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A B S T R A C T

Exceedingly fast preparation of trifluoromethyl tertiary alcohols has been accomplished from methyl

ketones and trifluoromethyl ketones under solvent free conditions by cross Aldol reaction. The reaction

was achieved in the presence of common inorganic base by grinding method at ambient temperature to

give b-trifluoromethyl-b-hydroxyl ketones in high yields (up to 95%).

� 2015 Ke-Hu Wang and Yu-Lai Hu. Published by Elsevier B.V. on behalf of Chinese Chemical Society and
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1. Introduction

Organic trifluoromethyl compounds are of increasing impor-
tance as pharmaceuticals, agrochemicals and functional materials
[1]. Introduction of trifluoromethyl group into organic compounds
usually induces dramatic consequences on their physical, chemical
and biological properties [1,2]. Among trifluoromethylated com-
pounds, trifluoromethyl tertiary alcohols are important inter-
mediates or trifluoromethyl group building blocks in organic
synthesis [3] and are desirable starting materials for preparing
liquid crystals [4] and drugs such as Efavirenz (anti-HIV) [5].

Many methods for preparation of trifluoromethyl tertiary
alcohols have been developed. Higashiyama’s group reported
the direct catalytic Aldol reaction of trifluoromethyl ketones with
ketones to prepare trifluoromethyl tertiary alcohols using diethyl-
zinc secondary amine complex as catalysts [6]. Organocatalytic
Aldol addition of methyl ketones to aryl trifluoromethyl ketones
afforded b-trifluoromethyl-b-hydroxyl ketones in good to excel-
lent yield [7]. Although the above methods provided easy access to
trifluoromethyl tertiary alcohols, it is still necessary to find more
environment benign methods.

Solvent free organic reactions have attracted much research
interest from the point of green chemistry in recent years. Many of
52
53
54
55
56
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solvent free organic reactions were reported to afford high
conversions and yields in short reaction time at ambient
temperature [8].

Our research group is engaged in green chemistry [9] and
fluorine chemistry [10] for many years. Herein, we will report
exceedingly fast preparation of trifluoromethyl tertiary alcohols
from Aldol reaction between methyl ketones and trifluoromethyl
ketones in high yields under solvent free conditions.

2. Experimental

All reactions were conducted in a 30 mL pear-shaped flask.
Reagents were obtained from commercial suppliers and used
without further purification unless otherwise noted. Flash column
chromatography was carried out using Qingdao silica gel (230–
400 mesh). Analytical thin layer chromatography (TLC) was done
using Qingdao silica gel (silica gel GF254). TLC plates were
analyzed by an exposure to ultraviolet (UV) light and/or in I2. 1H
NMR, 13C NMR and 19F NMR spectra were recorded at 400 MHz
and 100 MHz on Varian Mercury 400 plus instrument, respec-
tively. Chemical shifts are reported as d values (ppm) relative to
tetramethylsilane (TMS) for 1H NMR and chloroform for 13C NMR.
Coupling constants (J) are reported in Hertz (Hz). Melting points
were uncorrected. Infrared spectra were recorded on an IR
spectrometer (Perkin Elmer BX FT-IR), and absorption frequencies
were reported in reciprocal centimeters (cm�1). The HRMS
data were measured on MALDI-TOF type of instrument for the
high-resolution mass spectra.
 of trifluoromethyl tertiary alcohols by cross Aldol reaction, Chin.
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1. Synthesis of b-trifluoromethyl-b-hydroxyl ketones 3

The mixture of trifluoroacetophenone (34.8 mg, 0.2 mmol) and
etophenone (24.0 mg, 0.2 mmol) was put into oven-dried, 30 mL
ar-shaped flask at room temperature, and then lithium
droxide powder (5.3 mg, 0.22 mmol) was added. The mixture

as grinded and stirred in the flask at room temperature for
16 min, and then dissolved in water (5 mL) and ethyl acetate

 mL). The organic phase was separated. Aqueous phase was
tracted with ethyl acetate (3� 5 mL). The organic layer was
mbined, dried over anhydrous MgSO4, and then concentrated
der reduced pressure. The residue was purified by silica gel
lumn chromatography with petroleum ether and ethyl acetate

 eluent to give the pure 3a. Other target products were obtained
 the same procedure.

