, H_2IMes = N,N-bis(mesityl)-4,5-dihydroimidazol-2-ylidene)$ were applied to the end-capping of [2]pseudorotaxanes composed of dibenzo[24]crown-8 (DB24C8) and ferrocenylmethylammonium derivatives as the macrocyclic and axle components. A [3]rotaxane consisting of two DB24C8s and an axle molecule having ferrocenyl groups at both ends was obtained from the cross-metathesis reaction of two [2]pseudorotaxanes with Fe(C₃H₄CH₂OCOCH=CH₂)₂. Cyclic voltammograms of the ferrocene-containing rotaxanes show reversible redox reactions whose potentials vary depending on the presence or absence of cationic dialkylammonium groups in the vicinity of the ferrocene units.

Introduction

Rotaxane^{1,2} is a mechanically interlocked supramolecule composed of macrocyclic molecules threaded by a linear molecule having bulky end groups. Pseudorotaxanes composed of dibenzo[24]crown-8 (DB24C8) and dialkylammonium salt have often been used as a precursor of the rotaxane due to its high stability owing to N-H \cdots O and C-H \cdots O attractive interactions between the linear and cyclic components.³ Various reactions, such as cycloaddition of azide,4 addition of isocyanates with amines⁵ and with alcohol,⁶ Wittig reactions,⁷ disulfide formation,⁸ ester formation,9 and acid anhydride formation,10 introduce a bulky group at the end of the axle molecule of the pseudorotaxanes to fix the interlocked structure. Olefin metathesis reactions were also used for the synthesis of rotaxanes¹¹⁻¹³ and related supramolecules¹⁴⁻¹⁶ because of efficient C=C bond formation under mild conditions. Recent progress in the type of catalyst used in the metathesis reactions has enabled selective cross-metathesis reactions of terminal alkenes with alkyl acrylates or styrene.17,18

Recently, we reported that electrochemical oxidation of a solution containing ferrocenylmethylamine derivatives and dibenzo[24]crown-8 (DB24C8) in the presence of 1-hydroxy-2,2,6,6-tetramethylpiperidine (TEMPOH) formed [2]pseudorotaxane *via* formal protonation of the secondary amine group.¹⁹ Introduction of a redox active ferrocene unit to a component of the supramolecule is of significant importance because these supramolecules are potentially applicable to the stimulus responsive molecular materials that change optical or chemical properties upon electrochemical reaction.²⁰⁻²² A suitable endcapping reaction would convert the pseudorotaxanes having a ferrocenyl group into the corresponding rotaxanes.

In this paper, we report the synthesis of new [2]rotaxanes via the end-capping of [2]pseudorotaxane by cross-metathesis reactions using a Ru catalyst $((H_2IMes)(PCy_3)Cl_2Ru=CHPh,$

 $H_2IMes = N,N$ -bis(mesityl)-4,5-dihydroimidazol-2-ylidene). Synthesis of [3]rotaxane by a similar procedure and the electrochemical properties of these rotaxanes are also described. Part of this work has been reported in a preliminarily form.²³

Results and discussion

Scheme 1 summarizes the preparative procedure for the ammonium salts which are employed as precursors of the axle components of the rotaxane in this study. The dehydration reaction of ferrocenecarboxaldehyde with *p*-butenoxybenzylamine forms $FcCH=NCH_2C_6H_4OCH_2CH_2CH=CH_2$ ($Fc = Fe(C_5H_4)(C_5H_5)$)). Fig. 1 depicts the molecular structure of $FcCH=NCH_2C_6H_4-OCH_2CH_2CH=CH_2$ determined by X-ray crystallography. Cyclopentadienyl ligands are in the eclipsed positions. Reduction of the product with NaBH₄, followed by hydrolysis with HCl and exchange of the counter anion, yields the PF₆ salt [$FcCH_2NH_2CH_2C_6H_4OCH_2CH=CH_2](PF_6)$ (**1a**). Analogous reactions of *p*-vinylbenzylamine yield **1b**. These compounds were

Fig. 1 ORTEP plot of FcCH=NCH $_2C_6H_4OCH_2CH_2CH=CH_2$ with 30% probability. Hydrogen atoms were omitted for simplicity.

Chemical Resources Laboratory R1-3, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan. E-mail: kosakada@res. titech.ac.jp; Fax: +81-45-924-5224; Tel: +81-45-924-5224

characterized by 1H and $^{13}C\{^1H\}$ NMR and IR spectrometry as well as elemental analyses.

Dissolution of **1a** and DB24C8 in CD₃CN forms [2]pseudorotaxane **2a** as shown in Scheme 2. Formation of **2a** and **2b** in the solutions was confirmed from electrospray ionization mass spectrometry (ESIMS) which exhibited peaks due to the cationic pseudorotaxanes. Fig. 2(a) and (b) show the ¹H NMR spectra of **1a** and a mixture of **1a** and DB24C8 ([**1a**]₀ = [DB24C8]₀ = 10 mM), respectively. The latter spectrum contains the signals of the NCH₂ hydrogens of the pseudorotaxane (δ 4.37, 4.50) at lower magnetic field positions than those of **1a** (δ 4.02, 4.04). The signals of the aromatic hydrogens of the axle molecule of **2a** are observed at higher magnetic field positions (δ 6.55, 7.17) than those of **1a** (δ 6.95, 7.33). The ratios of the free axle molecules and the pseudorotaxane in these solutions were calculated to be **1a/2a** = 36/64 and **1b/2b** = 43/57 from comparison of the peak areas of the phenylene hydrogen signals at 20 °C.²⁴⁻²⁶

Fig. 2 ¹H NMR spectra of (a) 1a and (b) 1a and DB24C8 ($[1a]_0 = [DB24C8]_0 = 10 \text{ mM}$) in CD₃CN. Peaks with an asterisk indicate the signals of the complex of DB24C8 and 1a.

Slow addition of Et₂O to a CH₂Cl₂ solution of **1b** and DB24C8 causes separation of [2]pseudorotaxane **2b** as single crystals. Fig. 3 shows the molecular structure of **2b** obtained by X-ray crystallography. The NH₂ and CH₂ groups of the axle component show short contacts with the oxygen atoms of DB24C8 (N(1)– $H(1)\cdots O(4)$, 2.18 Å and C(10)– $H(13)\cdots O(6)$, 2.35 Å), indicating that hydrogen bonds between them stabilize the interlocked structure. A C– $H\cdots\pi$ attractive interaction is also observed between a cyclopentadienyl hydrogen and the aromatic plane of DB24C8; the distance between a cyclopentadienyl hydrogen and the centroid of the aromatic ring of DB24C8 is 3.07 Å. An aromatic plane of DB24C8 in **2b** is close to the olefinic carbons with a distance of 4.14(2) Å between C(24) and C(2). The dihedral angle of the aryl ring of **2b** and one of the catechol rings is 162°, while

Fig. 3 ORTEP plot of pseudorotaxane 2b with 30% probability. Some of the hydrogen atoms and PF_6^- were omitted for simplicity.