4,4,4-Trifluoro-3-hydroxy-1,3-diphenylbutan-1-one (3a) [6]:
hite solid, mp: 42–43 8C. 1H NMR (400 MHz, DMSO-d6): d 7.95
, 2H, J = 7.6 Hz), 7.61–7.65 (m, 3H), 7.51 (t, 2H, J = 7.2 Hz), 7.28–
37 (m, 3H), 6.62 (s, 1H), 4.27 (d, 1H, J = 17.2 Hz), 3.83 (d, 1H,

 17.2 Hz). 13C NMR (100 MHz, DMSO-d6): d 200.2, 143.1, 142.1,
8.4, 133.7, 133.1, 132.9, 132.8, 131.6, 130.5 (q, J = 285.0 Hz), 80.2
, J = 27.2 Hz), 46.5. 19F NMR (376 MHz, CDCl3): d �77.01.
1-(2-Bromophenyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutan-

one (3b) [7d]: Colorless oil. 1H NMR (400 MHz, CDCl3): d 7.58–
62 (m, 3H), 7.26–7.35 (m, 5H), 7.18–7.19 (m, 1H), 5.36 (s, 1H),
96 (d, 1H, J = 17.2 Hz), 3.74 (d, 1H, J = 17.2 Hz). 13C NMR
00 MHz, CDCl3): d 203.4, 140.5, 137.1, 133.9, 132.6, 129.0,
8.8, 128.4, 127.6, 126.4, 124.4 (q, J = 283.5 Hz), 118.8, 76.6 (q,

 29.1 Hz), 45.1. 19F NMR (376 MHz, CDCl3): d �80.50.
1-(3-Bromophenyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutan-

one (3c): Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 8.07 (s,
), 7.91 (d, 1H, J = 7.2 Hz), 7.83 (d, 1H, J = 7.6 Hz), 7.61 (d, 2H,

 6.8 Hz), 7.46 (t, 1H, J = 7.6 Hz), 7.41–7.23 (m, 3H), 6.64 (s, 1H),
28 (d, 1H, J = 17.6 Hz), 3.80 (d, 1H, J = 17.6 Hz). 13C NMR
00 MHz, DMSO-d6): d 199.1, 144.2, 143.0, 141.0, 136.0, 135.8,
3.0, 132.9, 132.2, 131.7, 130.5 (q, J = 285.2 Hz), 127.2, 80.2 (q,

 27.4 Hz), 47.1. 19F NMR (376 MHz, CDCl3): d �80.62. HRMS (ESI)
lcd. for C16H12BrF3O2 (M + Na): 394.9865, Found: 394.9870.
1-(4-Bromophenyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutan-

one (3d) [3]: White solid, mp: 109–110 8C. 1H NMR (400 MHz,
SO-d6): d 7.87 (d, 2H, J = 7.6 Hz), 7.72 (d, 2H, J = 7.2 Hz), 7.61

, 2H, J = 6.8 Hz), 7.30–7.36 (m, 3H), 6.62 (s, 1H), 4.24 (d, 1H,
 17.6 Hz), 3.79 (d, 1H, J = 17.6 Hz). 13C NMR (100 MHz, DMSO-
): d 199.4, 143.0, 141.2, 136.8, 135.3, 133.0, 132.9, 132.5, 131.6,
0.5 (q, J = 285.0 Hz), 80.2 (q, J = 27.3 Hz), 46.7. 19F NMR
76 MHz, DMSO-d6): d �79.54.
1-(2-Chlorophenyl)-4,4,4-trifluoro-3-hydroxy-3-phenylbutan-

one (3e) [7d]: Colorless oil. 1H NMR (400 MHz, DMSO-d6): d
50–7.56 (m, 3H), 7.42 (s, 2H), 7.29–7.36 (m, 4H), 6.82 (s, 1H), 4.09
, 1H, J = 16.8 Hz), 3.65 (d, 1H, J = 16.8 Hz). 13C NMR (100 MHz,