Stoddart reported that the 1 : 1 complex of DB24C8 and the dibenzylammonium cation^{36,25} possess co-conformation²⁷ where one of the aryl rings in the axle is oriented almost parallel to one of the catechol rings on the DB24C8. The IR spectrum of **2b** shows peaks due to asymmetric and symmetric stretching vibrations of the NH₂ group at 3156 and 3085 cm⁻¹, which is observed at lower wavenumber than those of **1b** (3235, 3260 cm⁻¹) due to N–H···O hydrogen bonds between the axle molecule and DB24C8 in **2b**.

A cross-metathesis reaction of 3,5-dimethylphenyl acrylate (0.20 mmol) with 1a (0.10 mmol) in the presence of DB24C8 (0.12 mmol) using a Ru catalyst¹⁷ affords [2]rotaxane 3 in 72% isolated yield (Scheme 3). The ¹H NMR spectrum, showing a large coupling constant of vinylene hydrogens (J = 15 Hz), indicates a trans configuration of the C=C bond, similar to the products of the other cross-metathesis reactions.¹⁸ Analogous reaction using ferrocenylmethyl acrylate yields rotaxane 4 having ferrocenyl groups at both ends of the axle molecule. The IR spectra of these compounds show peaks due to N-H vibrations (3162, 3073 cm⁻¹ for 3 and 3166, 3092 cm⁻¹ for 4) at similar positions to **2b**. The reaction of 3,5-dimethylphenyl acrylate with 1b in the presence of DB24C8 does not form the corresponding [2]rotaxane. Low yields of the cross-metathesis reaction of **2b** may be ascribed to steric hindrance by DB24C8 or low reactivity of the vinyl group attached to the aromatic ring. Acetylation of the

ammonium group of **3** according to Takata's method²⁸ forms a neutral rotaxane **5** in 91% yield, as shown in Scheme 4. The IR peak of **5** at 1728 cm⁻¹ is assigned to vibration of the C=O bond in the amide group. The ¹H NMR spectrum of **5** shows the signal of the vinylene hydrogens (δ 6.38, 7.71) at lower magnetic field positions than those of the corresponding signals of **3** (δ 6.13, 7.18). Reaction of **1a**, DB24C8 and Fe(C₅H₄CH₂OCOCH=CH₂)₂ (see Fig. 4) ([**1a**] = 0.10 mmol, [DB24C8] = 0.14 mmol, [Fe(C₅H₄CH₂OCOCH=CH₂)₂] = 0.05 mmol) forms [3]rotaxane **6**, having one ferrocenylene and two ferrocenyl groups in the axle component, in 50% yield (Scheme 5). The ¹H and ¹³C{¹H} NMR spectra of **6** in CDCl₃ indicate a symmetrical molecular structure.

Fig. 4 ORTEP plot of $Fe(C_5H_4CH_2OCOCH=CH_2)_2$ with 30% probability. Hydrogen atoms were omitted for clarity. Fe(1) lies on a crystallographic two fold axis. The asterisk in the atom labels indicates that these atoms are at equivalent positions (-x, y, 1/2 - z).

The ferrocene-containing rotaxanes undergo reversible electrochemical oxidation and reduction. Electrochemical data for the
 Table 1
 Electrochemical data for ferrocene compounds^a

Compound	$E_{\rm pa}/{ m V}$	$E_{\rm pc}/{ m V}$	$E_{1/2} (\Delta E) / \mathrm{V}$
1a	0.52	0.42	0.47 (0.10)
3 4 ^b	0.50 0.38, 0.49	0.43 0.34, 0.43	0.47 (0.07) —
5 6	0.39 0.51 ^c	$0.31 \\ 0.45^{c}$	0.35 (0.08)
$Fe(C_5H_5)(C_5H_4CH_2OCOCH=CH_2)$ Fe(C_5H_4CH_2OCOCH=CH_2)_2 Forroana	0.40 0.51 0.32	0.33 0.45 0.25	0.37 (0.07) 0.48 (0.06) 0.29 (0.07)
renocene	0.32	0.25	0.29(0.07)

^{*a*} Electrochemical potentials are obtained by cyclic voltammetry in MeCN containing ^{*n*}Bu₄NPF₆ as the electrolyte. Potentials are referenced to Ag⁺/Ag. Sweep rate: 0.10 V s⁻¹. ^{*b*} Two step redox behavior. ^{*c*} Redox peaks of the Fe centers in the molecule are overlapped (see text).

compounds taken from the cyclic voltammograms are summarized in Table 1. Fig. 5(a) shows the cyclic voltammogram of **3** in a MeCN solution of ⁿBu₄NPF₆ (0.10 M) with scan rate 0.10 V s⁻¹. A reversible redox peak pair of Fe(III)/Fe(II) of the ferrocenyl group is observed at $E_{1/2} = 0.47$ V (vs. Ag⁺/Ag) which is similar to **1a**. The peak separation of **3**, $\Delta E = E_{pa} - E_{pc} = 0.07$ V, however, is smaller than that of **1a** ($\Delta E = 0.10$ V). The cyclic

Fig. 5 Cyclic voltammograms of (a) 3 and (b) 4 in MeCN (1.0 mM) containing 0.10 M $^{\rm n}{\rm Bu}_4{\rm NPF}_6$.

Scheme 5

voltammogram of **4** shows two reversible waves (Fig. 5(b)). The peaks at higher potentials ($E_{pa} = 0.49$ V, $E_{pc} = 0.43$ V) are assigned to the ferrocene unit close to the ammonium group. The neutral rotaxane **5** shows a redox wave at a lower potential ($E_{1/2} = 0.35$ V) than that of the cationic rotaxanes, **3**, **4**, and **6**.²⁹ **6** shows an apparent reversible redox due to overlapping of peaks of three Fe centers. A linear relationship is observed between the peak currents I_{pa} and I_{pc} and square root of scan rate below 0.25 V s⁻¹ (Fig. 6). Increase of the scan rate above 0.25 V s⁻¹ causes quasi-reversible behavior of the redox reactions.³⁰

Fig. 6 Scan rate dependence of I_{pa} and I_{pc} of the cyclic voltammograms of **3** in MeCN (1.0 mM) containing 0.10 M ⁿBu₄NPF₆.

In summary, we have succeeded in employing Ru-catalyzed cross-metathesis reactions of the terminal olefins (with acrylate as the end-cap) of [2]pseudorotaxane to afford the rotaxane. The electrochemical properties of the rotaxane with ferrocenyl groups in the axle component are similar to that of the precursor without the interlocked structure.

Experimental

General

Dried solvents were purchased from Kanto Chemical Co., Inc. p-Butenoxybenzylamine,¹⁵ p-vinylbenzylamine,³¹ 3,5-dimethylphenyl acrylate,32 ferrocenylmethyl acrylate,33 and ferrocene dimethanol³⁴ were prepared by the literature method. Other chemicals were commercially available. NMR spectra $({}^{1}H, {}^{13}C{}^{1}H{}, {}^{1}H{}^{-1}HCOSY,$ ¹³C{¹H}-¹H COSY) were recorded on Varian MERCURY300 and JEOL EX-400 spectrometers. Chemical shifts were referenced with respect to CHCl₃ (δ 7.24), CD₂HCN (δ 1.93) for ¹H and CDCl₃ (δ 77.0), CD₃CN (δ 1.30) for ¹³C as internal standards. IR absorption spectra were recorded on Shimadzu FT/IR-8100 spectrometers. Cyclic voltammograms (CV) were measured in CH₃CN solution containing 0.10 M ⁿBu₄NPF₆ using an ALS Electrochemical Analyzer Model-600A. The measurements were carried out in a standard one-compartment cell equipped with a Ag⁺/Ag reference electrode, a platinum-wire counter electrode and a platinum-disk working electrode (ID: 1.6 mm). The fast atom bombardment mass spectra (FABMS) were obtained from a JEOL JMS-700 (matrix, m-nitrobenzylalcohol) spectrometer. Electrospray ionization mass spectrometry (ESIMS) was recorded on a ThermoQuest Finnigan LCQ Duo. Elemental analyses were carried out with a Yanaco MT-5 CHN autorecorder.

Syntheses

FcCH=NCH₂C₆H₄OCH₂CH₂CH=CH₂. A solution of ferrocenecarboxaldehyde (1.1 g, 5.0 mmol) and $H_2NCH_2C_6$ - $H_4OCH_2CH_2CH=CH_2$ (886 mg, 5.0 mmol) in toluene (100 cm³) was heated at 75 °C for 12 h in the presence of MS4A (molecular sieves 4 Å, 1.0 g). After removal of MS4A, evaporation of the solution to dryness produced FcCH=NCH₂C₆H₄OCH₂CH₂CH=CH₂ as a brown solid which was washed with hexane (20 cm^3) (1.37 g, 3.7 mmol, 74%). Anal. calc. for C₂₂H₂₃ONFe: C, 70.79; H, 6.21; N, 3.75. Found: C, 70.82; H, 6.39; N, 3.66%. IR (KBr): v = 1636 (C=N) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 2.52 (m, 2H, OCH_2CH_2), 3.99 (t, 2H, OCH_2 , J = 7 Hz), 4.15 (s, 5H, C_5H_5), 4.35 (m, 2H, C₅H₄), 4.58 (s, 2H, NCH₂), 4.66 (m, 2H, C₅H₄), 5.09 (dd, 1H, CH= CH_2 , J = 10, 2 Hz), 5.15 (dd, 1H, CH= CH_2 , J =17, 2 Hz), 5.89 (ddt, 1H, $CH=CH_2$, J = 17, 10, 7 Hz), 6.87 (d, 2H, C_6H_4 , J = 8 Hz), 7.19 (d, 2H, C_6H_4 , J = 8 Hz), 8.19 (s, 1H, NCH). ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r. t.): δ 33.6 (OCH₂CH₂), 64.4, 67.2, 68.6, 69.0 (C₅H₅), 70.4, 80.5 (C₅H₄), 114.6, 116.9, 129.0, 131.6, 134.5, 157.9, 161.7 (C=N).

 $FcCH=NCH_2C_6H_4CH=CH_2$. A solution of ferrocenecarboxaldehyde (3.6 g, 17 mmol) and p-vinylbenzylamine (2.2 g, 17 mmol) in toluene (200 cm³) was heated at 60 °C for 28 h in the presence of MS4A (4.5 g). After removal of MS4A, evaporation of the solution to dryness produced FcCH=NCH2C6H4CH=CH2 as a brown solid which was washed with hexane (50 cm^3) (3.4 g, 10 mmol, 59%). Anal. calc. for C₂₀H₁₉NFe: C, 72.97; H, 5.82; N, 4.25. Found: C, 72.81; H, 5.70; N, 4.25%. IR (KBr): v = 1636 (C=N) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 4.16 (s, 5H, C₅H₅), 4.36 (m, 2H, C₅H₄), 4.63 (s, 2H, NCH₂), 4.66 (m, 2H, C_5H_4), 5.20 (d, 1H, CH=C H_2 , J = 11 Hz), 5.72 (d, 1H, CH=C H_2 , J = 18 Hz), 6.69 (dd, 1H, CH, J = 18, 11 Hz), 7.25 (d, 2H, C₆H₄, J = 8 Hz), 7.38 (d, 2H, C₆H₄, J = 8 Hz), 8.22 (s, 1H, NCH). ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r. t.): δ 64.5 (NCH₂), 68.3 (C_5H_4) , 68.8 (C_5H_5) , 70.2 (C_5H_4) , 80.2 (C_5H_4) , 113.2 $(CH=CH_2)$, 126.0 (C₆H₄), 127.7 (C₆H₄), 135.9 (C₆H₄), 136.3 (CH=CH₂), 139.1 (C₆H₄), 161.8 (NCH). Assignment of these signals was supported by ¹³C{¹H}-¹H COSY NMR spectroscopy.

 $[FcCH_2NH_2CH_2C_6H_4OCH_2CH_2CH=CH_2](PF_6)$ (1a). FcCH= NCH₂C₆H₄OCH₂CH₂CH=CH₂ (1.1 g, 3.0 mmol) was dissolved in MeOH (25 cm³) at room temperature. NaBH₄ (894 mg, 24 mmol) was added to the solution in one portion and the mixture was stirred for 2 h at room temperature. Quenching the mixture with 4 M HCl(aq) (75 cm³) and further stirring for 30 min caused the separation of [FcCH2NH2CH2C6H4OCH2CH2CH2CH2CH2]Cl as a yellow solid from the solution. The solid product was washed with Et₂O (10 cm³ \times 2) and dried under reduced pressure (1.1 g, 2.7 mmol, 90%). To an acetone (25 cm³) suspension of the obtained $[FcCH_2NH_2CH_2C_6H_4OCH_2CH_2CH=CH_2]Cl(823 mg, 2.0 mmol)$ was added NH₄PF₆ (1.7 g, 10 mmol) in acetone (25 cm³), and the mixture was stirred for 2 h at room temperature. The precipitated salt was removed by filtration. Evaporation of the filtrate gave 1a as a yellow solid which was washed with water (10 cm³ \times 5), and then with Et₂O (10 cm³ \times 5), and dried under reduced pressure (598 mg, 1.2 mmol, 60%). Anal. calc. for C₂₂H₂₃ONFe: C, 50.69; H, 5.03; N, 2.69. Found: C, 50.69; H, 5.39; N, 2.78%. IR (KBr): v = 3260 (N-H), 3237 (N-H), 826 (P-F), 559 (P-F) cm⁻¹. ¹H NMR (300 MHz, CD₃CN, r. t.): δ 2.50 (tddd, 2H, OCH₂CH₂, J = 7, 7, 1, 1 Hz), 4.02 (s, 2H, NCH₂), 4.04 (t, 2H, OCH₂, J = 7 Hz), 4.04 (s, 2H, NCH₂), 4.20 (s, 5H, C₅H₅), 4.27 (m, 2H, C₅H₄), 4.37 (m, 2H, C₅H₄), 5.08 (ddt, 1H, CH=CH₂, J = 10, 2, 1 Hz), 5.16 (ddt, 1H, CH=CH₂, J = 17, 2, 1 Hz), 5.91 (ddt, 1H, CH=CH₂, J = 17, 10, 7 Hz), 6.71 (brs, 2H, NH₂), 6.95 (d, 2H, C₆H₄, J =9 Hz), 7.33 (d, 2H, C₆H₄, J = 9 Hz). ¹³C{¹H} NMR (100 MHz, CD₃CN, r. t.): δ 34.2 (OCH₂CH₂), 48.5 (NCH₂), 51.5 (NCH₂), 68.2 (OCH₂), 69.9 (C₅H₅), 70.5 (C₅H₄), 71.4 (C₅H₄), 76.5 (C₅H₄), 115.8 (C₆H₄), 117.3 (CH=CH₂), 123.3 (C₆H₄), 132.6 (C₆H₄), 135.7 (C₆H₄), 160.8 (CH=CH₂). The assignments were supported by ¹³C{¹H}-⁻¹H COSY NMR spectroscopy.