SO-d6): d 197.0, 138.7, 136.9, 132.0, 130.1, 129.4, 129.2, 127.9,
7.7, 127.0, 126.5, 125.2 (q, J = 285.4 Hz), 75.0 (q, J = 27.4 Hz),
.9. 19F NMR (376 MHz, DMSO-d6): d �79.49.
4,4,4-Trifluoro-3-hydroxy-1-(3-nitrophenyl)-3-phenylbutan-

one (3f): Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 8.59 (s,
), 8.43 (d, 1H, J = 7.8 Hz), 8.33 (d, 1H, J = 7.2 Hz), 7.78 (t, 1H,

 8.0 Hz), 7.61 (d, 2H, J = 6.8 Hz), 7.23–7.40 (m, 3H), 6.72 (s, 1H),
36 (d, 1H, J = 17.2 Hz), 3.88 (d, 1H, J = 17.2 Hz). 13C NMR
00 MHz, DMSO-d6): d 198.8, 153.1, 143.5, 142.8, 139.5, 135.6,
3.1, 132.9, 132.5, 131.7, 130.6 (q, J = 284.8 Hz), 127.7, 80.2 (q,

 27.7 Hz), 47.6. 19F NMR (376 MHz, DMSO-d6): d �79.40. HRMS
SI) Calcd. for C16H12F3NO4 (M + Na): 362.0611, Found: 362.0617.

4,4,4-Trifluoro-3-hydroxy-3-phenyl-1-(p-tolyl)butan-1-one
g) [6]: White solid, mp: 72–73 8C. 1H NMR (400 MHz, DMSO-d6):
.83 (d, 2H, J = 7.2 Hz), 7.59 (d, 2H, J = 6.8 Hz), 7.28–7.32 (m, 5H),

56 (s, 1H), 4.20 (d, 1H, J = 17.2 Hz,), 3.74 (d, 1H, J = 17.2 Hz,), 2.35
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(s, 3H). 13C NMR (100 MHz, DMSO-d6): d 194.9, 143.8, 138.0, 134.5,
129.2, 128.2, 127.8, 127.7, 126.5, 125.4 (q, J = 285.1 Hz), 75.2 (q,
J = 27.3 Hz), 41.1, 21.1. 19F NMR (376 MHz, DMSO-d6): d �79.53.

4,4,4-Trifluoro-3-hydroxy-1-(4-methoxyphenyl)-3-phenylbu-
tan-1-one (3h) [6]: White solid, mp: 90–91 8C. 1H NMR (400 MHz,
DMSO-d6): d 7.92 (d, 2H, J = 7.6 Hz), 7.58 (d, 2H, J = 6.8 Hz), 7.28–
7.34 (m, 3H), 7.00 (d, 2H, J = 7.6 Hz), 6.56 (s, 1H), 4.15 (d, 1H,
J = 17.2 Hz), 3.81 (s, 3H), 3.70 (d, 1H, J = 17.2 Hz). 13C NMR
(100 MHz, DMSO-d6): d 194.1, 163.4, 138.1, 130.6, 129.9, 127.8,
127.7, 126.5, 125.4 (q, J = 285.2 Hz), 113.8, 75.3 (q, J = 27.3 Hz),
55.6, 40.7. 19F NMR (376 MHz, DMSO-d6): d �74.74.

4,4,4-Trifluoro-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylbu-
tan-1-one (3i) [11]: White solid, mp: 112–113 8C. 1H NMR
(400 MHz, DMSO-d6): d 11.40 (s, 1H), 7.84 (d, 1H, J = 8.0 Hz),
7.61 (d, 2H, J = 6.8 Hz), 7.49 (t, 1H, J = 7.6 Hz), 7.30–7.35 (m, 3H),
6.94 (d, 2H, J = 7.2 Hz), 6.65 (s, 1H), 4.31 (d, 1H, J = 17.6 Hz), 3.86 (d,
1H, J = 17.6 Hz). 13C NMR (100 MHz, DMSO-d6): d 200.0, 160.2,
138.1, 136.1, 131.0, 128.1, 128.0, 126.7, 125.6 (q, J = 285.5 Hz),
122.0, 119.4, 117.8, 75.3 (q, J = 27.0 Hz), 43.1. 19F NMR (376 MHz,
DMSO-d6): d �77.01.