 $[FcCH_2NH_2CH_2C_6H_4CH=CH_2](PF_6)$ (1b). FcCH=NCH₂-C₆H₄CH=CH₂ (2.5 g, 7.6 mmol) was dissolved in MeOH (200 cm³) at room temperature. NaBH₄ (289 mg, 7.6 mmol) was added to the solution and the mixture was stirred for 4 h at room temperature. An extra portion of NaBH₄ (290 mg, 7.6 mmol) was added, and the mixture was stirred for a further 14 h, before being treated with 4 M HCl(aq) (40 cm³) for 30 min. After reducing the volume of the solution to ca. 100 cm³ by evaporation, the solid product was partitioned between 2 M KOH(aq) (100 cm³) and CH_2Cl_2 (100 cm³). The aqueous layer was separated and extracted with CH_2Cl_2 (100 cm³). The combined organic extracts were washed with water (200 cm³) and dried over MgSO₄. Evaporation of the solvent gave $FcCH_2NHCH_2C_6H_4CH=CH_2$ as a brown oil (1.4 g, 4.3 mmol, 56%). A MeOH solution (40 cm³) of the obtained FcCH2NHCH2C6H4CH=CH2 (1.3 g, 4.0 mmol) was treated with 4 M HCl(aq) (30 cm³) for 1 h at room temperature to afford a yellow solid which was collected by filtration. To an acetone (50 cm³) suspension of the solid was added NH₄PF₆ (3.4 g, 21 mmol) in acetone (100 cm³), and the mixture was stirred for 1 h at room temperature. The precipitated salt was removed by filtration and the evaporation of the filtrate gave 1b as a yellow solid which was washed with water ($20 \text{ cm}^3 \times 10$) and then hexane (20 cm³ \times 5), and dried *in vacuo* (1.5 g, 3.1 mmol, 78%). Anal. calc. for C₂₀H₂₂NFePF₆: C, 50.34; H, 4.65; N, 2.94. Found: C, 49.95; H, 4.72; N, 2.86%. IR (KBr): v = 3235 (N-H), 3260 (N–H), 847 (P–F) cm⁻¹. ¹H NMR (300 MHz, CD₃CN, r. t.): δ 4.06 (s, 2H, NCH₂), 4.10 (s, 2H, NCH₂), 4.21 (s, 5H, C₅H₅), 4.28 $(m, 2H, C_5H_4), 4.38 (m, 2H, C_5H_4), 5.33 (dd, 1H, CH=CH_2, J =$ 11, 1 Hz), 5.86 (dd, 1H, CH= CH_2 , J = 18, 1 Hz), 6.77 (brs, 2H, NH_2), 6.77 (dd, 1H, CH, J = 18, 11 Hz), 7.38 (m, 2H, C_6H_4), 7.51 (m, 2H, C₆H₄). ¹³C{¹H} NMR (100 MHz, CD₃CN, r. t.): δ 48.9 (NCH₂), 51.6 (NCH₂), 70.0 (C₅H₅), 70.6 (C₅H₄), 71.5 (C₅H₄), 76.4 (C₅H₄), 116.2 (CH=CH₂), 127.7 (C₆H₄), 130.9 (C₆H₄), 131.4 (C₆H₄), 136.9 (CH=CH₂), 139.9 (C₆H₄). Assignment of these signals was supported by ¹³C{¹H}-¹H COSY NMR spectroscopy.

[(FcCH₂NH₂CH₂C₆H₄OCH₂CH₂CH=CH₂)(DB24C8)](PF₆) (2a). An NMR tube was charged with 1a (3.6 mg, 6.9 × 10^{-3} mmol) and DB24C8 (3.1 mg, 6.9 × 10^{-3} mmol) which were then dissolved in CD₃CN (0.7 cm³). ¹H NMR quickly showed the formation of 2a. ¹H NMR (300 MHz, CD₃CN, 20 °C): δ 2.44 (tddd, 2H, OCH₂CH₂, J = 7, 7, 2, 2 Hz), 3.55–4.21 (30H, C₃H₄, CH₂-DB24C8, OCH₂-axle), 3.93 (s, 5H, C₅H₅), 4.37 (m, 2H, NCH₂), 4.50 (m, 2H, NCH₂), 5.08† (1H, CH=CH₂, J = 10 Hz), 5.15 (ddt, 1H, CH=CH₂, J = 17, 2, 1 Hz), 5.89 (ddt, 1H, CH=CH₂, J = 17, 10, 7 Hz), 6.55 (d, 2H, C₆H₄-axle, J = 9 Hz), 6.86–6.92† (8H, C₆H₄-DB24C8), 7.14 (brs, 2H, NH₂), 7.17 (d, 2H, C₆H₄-axle, J = 9 Hz). Peaks with a dagger were significantly overlapped with the signals of **1a** and DB24C8. ESIMS: Calc. for $C_{46}H_{58}O_9NFe$: 824.3 Found: $m/z = 824.1 [M - PF_6]^+$.

[(FcCH₂NH₂CH₂C₆H₄CH=CH₂)(DB24C8)](PF₆) (2b). An NMR tube was charged with **1b** (3.3 mg, 6.9×10^{-3} mmol) and DB24C8 (3.1 mg, 6.9×10^{-3} mmol) which were then dissolved in CD₃CN (0.7 cm³). ¹H NMR showed the formation of **2b**. ¹H NMR (300 MHz, CD₃CN, 20 °C): δ 3.59 (m, 8H, CH₂-DB24C8), 3.79 (m, 8H, CH₂-DB24C8), 3.93 (s, 5H, C₅H₅), 4.02–4.16 (m, 10H, C₅H₄, CH₂-DB24C8), 4.18 (m, 2H, C₅H₄), 4.38 (m, 2H, NCH₂), 4.59 (m, 2H, NCH₂), 5.22 (dd, 1H, CH=CH₂, *J* = 11, 1 Hz), 5.67 (dd, 1H, CH=CH₂, *J* = 18, 1 Hz), 6.58 (dd, 1H, CH=CH₂, *J* = 18, 11 Hz), 6.90 (m, 8H, C₆H₄-DB24C8), 7.14 (d, 2H, C₆H₄, *J* = 8 Hz), 7.12–7.28 (br, 2H, NH₂), 7.25 (d, 2H, C₆H₄, *J* = 8 Hz). ESIMS: Calc. for C₄₄H₅₄O₈NFe: 780.3 Found: 780.3 [M – PF₆]⁺.

Yellow crystals of **2b** were obtained by recrystallization from a CH₂Cl₂–Et₂O solution of **1b**–DB24C8 (**1b**–DB24C8 = 48 : 55 mg) at room temperature (13% yield). Anal. calc. for C₄₄H₅₄O₈NFePF₆: C, 57.09; H, 5.88; N, 1.51. Found: C, 57.18; H, 5.65; N, 1.46%. IR (KBr): $\nu = 3156$ (N–H), 3085 (N–H), 840 (P–F) cm⁻¹.

[(FcCH₂NH₂CH₂C₆H₄OCH₂CH₂CH=CHCOOC₆H₃-3,5-Me₂)-(DB24C8)](PF₆) (3). 1a (52 mg, 0.10 mmol) was dissolved in 2 cm³ of CH_2Cl_2 containing DB24C8 (54 mg, 0.12 mmol), followed by addition of 3,5-dimethylphenyl acrylate (35 mg, 0.20 mmol) and Ru catalyst (4.2 mg, 5×10^{-3} mmol). The mixture was refluxed for 15 h and the solvent was removed by evaporation to form a brown oil. Reprecipitation of the crude product from CH_2Cl_2 -Et₂O (2.5 : 30 cm³) gave a brown solid which was collected, washed with $Et_2O(10 \text{ cm}^3 \times 2)$ and dried under reduced pressure to give 3 (80 mg, 0.072 mmol, 72%). Anal. calc. for C₅₅H₆₆O₁₁NF₆FeP(H₂O): C, 58.15; H, 6.03; N, 1.23. Found: C, 57.87; H, 6.12; N, 1.24%. IR (KBr): *v* = 3162 (N–H), 3073 (N–H), 1734 (C=O), 841 (P-F), 558 (P-F) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 2.29 (s, 6H, Me), 2.73 (br, 2H, CH₂CH=CH), 3.41-3.85 (16H, CH₂-DB24C8), 4.01-4.50 (21H, NCH₂, C₅H₅, C₅H₄, OCH₂-axle, CH₂-DB24C8), 4.60 (br, 2H, NCH₂), 6.13 (d, 1H, C(=O)CH, J = 15 Hz), 6.70–6.72 (4H, C₆H₄-axle, C₆H₃), 6.85 (s, 1H, C₆H₃), 6.88-6.97 (8H, C₆H₄-DB24C8), 7.23 (d, 1H, CH₂CH), 7.34 (br, 2H, C₆H₄-axle), 7.35 (br, 2H, NH₂). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃, r. t.): δ 21.3 (Me), 32.1 (CHCH₂), 47.7 (NCH₂), 51.6 (NCH₂), 65.9 (OCH₂-axle), 68.5 (CH₂-DB24C8), 68.8 (C₅H₅), 69.4 (C₅H₄), 69.7 (C₅H₄), 70.3 (CH₂-DB24C8), 70.8 (CH₂-DB24C8), 113.0, 114.5, 119.1, 121.8, 122.7, 124.4, 127.4, 131.0, 139.1, 147.0, 147.6, 150.5, 159.0, 164.8 (C=O). C₅H₄-ipso was not observed due to their low intensity. Assignment of these signals was supported by ¹H-¹H and ¹³C{¹H}-¹H COSY NMR spectroscopy. ESIMS: Calc. for C₅₅H₆₈O₁₂NFe: 972.4. Found: $m/z = 972.5 [M - PF_6]^+$.

[(FcCH₂NH₂CH₂C₆H₄OCH₂CH₂CH=CHCOOCH₂Fc)(DB24-C8)](PF₆) (4). 1a (52 mg, 0.10 mmol) and DB24C8 (54 mg, 0.12 mmol) was dissolved in 2 cm³ of CH₂Cl₂ followed by addition of FcCH₂OCOCHCH₂ (54 mg, 0.20 mmol) and Ru catalyst (4.2 mg, 5 \times 10^{-3} mmol). The mixture was refluxed for 15 h. Repeated recrystallization of the crude product from CH₂Cl₂-Et₂O gave 4 (42 mg, 0.035 mmol, 35%). Anal. calc. for C₅₈H₆₈O₁₁NFe₂PF₆(H₂O): C, 56.64; H, 5.74; N, 1.14. Found: C, 56.80; H, 5.88; N, 1.18%. IR (KBr): \nu = 3166 (N–H), 3092 (N–H),

 Table 2
 Crystallographic data and structural refinement details

	FcCH=NCH ₂ C ₆ H ₄ OCH ₂ CH ₂ CH=CH ₂	2b	Fe(C ₅ H ₄ CH ₂ OCOCH=CH ₂) ₂
Chemical formula Molecular weight Crystal system Space group a/Å b/Å c/Å $\beta/^\circ$ $V/Å^3$ Z F(000) $D_c/g \text{ cm}^{-1}$ Crystal size/mm Unique reflections Used reflections No. of variables R R_w Goodness of fit Flack parameter	C ₂₂ H ₂₃ FeNO 373.28 Monoclinic $P2_1$ (no. 4) 19.257(3) 8.287(2) 5.8376(7) 95.48(1) 927.3(3) 2 392.00 1.337 $0.30 \times 0.20 \times 0.15$ 2278 1894 [$I \ge 2.0\sigma$ (I)] 250 0.074 0.107 [$I \ge 2.0\sigma$ (I)] 1.31 -0.1(2)	$\begin{array}{c} C_{44}H_{54}F_{6}FeNO_{8}P\\ 925.72\\ Monoclinic\\ P2_{1}/a \ (no.\ 14)\\ 38.521(4)\\ 10.253(2)\\ 11.378(1)\\ 96.222(8)\\ 4467(1)\\ 4\\ 1936.00\\ 1.376\\ 0.60\times 0.30\times 0.20\\ 10267\\ 3536 \ [I\geq 3.0\sigma \ (I)]\\ 604\\ 0.058\\ 0.091 \ [I\geq 3.0\sigma \ (I)]\\ 0.96\\\end{array}$	$\begin{array}{l} C_{18}H_{18}FeO_4\\ 354.18\\ Monoclinic\\ C2/c (no. 15)\\ 22.261(5)\\ 7.449(3)\\ 11.557(3)\\ 119.67(2)\\ 1665.1(8)\\ 4\\ 736.00\\ 0.921\\ 0.20\times 0.15\times 0.10\\ 1919\\ 1439 \left[I \geq 2.0\sigma \left(I\right)\right]\\ 114\\ 0.039\\ 0.055 \left[I \geq 2.0\sigma \left(I\right)\right]\\ 1.00\\ -\end{array}$
-			