1-([1,10-Biphenyl]-4-yl)-4,4,4-trifluoro-3-hydroxy-3-phenyl-
butan-1-one (3j): White solid, mp: 51–52 8C. 1H NMR (400 MHz,
DMSO-d6): d 8.02 (d, 2H, J = 8.0 Hz), 7.79 (d, 2H, J = 8.0 Hz), 7.72
(d, 2H, J = 7.2 Hz), 7.63 (d, 2H, J = 7.2 Hz), 7.49 (t, 2H, J = 7.2 Hz),
7.40–7.43 (m, 1H), 7.29–7.36 (m, 3H), 6.64 (s, 1H), 4.27 (d, 1H,
J = 17.2 Hz), 3.83 (d, 1H, J = 17.2 Hz). 13C NMR (100 MHz, DMSO-
d6): d 199.9, 149.8, 143.9, 143.1, 140.9, 134.2, 133.9, 133.5, 132.9,
132.8, 132.1, 131.9, 131.6, 130.5 (q, J = 285.3 Hz), 80.3 (q,
J = 27.3 Hz), 46.5. 19F NMR (376 MHz, DMSO-d6): d �79.46.
HRMS (ESI) Calcd. for C22H17F3O2 (M + Na): 393.1073, Found:
393.1078.

4,4,4-Trifluoro-3-hydroxy-1-(5-methylfuran-2-yl)-3-phenyl-
butan-1-one (3k): Colorless oil. 1H NMR (400 MHz, DMSO-d6): d
7.61 (d, 2H, J = 6.4 Hz), 7.51 (s, 1H), 7.34 (d, 3H, J = 7.6 Hz), 6.67 (s,
1H), 6.36 (s, 1H), 3.88 (d, 1H, J = 16.0 Hz), 3.51 (d, 1H, J = 16.0 Hz),
2.33 (s, 3H). 13C NMR (100 MHz, DMSO-d6): d 182.6, 158.2, 150.9,
137.5, 128.0, 127.7, 126.5, 125.2 (q, J = 284.8 Hz), 121.5, 109.4, 75.2
(q, J = 27.5 Hz), 40.7, 13.5. 19F NMR (376 MHz, DMSO-d6): d �79.34.
HRMS (ESI) Calcd. for C15H13F3O3 (M + Na): 321.0709, Found:
321.0714.

4,4,4-Trifluoro-3-hydroxy-3-phenyl-1-(pyridin-3-yl)butan-1-
one (3l): Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 9.05 (s, 1H),
8.75 (d, 1H, J = 4.0 Hz), 8.22 (d, 1H, J = 7.2 Hz), 7.59 (d, 2H,
J = 6.8 Hz), 7.48–7.52 (m, 1H), 7.28–7.32 (m, 3H), 6.67 (s, 1H), 4.25
(d, 1H, J = 17.2 Hz), 3.83 (d, 1H, J = 17.2 Hz). 13C NMR (100 MHz,
DMSO-d6): d 199.7, 158.5, 154.4, 142.9, 140.7, 137.5, 133.0, 132.9,
131.6, 130.5 (q, J = 285.2 Hz), 128.8, 80.2 (q, J = 27.3 Hz), 47.3. 19F
NMR (376 MHz, DMSO-d6): d �79.36. HRMS (ESI) Calcd. for
C15H12F3NO2 (M + H): 296.0893, Found: 296.0898.

1-(2,5-Dimethylthiophen-3-yl)-4,4,4-trifluoro-3-hydroxy-3-
phenylbutan-1-one (3m): Colorless oil. 1H NMR (400 MHz, DMSO-
d6): d 7.59 (d, 2H, J = 7.2 Hz), 7.32–7.37 (m, 4H), 6.54 (s, 1H), 4.01 (d,
1H, J = 17.2 Hz), 3.57 (d, 1H, J = 17.2 Hz), 2.43 (s, 3H), 2.39 (s, 3H).
13C NMR (100 MHz, DMSO-d6): d 196.5, 151.5, 143.1, 141.0, 139.9,
132.9, 132.8, 131.9, 131.6, 130.4 (q, J = 285.5 Hz), 80.3 (q,
J = 26.7 Hz), 49.0, 20.6, 19.7. 19F NMR (376 MHz, DMSO-d6): d
�74.87. HRMS (ESI) Calcd. for C16H15F3O2S (M + H): 329.0818,
Found: 329.0824.