1717 (C=O), 841 (P-F), 558 (P-F) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): *δ* 2.59 (m, 2H, CH₂CH=CH), 3.42-4.53 (42H, CH₂-DB24C8, C₅H₄, C₅H₅, OCH₂C₅H₄), 3.93 (2H, OCH₂CH₂CH), 4.07 (2H, NCH₂), 4.53 (2H, NCH₂), 4.68 (2H, C₅H₄), 5.82 (d, 1H, CH_2CH , J = 16 Hz), 6.65 (d, 2H, C_6H_4 , J = 8 Hz), 6.85–6.91 $(9H, C_6H_4$ -DB24C8, C(=O)H), 7.17 (brs, 2H, NH₂), 7.27 (d, 2H, C₆H₄-axle, J = 8 Hz). Signals observed at 3.4–4.6 ppm were overlapped significantly. Selected $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR data (100 MHz, CDCl₃, r. t.): *δ* 31.9 (CHCH₂), 48.5 (NCH₂), 51.7 (NCH₂), 62.1, 62.2, 65.7 (OCH₂), 68.4 (CH₂-DB24C8), 70.3 (CH₂-DB24C8), 70.8 (CH₂-DB24C8), 112.8 (C₆H₄-DB24C8), 114.2 (C₆H₄-axle), 121.7, 122.6 (C₆H₄-DB24C8), 124.2, 130.7 (C₆H₄-axle), 144.7, 147.4, 158.8, 165.3 (C=O). Some of the signals due to the ferrocenyl groups were observed as a broad signal at 69–71 ppm. Assignment of these signals was supported by ¹H–¹H and ${}^{13}C{}^{1}H{}^{-1}H$ COSY NMR spectroscopy. ESIMS: Calc. for $C_{58}H_{68}O_{11}NFe_2$: 1066.3 Found: $m/z = 1066.5 [M - PF_6]^+$.

 $[(FcCH_2N(OAc)CH_2C_6H_4OCH_2CH_2CH=CHCOOC_6H_3-3,5-$ Me₂)(DB24C8)] (5). To a solution of rotaxane 3 (112 mg, 0.10 mmol) in MeCN (4.0 cm³) were added triethylamine (70 µL, 0.50 mmol) and acetic anhydride (47 µL, 0.50 mmol), and the reaction mixture was allowed to stand at room temperature for 26 h. The reaction mixture was diluted by CH_2Cl_2 (4.0 cm³), washed with water (5.0 cm³ \times 3), dried over MgSO₄, filtered, and evaporated. The crude product was purified by preparative HPLC to give 5 (98 mg, 0.091 mmol, 91%). IR (KBr): v = 1728(C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 2.03 (s, 2H, COMe), 2.22 (s, 1H, COMe), 2.27 (s, 6H, $C_6H_3(CH_3)_2$), 3.13 (m, 2H, OCH₂CH₂-axle), 3.52-3.67 (8H, CH₂-DB24C8), 3.74-3.94 (8H, CH₂-DB24C8), 4.05–4.41 (23H, CH₂-DB24C8, OCH₂CH₂axle, C_5H_4 , C_5H_5 , NCH_2), 6.38 (d, 1H, C(=O)CH, J = 16 Hz), 6.60 (s, 2H, ortho-C₆H₃), 6.66–6.90 (13H, C₆H₄-DB24C8, para-C₆H₃, C_6H_4 -axle), 7.71 (dt, 1H, CH_2CH , J = 16, 7 Hz). HRFABMS: Anal. calc. for $C_{57}H_{67}NO_{12}Fe: 1013.4014$. Found: m/z = 1013.3987 $[M]^+$.

The product was purified by chromatography on silica gel with hexane-ethyl acetate (10 : 1) as eluent. The solvent was removed at reduced pressure to give $Fe(C_5H_4CH_2OCOCH=CH_2)_2$ as a yellow solid (87 mg, 0.25 mmol, 25%). Anal. calc. for $C_{18}H_{18}O_4Fe$: C, 61.04; H, 5.12. Found: C, 60.76; H, 4.92%. IR (KBr): v =0.7 1711 (C=O) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 4.19 (br, 4H, C₅H₄), 4.28 (br, 4H, C₅H₄), 4.93 (s, 4H, OCH₂), 5.81 (dd, 1H, CH=CH₂, J = 10, 1 Hz), 6.09 (dd, 1H, CH=CH₂, J = 17, 10 Hz), 6.40 (dd, 2H, CH=CH₂, J = 17, 1 Hz). ¹³C{¹H} NMR for (75.5 MHz, CDCl₃, r. t.): δ 62.4 (CH₂), 69.3 (C₅H₄), 70.0 (C₅H₄), 81.9 (C₃H₄), 128.3, 130.9, 165.9 (C=O). Fig. 4 shows the molecular structure of Fe(C₃H₄CH₂OCOCH=CH₂)₂ determined by X-ray crystallography. **8,5**ng, 4L, **1**{(**FcCH₂NH₂CH₂C₆H₄OCH₂CH₂CH=CHCOOCH₂C₅H₄)₂-Fe}(DB24C8)₂](PF₆)₂ (6). 1a** (52 mg, 0.10 mmol) and DB24C8 (63 mg, 0.14 mmol) was dissolved in CH₂Cl₂ (2.0 cm³), followed by

 $Fe(C_5H_4CH_2OCOCH=CH_2)_2$. To a solution of $Fe(C_5H_4CH_2-$

OH)₂ (246 mg, 1.0 mmol) and NEt₃ (1.0 cm³) in CH₂Cl₂ (7.0 cm³) was added acryloyl chloride (222 mg, 2.5 mmol) at 0 °C. After

stirring the mixture for 2 h at 0 °C, the insoluble solid was removed

by filtration. The solution was washed with an aqueous solution

of 0.1 M KOH and then with water, and dried over MgSO₄.

Fe}**(DB24C8)**₂**](PF**₆)₂ **(6). 1a** (52 mg, 0.10 mmol) and DB24C8 (63 mg, 0.14 mmol) was dissolved in CH₂Cl₂ (2.0 cm³), followed by addition of Fe(C₅H₄CH₂COOCHCH₂)₂ (18 mg, 0.051 mmol) and Ru catalyst (8.5 mg, 1×10^{-2} mmol). The mixture was refluxed for 12 h and the solvent was removed by evaporation to form a brown oil. Purification of the crude product by preparative HPLC gave 6 (56 mg, 0.025 mmol, 50%). IR (KBr): $\nu = 3164$ (N–H), 3081 (N–H), 1717 (C=O), 843 (P–F), 558 (P–F) cm⁻¹. ¹H NMR (300 MHz, CDCl₃, r. t.): δ 2.61 (m, 4H, CH₂CH), 3.40–3.61 (16H, CH₂-DB24C8), 3.67–3.84 (16H, CH₂-DB24C8), 3.82 (s, 10H, C₅H₅), 3.94 (t, 4H, CH₂CH₂CH, J = 6 Hz), 3.99–4.19 (32H, CH₂-DB24C8, NCH₂, C₃H₄), 4.25 (m, 4H, C₅H₄), 4.52 (m, 4H, NCH₂), 4.91 (s, 4H, OCH₂C₅H₄), 5.91 (d, 2H, C(=O)H, J = 16 Hz), 6.64 (d, 4H, C₆H₄-axle, J = 8 Hz), 6.82–6.91 (16H, C₆H₄-DB24C8), 7.02 (dt, 2H, CH₂CH, J = 16, 7 Hz), 7.13 (br, 4H,

NH₂), 7.23–7.26[†] (4H, C₆H₄-axle). The peak with a dagger was overlapping significantly with the signal of the solvent. ¹³C{¹H} NMR (100 MHz, CDCl₃, r. t.): δ 31.9 (CH₂CH), 48.6 (NCH₂), 51.6 (NCH₂), 62.3 (OCH₂C₃H₄), 65.8 (CH₂CH₂CH), 68.3 (CH₂-DB24C8), 68.8 (C₅H₅), 69.3 (C₅H₄), 69.4 (C₅H₄), 69.9 (C₅H₄), 70.0 (C₅H₄), 70.3 (CH₂-DB24C8), 70.7 (CH₂-DB24C8), 76.3 (C₅H₄), 82.3 (C₅H₄), 112.8 (C₆H₄-DB24C8), 114.3 (C₆H₄-axle), 121.7 (C₆H₄-DB24C8), 123.0 (C(=O)CH), 124.2 (C₆H₄-axle), 130.8 (C₆H₄-axle), 145.4 (CH₂CH), 147.6 (C₆H₄-DB24C8-*ipso*), 158.9 (C₆H₄-axle), 165.9 (C=O). Assignment of these signals was supported by ¹H–¹H and ¹³C{¹H}–¹H COSY NMR spectroscopy. ESIMS: Calc. for C₁₀₆H₁₂₆N₂O₂₂Fe₃: 1946.7 Found: *m*/*z* = 974.0 [M – 2(PF₆)]²⁺.

Crystal structure determination

Crystals of FcCH=NCH₂C₆H₄OCH₂CH₂CH=CH₂, **2b**, and Fe(C₅H₄CH₂OCOCH=CH₂)₂ suitable for X-ray diffraction study were obtained by recrystallization from Et₂O, CH₂Cl₂–Et₂O, and CH₂Cl₂–Et₂O respectively and mounted on a glass capillary tube. All measurements were made on a Rigaku AFC7R diffractometer with graphite monochromated Mo-Ka radiation and a rotating anode generator. The data were collected using the ω scan technique to a maximum 2θ value of 55.0°. Calculations were carried out by using a program package CrystalStructureTM for Windows.³⁵ Crystal data for the compounds are summarized in Table 2.

Details of the structure of **2b** (CCDC reference number 292617) have already been published²³ and the details of the structure of **2b** are in the CCDC as REFCODE WECVUW.

CCDC reference numbers 637664 (FcCH=NCH₂C₆H₄O-CH₂CH₂CH=CH₂) and 637665 (Fe(C₅H₄CH₂OCOCH=CH₂)₂).

For crystallographic data in CIF or other electronic format see DOI: 10.1039/b702785k

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan and by a 21st Century COE Program "Creation of Molecular Diversity and Development of Functionalities". We are grateful to Professor Munetaka Akita of our institute for ESIMS measurements.

Notes and references

- 1 G. Schill, Catenanes, Rotaxanes, and Knots, Organic Chemistry, Academic Press, New York, 1971, vol. 22; Molecular Catenanes, Rotaxanes and Knots, ed. J.-P. Sauvage and C. Dietrich-Buchecker, Wiley-VCH, Weinheim, 1999.
- 2 D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725; R. Jäger and F. Vögtle, Angew. Chem., Int. Ed. Engl., 1997, 36, 930; S. A. Nepogodiev and J. F. Stoddart, Chem. Rev., 1998, 98, 1959; J.-C. Chambron and J.-P. Sauvage, Chem.-Eur. J., 1998, 4, 1362; T. J. Hubin and D. H. Busch, Coord. Chem. Rev., 2000, 200–202, 5; T. Takata and N. Kihara, Rev. Heteroat. Chem., 2000, 22, 197; K. Kim, Chem. Soc. Rev., 2002, 31, 96; J.-P. Collin and J.-P. Sauvage, Chem. Lett., 2005, 34, 742; K. Osakada, T. Sakano, M. Horie and Y. Suzaki, Coord. Chem. Rev., 2006, 250, 1012.
- 3 (a) A. G. Kolchinski, D. H. Busch and N. W. Alcock, J. Chem. Soc., Chem. Commun., 1995, 1289; (b) P. R. Ashton, P. J. Campbell, E. J. T.

Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and D. J. Williams, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 1865.