4,4,4-Trifluoro-3-hydroxy-3-(4-nitrophenyl)-1-phenylbutan-
1-one (3n): Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 8.20 (d,
2H, J = 8.0 Hz), 7.90–7.92 (m, 4H), 7.60–7.62 (m, 1H), 7.48–7.51 (m,
2H), 7.02 (s, 1H), 4.41 (d, 1H, J = 18.0 Hz), 3.94 (d, 1H, J = 18.0 Hz).
13C NMR (100 MHz, DMSO-d6): d 199.1, 152.2, 151.0, 141.7, 138.5,
133.7, 133.1, 130.2 (q, J = 285.4 Hz), 127.9, 79.9 (q, J = 27.2 Hz),
46.8. 19F NMR (376 MHz, DMSO-d6): d �79.40. HRMS (ESI) Calcd.
for C16H12F3NO4 (M + H): 340.0791, Found: 340.0796.
s of trifluoromethyl tertiary alcohols by cross Aldol reaction, Chin.
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Table 1
Optimization of reaction conditions for the synthesis of 3a.a

.

Entry Base Temp. (8C) Time (min) Yield (%)b

1 NaOH r.t. 5 80

2 NaOH 0 30 77

3 NaOH 40 5 46

4 NaOH r.t. 7 79

5 NaOH r.t. 12 78

6 NaOH r.t. 15 78

7 LiOH r.t. 8 89

8 KOH r.t. 4 65

9 Cs2CO3 r.t. 10 86

10 K2CO3 r.t. 20 56

11 Na2CO3 r.t. 20 Trace

12 NaOCH3 r.t. 5 23

13 NEt3 r.t. 20 Trace

14 DBU r.t. 6 76

a Reaction conditions: a mixture of 1a (0.2 mmol), 2a (0.2 mmol), and base

(0.22 mmol) was grinded under solvent free conditions.
b Yield of isolated product.

Table 2
Solvent free synthesis of b-trifluoromethyl-b-hydroxyl ketones from various

methyl ketones.a

.

Entry R Products Time (min) Yield (%)b

1 C6H5 3a 8 89

2 2-BrC6H4 3b 8 91

3 3-BrC6H4 3c 8 84

4 4-BrC6H4 3d 10/20 79/73c

5 2-ClC6H4 3e 8 95

6 3-NO2C6H4 3f 16 Trace/70c

7 4-MeC6H4 3g 8 87

8 4-MeOC6H4 3h 10 71

9 2-OHC6H4 3i 6 Trace/86c

10 4-PhC6H4 3j 10 Trace/67c

11 2-(5-Methyl-furanyl) 3k 8 87

12 3-Pyridinyl 3l 16 84

13 3-(2,5-Dimethyl-

thiophthyl)

3m 16 63

14 C2H5 10 NDd

15 Cyclohexanone 8 NDd

a Reaction conditions: a mixture of 1 (0.2 mmol), 2 (0.2 mmol), and LiOH

(0.22 mmol) was grinded at room temperature under solvent free conditions.
b Yield of isolated product.
c DBU (0.22 mmol) was used as base instead of LiOH.
d No detected.
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3-(3-Bromophenyl)-4,4,4-trifluoro-3-hydroxy-1-phenylbutan-
1-one (3o) [7d]: Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 7.92
(d, 2H, J = 7.6 Hz), 7.82 (s, 1H), 7.61 (d, 2H, J = 5.6 Hz), 7.49–7.51
(m, 3H), 7.27–7.31 (m, 1H), 6.79 (s, 1H), 4.31 (d, 1H, J = 17.6 Hz),
3.83 (d, 1H, J = 17.6 Hz). 13C NMR (100 MHz, DMSO-d6): d 194.4,
140.8, 136.8, 133.3, 130.6, 129.8, 129.3, 128.5, 128.0, 125.5, 125.1
(q, J = 285.2 Hz), 121.3, 74.5 (q, J = 27.3 Hz), 41.3. 19F NMR
(376 MHz, DMSO-d6): d �79.70.