- 4 P. R. Ashton, E. J. T. Chrystal, P. T. Glink, S. Menzer, C. Schiavo, N. Spencer, J. F. Stoddart, P. A. Tasker, A. J. P. White and D. J. Williams, *Chem.–Eur. J.*, 1996, **2**, 709.
- 5 S. J. Cantrill, D. A. Fulton, M. C. T. Fyfe, J. F. Stoddart, A. J. P. White and D. J. Williams, *Tetrahedron Lett.*, 1999, **40**, 3669; S. J. Cantrill, D. A. Fulton, A. M. Heiss, A. R. Pease, J. F. Stoddart, A. J. P. White and D. J. Williams, *Chem.-Eur. J.*, 2000, **6**, 2274.
- 6 Y. Furusho, H. Sasabe, D. Natsui, K. Murakawa, T. Takata and T. Harada, *Bull. Chem. Soc. Jpn.*, 2004, 77, 179.
- 7 S. J. Rowan and J. F. Stoddart, J. Am. Chem. Soc., 2000, 122, 164.
- 8 A. G. Kolchinski, N. W. Alcock, R. A. Roesner and D. H. Busch, *Chem. Commun.*, 1998, 1437; Y. Furusho, T. Hasegawa, A. Tsuboi, N. Kihara and T. Takata, *Chem. Lett.*, 2000, 18.
- 9 H. Kawasaki, N. Kihara and T. Takata, *Chem. Lett.*, 1999, 1015; Y. Tokunaga, S. Kakuchi, K. Akasaka, N. Nishikawa, Y. Shimomura, K. Isa and T. Seo, *Chem. Lett.*, 2002, 810.
- 10 Y. Suzaki and K. Osakada, Chem.-Asian J., 2006, 1, 331.
- J. S. Hannam, T. J. Kidd, D. A. Leigh and A. J. Wilson, *Org. Lett.*, 2003,
 5, 1907; R. G. E. Coumans and J. A. A. W. Elemans, *Angew. Chem.*, *Int. Ed.*, 2003, **42**, 650; P. Thordarson, R. J. M. Nolte, A. E. Rowan,
 S. A. Vignon, T. Jarrosson, T. Iijima, H.-R. Tseng, J. K. M. Sanders and J. F. Stoddart, *J. Am. Chem. Soc.*, 2004, **126**, 9884.
- J. A. Wisner, P. D. Beer, M. G. B. Drew and M. R. Sambrook, J. Am. Chem. Soc., 2002, **124**, 12469; A. F. M. Kilbinger, S. J. Cantrill, A. W. Waltman, M. W. Day and R. H. Grubbs, Angew. Chem., Int. Ed., 2003, **42**, 3281; A.-M. Fuller, D. A. Leigh, P. J. Lusby, I. D. H. Oswald, S. Parsons and D. B. Walker, Angew. Chem., Int. Ed., 2004, **43**, 3914; M. R. Sambrook, P. D. Beer, M. D. Lankshear, R. F. Ludlow and J. A. Wisner, Org. Biomol. Chem., 2006, **4**, 1529.
- 13 T. Umemiya, D. Takeuchi and K. Osakada, J. Organomet. Chem., 2006, 691, 5260.
- 14 J. D. Badjić, S. J. Cantrill, R. H. Grubbs, E. N. Guidry, R. Orenes and J. F. Stoddart, Angew. Chem., Int. Ed., 2004, 43, 3273.
- 15 X.-Z. Zhu and F.-C. Chen, J. Am. Chem. Soc., 2005, 127, 13158.
- 16 O. Molokanova, M. O. Vysotsky, Y. Cao, I. Thondorf and V. Böhmer, *Angew. Chem., Int. Ed.*, 2006, 45, 8051; A. Bogdan, Y. Rudzevich, M. O. Vysotsky and V. Böhmer, *Chem. Commun.*, 2006, 2941.
- 17 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18; R. H. Grubbs, T. M. Trnka and M. S. Sanford, Transition Metal–Carbene Complexes in Olefin Metathesis and Related Reactions, in Current Methods in Inorganic Chemistry, ed. H. Kurosawa and A. Yamamoto, Elsevier, Amsterdam, 2002, vol. 3, ch. 4.
- 18 A. K. Chatterjee, T.-L. Choi, D. P. Sanders and R. H. Grubbs, J. Am. Chem. Soc., 2003, **125**, 11360; A. K. Chatterjee, J. P. Morgan, M. Scholl and R. H. Grubbs, J. Am. Chem. Soc., 2000, **122**, 3783.
- 19 M. Horie, Y. Suzaki and K. Osakada, J. Am. Chem. Soc., 2004, 126, 3684; M. Horie, Y. Suzaki and K. Osakada, Inorg. Chem., 2005, 44, 5844.
- 20 Molecular Devices and Machines, A Journey into the Nanoworld, ed. V. Balzani, M. Venturi and A. Credi, Wiley-VCH, Weinheim, 2003; V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew. Chem., Int. Ed., 2000, 39, 3348; special issue on molecular machines: P. F. Barbara, Acc. Chem. Res., 2001, 34, 409.
- 21 Ferrocenes, ed. A. Togni and T. Hayashi, VCH, New York, 1995.
- 22 Examples of ferrocene containing rotaxanes: R. Isnin and A. E. Kaifer, J. Am. Chem. Soc., 1991, **113**, 8188; A. C. Benniston and A. Harriman, Angew. Chem., Int. Ed. Engl., 1993, **32**, 1459; L. A. Godínez, S. Patel, C. M. Criss and A. E. Kaifer, J. Phys. Chem., 1995, **99**, 17449; V. Balzani, J. Becher, A. Credi, M. B. Nielsen, F. M. Raymo, J. F. Stoddart, A. M. Talarico and M. Venturi, J. Org. Chem., 2000, **65**, 1947; N. Kihara, M. Hashimoto and T. Takata, Org. Lett., 2004, **6**, 1693.
- 23 Y. Suzaki and K. Osakada, Chem. Lett., 2006, 35, 374.
- 24 Association constants of the reactions in Scheme 2 were estimated as $K_{a\text{-app}} = [2a][1a]^{-1}[DB24C8]^{-1} = 4.9 \times 10^2 \text{ M}^{-1}$ and $K_{b\text{-app}} = [2b][1b]^{-1}[DB24C8]^{-1} = 3.1 \times 10^2 \text{ M}^{-1}$ in CD₃CN at 293 K, respectively, by a single point method (reference 25). See also reference 26 which describes precise treatment of the equilibrium for formation of the pseudorotaxane from dialkylammonium salts and DB24C8.
- 25 P. R. Ashton, M. C. T. Fyfe, S. K. Hickingbottom, J. F. Stoddart, A. J. P. White and D. J. Williams, *J. Chem. Soc.*, *Perkin Trans.* 2, 1998, 2117.

- 26 J. W. Jones and H. W. Gibson, J. Am. Chem. Soc., 2003, 125, 7001.
- 27 M. C. T. Fyfe, P. T. Glink, S. Menzer, J. F. Stoddart, A. J. P. White and D. J. Williams, *Angew. Chem.*, *Int. Ed. Engl.*, 1997, 36, 2068.
- 28 N. Kihara, Y. Tachibana, H. Kawasaki and T. Takata, *Chem. Lett.*, 2000, 506; Y. Tachibana, H. Kawasaki, N. Kihara and T. Takata, *J. Org. Chem.*, 2006, **71**, 5093.
- 29 T. Sakano, M. Horie, K. Osakada and H. Nakao, *Bull. Chem. Soc. Jpn.*, 2001, **74**, 2059; Y. Suzaki, M. Horie, T. Sakano and K. Osakada, *J. Organomet. Chem.*, 2006, **691**, 3403.
- 30 A. J. Bard and L. R. Faulkner, *Electrochemical Methods Fundamentals and Applications*, Wiley, New York, 1980, ch. 6.
- 31 F. Zeng, Y. Shen and S. Zhu, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 2394.
- 32 P. S. Vijayanand, C. S. J. Selvamalar, A. Penlidis and S. Nanjundan, *Polym. Int.*, 2003, **52**, 1856.
- 33 J. Kuwabara, D. Takeuchi and K. Osakada, Organometallics, 2005, 24, 2705.
- 34 A.-S. Carlström and T. Frejd, J. Org. Chem., 1990, 55, 4175.
- 35 Crystal Structure: Crystal analysis package, Rigaku corporation and Rigaku/MSC Inc., Texas, 2000–2007.