3-(4-Chlorophenyl)-4,4,4-trifluoro-3-hydroxy-1-phenylbutan-
1-one (3p) [6]: White solid, mp: 71–73 8C. 1H NMR (400 MHz,
DMSO-d6): d 7.94 (d, 2H, J = 7.2 Hz), 7.64–7.66 (m, 3H), 7.50–7.53
(m, 2H), 7.42 (d, 2H, J = 7.2 Hz), 6.78 (s, 1H), 4.30 (d, 1H,
J = 17.6 Hz), 3.86 (d, 1H, J = 17.6 Hz). 13C NMR (100 MHz, DMSO-
d6): d 194.5, 137.1, 136.8, 133.3, 132.6, 128.5, 128.4, 127.9, 127.6,
125.2 (q, J = 285.3 Hz), 74.6 (q, J = 27.8 Hz), 41.2. 19F NMR
(376 MHz, DMSO-d6): d �79.82.

4,4,4-Trifluoro-3-hydroxy-3-(4-methoxyphenyl)-1-phenylbu-
tan-1-one (3q) [6]: White solid, mp: 71–72 8C. 1H NMR (400 MHz,
DMSO-d6): d 7.93 (d, 2H, J = 7.2 Hz,), 7.60–7.61 (m, 1H), 7.49–7.51
(m, 4H), 6.88 (d, 2H, J = 8.4 Hz), 6.51 (s, 1H), 4.18 (d, 1H,
J = 17.2 Hz), 3.75 (d, 1H, J = 17.2 Hz), 3.72 (s, 3H). 13C NMR
(100 MHz, DMSO-d6): d 195.4, 158.8, 137.0, 133.3, 129.7, 128.6,
128.0, 127.8, 125.4 (q, J = 284.8 Hz), 113.1, 74.9 (q, J = 27.5 Hz),
55.0, 41.2. 19F NMR (376 MHz, DMSO-d6): d �79.84.

4,4,4-Trifluoro-3-hydroxy-1-phenyl-3-(p-tolyl)butan-1-one
(3r) [6]: Colorless oil. 1H NMR (400 MHz, DMSO-d6): d 7.94 (d, 2H,
J = 6.8 Hz), 7.62–7.63 (m, 1H), 7.50 (s, 4H), 7.14 (d, 2H, J = 7.2 Hz),
6.54 (s, 1H), 4.23 (d, 1H, J = 17.2 Hz), 3.77 (d, 1H, J = 17.2 Hz), 2.28
(s, 3H). 13C NMR (100 MHz, DMSO-d6): d 195.2, 137.0, 134.9, 133.3,
128.6, 128.3, 128.0, 126.4, 125.4 (q, J = 285.0 Hz), 75.0 (q,
J = 27.0 Hz), 41.2, 20.5. 19F NMR (376 MHz, DMSO-d6): d �79.73.

4,4,4-Trifluoro-3-hydroxy-3-(naphthalen-1-yl)-1-phenylbu-
tan-1-one (3s) [7d]: White solid, mp: 80–81 8C. 1H NMR (400 MHz,
DMSO-d6): d 9.16 (s, 1H), 8.07 (d, 2H, J = 7.6 Hz), 7.97–8.02 (m, 2H),
7.74–7.75 (m, 2H), 7.66–7.52 (m, 4H), 7.46–7.48 (m, 1H), 6.99 (s,
1H), 4.88 (d, 1H, J = 18.4 Hz), 4.00 (d, 1H, J = 18.4 Hz). 13C NMR
(100 MHz, DMSO-d6): d 194.9, 136.8, 134.3, 133.4, 133.1, 131.9,
129.5, 128.6, 128.5, 127.9, 127.6, 126.7, 126.0 (q, J = 286.2 Hz),
125.3, 125.1, 124.4, 78.4 (q, J = 28.9 Hz), 43.2. 19F NMR (376 MHz,
DMSO-d6): d �78.07.

3. Results and discussion

Although many methods for preparation of trifluoromethyl
organic compounds have been developed by using trifluoromethy-
lation reagents, such as Togni reagent, Umemoto reagent, and
Ruppert-Prakash reagent, trifluoromethyl group-containing build-
ing blocks still play important roles in preparation of trifluoromethyl
compounds because of their easy commercial availability, low cost
and stability [12]. The Aldol reaction using trifluoromethyl ketones
were apparently a convergent method for preparation of trifluor-
omethyl tertiary alcohols. Thus, we firstly tried the Aldol reaction
between trifluoroacetophenone 1a and acetophenone 2a in the
presence of NaOH without any catalyst at room temperature under
solvent free conditions to get b-trifluoromethyl-b-hydroxyl
ketones. The reaction proceeded smoothly to generate Aldol product
4,4,4-trifluoro-3-hydroxy-1,3-diphenylbutan-1-one 3a with the
yield of 80%. However, if the ethanol was used as solvent, there
was no reaction occurred. It was found that the reaction was
exothermic under grinding condition with liquification of the
reaction mixture, and then solidification of the product 3a [13].

In order to improve the yields of the products, the reaction
temperature was firstly examined. It was found that the tempera-
ture had great influence on the reaction. When the reaction was
carried out at room temperature, the product 3a could be obtained
in 80% yield (Table 1, entry 1). Lowering reaction temperature would
Please cite this article in press as: R. Tao, et al., Solvent free synthesis
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prolong the reaction time (Table 1, entry 2). However, the yield of 3a
was only 46% with the appearance of ethanol-insoluble solid when
the reaction temperature was increased to 40 8C (Table 1, entry 3).
The effects of reaction time were examined next. The results
demonstrated that 5 min was enough for completion of the reaction
(Table 1, entries 4–6). When the reaction time was prolonged, the
yield of 3a will not change too much. The choice of base was crucial
to obtain good yields (Table 1, entries 7–14). A series of bases were
tested, it was found that LiOH was the best base (Table 1, entry 7).
Thus, the best result was achieved in the presence of LiOH at room
temperature under solvent free conditions (Table 1, entry 7).

In order to demonstrate the efficiency and the applicability of
the method, the reactions were performed with various methyl
 of trifluoromethyl tertiary alcohols by cross Aldol reaction, Chin.
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Table 3
Solvent free synthesis of b-trifluoromethyl-b-hydroxyl ketones from various

trifluoromethyl ketones.a

.

Entry R Products Time (min) Yield (%)b

1 4-NO2C6H4 3n 10 Trace/83c

2 3-BrC6H4 3o 16 74

3 4-ClC6H4 3p 16 76

4 4-MeOC6H4 3q 8 88

5 4-MeC6H4 3r 16 80

6 1-Naphthyl 3s 8 71

a Reaction conditions: a mixture of 1 (0.2 mmol), 2 (0.2 mmol), and LiOH

(0.22 mmol) was grinded at room temperature under solvent free conditions.
b Yield of isolated products.
c DBU (0.22 mmol) was used as base instead of LiOH.
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tones and trifluoromethyl ketones under the optimized condi-
ns. The results are summarized in Tables 2 and 3.
It showed that aromatic methyl ketones and trifluoromethyl

tones reacted smoothly affording the corresponding b-trifluor-
ethyl-b-hydroxyl ketones in good to excellent yields (63–95%).

iphatic methyl ketones failed to give the desired products
able 2, entries 14 and 15). This is due to the cross condensations
tween aliphatic methyl ketones to make the products very
mplex. The reactions of heterocyclic ketones with trifluoroace-
phenone proceeded smoothly to furnish the products in good
elds (Table 2, entries 11–13). The other trifluoromethyl ketones
uld also be converted to the corresponding products (Table 3).

 obvious electronic effects of the ketones were observed.
In the course of the experiment, we found that when both

ethyl ketones and trifluoromethyl ketones were liquid, the solid
se LiOH was the best suitable base to obtain the corresponding
oducts 3 in excellent yields. For example, 1-(4-bromopheny-
thanone reacted with trifluoroacetophenone smoothly to afford
e corresponding compound 3d with the yield of 79% when LiOH
as used as base. Liquid organic base such as DBU could also been
ed in the reaction to obtain reasonable yield of 3d (73%, Table 2,
try 4). If methyl ketones or trifluoromethyl ketones were solid,
uid base such as DBU must be used in order to obtain good yields
able 2, entries 6, 9, and 10; Table 3, entry 1).

 Conclusion

In conclusion, b-trifluoromethyl-b-hydroxyl ketones were
ccessfully synthesized from cross Aldol reaction of methyl
tones and trifluoromethyl ketones under solvent free conditions.
e reaction could be achieved smoothly with various aromatic
ethyl ketones, even with some heterocyclic and aliphatic ketone.
e features of this procedure are mild conditions, high yields,
erational simplicity, and the environmental friendliness.
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