Phosphaniminato-Komplexe von Zirconium und Hafnium mit clusterähnlichem Aufbau

Marion Grün, Frank Weller, Kurt Dehnicke*

Marburg, Fachbereich Chemie der Universität

Bei der Redaktion eingegangen am 23. Juli 1996.

Professor Walter Siebert zum 60. Geburtstag gewidmet

Inhaltsübersicht. Die Tetrachloride von Zirconium und Hafnium reagieren mit überschüssigem Phosphanimin Me₃SiNPMe₃ bei 220 °C in Gegenwart von Natriumfluorid unter Abspaltung von FSiMe₃ und Bildung der komplexen Ionenverbindungen [Zr₃Cl₆(NPMe₃)₅]⁺[Zr₂Cl₆(NPMe₃)₃]⁻ und [Hf₃Cl₆(NPMe₃)₅]⁺[Hf₂Cl₇(NPMe₃)₂]⁻. Nach Kristallstrukturanalysen bilden in den Kationen die drei Metallatome zusammen mit drei NPMe₃⁻-Gruppen mit μ_2 -N-Funktion und zwei NPMe₃⁻-Gruppen mit μ_3 -N-Funktion trigonale Bipyramiden. Im Anion des Zirconium-Komplexes sind die Zr-Atome über drei μ_2 -N-Brücken verknüpft, während im Anion der Hafnium-Verbindung die Hf-Atome über zwei μ_2 -N-Brücken und eine μ_2 -Cl-Brücke verbunden sind. Primärprodukte bei der Reaktion von MCl₄ (M = Zr, Hf) mit silylierten Phosphaniminen sind Donor-Akzeptor-Komplexe, von denen das Beispiel [ZrCl₄(Me₃SiNPPh₃)] kristallographisch charakterisiert wurde. In dem Molekül-Komplex ist das Zr-Atom trigonal-bipyramidal koordiniert.

Phosphoraneiminato Complexes of Zirconium and Hafnium with Clusterlike Structures

Abstract. The tetrachlorides of zirconium and hafnium react with excess phosphaneimine Me₃SiNPMe₃ at 220 °C in the presence of sodium fluoride by cleaving FSiMe₃ to form the ionic complexes [Zr₃Cl₆(NPMe₃)₅]⁺[Zr₂Cl₆(NPMe₃)₃]⁻ and [Hf₃Cl₆(NPMe₃)₅]⁺[Hf₂Cl₇(NPMe₃)₂]⁻. According to crystal structure analyses in the cations the three metal atoms together with three μ_2 -NPMe₃⁻ groups and two NPMe₃⁻ groups with μ_3 -function are forming trigonal bipyramids. In the anion of the zirconium complex the Zr atoms are linked by three μ_2 -N bridges, whereas in the anion of the hafnium

1 Einleitung

Phosphaniminato-Komplexe elektronenarmer Übergangsmetalle in hohen Oxidationsstufen enthalten den NPR_3^{-} -Liganden meist in gestreckter oder weitgehend linearer Anordnung **1** [1].

 $[M] \cong N - PR_3 \iff [M] = N = PR_3 \qquad [M] \cong N - R$ $1 \qquad 2$

Prof. Dr. K. Dehnicke Fachbereich Chemie der Philipps-Universität D-35032 Marburg compound bridging is effected by two μ_2 -N bridges and one μ_2 -Cl bridge. Primary products in the reaction of MCl₄ (M = Zr, Hf) with silylated phosphaneimines are donor-acceptor complexes like [ZrCl₄(Me₃SiNPPh₃)] which has been characterized crystallographically as an example. In the molecular complex the Zr-atom is coordinated in a trigonal bipyramidal fashion.

Keywords: Zirconium; Hafnium; Phosphaneiminato Complexes; Crystal Structure

Der Bindungsmodus ist vergleichbar mit dem von Imido-Komplexen 2, da beide Ligandengruppen NPR₃⁻ und NR²⁻ – wie C₅H₅⁻ – über einen (σ , 2π)-Donor-Satz verfügen. Überlegungen zur formalen Isolobal-Beziehung zwischen Cyclopentadienyl- und Imido-Ligand erfordern wegen dessen höherer Ladung eine Verschiebung des Übergangsmetalls um eine Stelle im Periodensystem nach rechts [2–9], während der Phosphaniminato-Ligand den Vergleich am selben Metallzentrum erlaubt [10]. Neben dem Typ 1 kennt man den NPR₃⁻-Liganden auch als μ_2 -N-Brückenliganden 3 [11] sowie in elektronenreichen Metallkomplexen mit Heterocuban-Struktur als μ_3 -N-Brückenliganden 4 [12].

^{*} Korrespondenzadresse:

2 Ergebnisse

Wir berichten hier über die ersten Phosphaniminato-Komplexe von Zirconium und Hafnium, in denen beide Brückentypen **3** und **4** realisiert sind. Die kristallographischen Daten der Kristallstrukturanalysen enthält Tabelle 1, die Tabellen 2–4 ausgewählte Bindungslängen und -winkel, die Tabellen 5–7 die Atomkoordinaten.¹)

Zur Synthese der Phosphaniminato-Komplexe haben wir die Tetrachloride von Zirconium und Hafnium mit silylierten Phosphaniminen Me₃SiNPR₃

⁰) Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-405543 (5), 405541 (6) und 405542 (7) angefordert werden.

	$ZrCl_4(Me_3SiNPPh_3)$ $\cdot 0.5 CH_2Cl_2 (5)$	$[Zr_{3}Cl_{6}(NPMe_{3})_{5}]^{+}$ $[Zr_{2}Cl_{6}(NPMe_{3})_{3}]^{-}$	$[Hf_{3}Cl_{6}(NPMe_{3})_{5}]^{+}$ $[Hf_{2}Cl_{7}(NPMe_{3})_{2}]^{-}$
		$\cdot 3 \mathrm{CH}_2 \mathrm{Cl}_2$ (6)	\cdot 5 CH ₂ Cl ₂ (7)
Gitterkonstanten	a = 984,1(1)	a = 1797,2(4)	a = 1364, 2(1)
	b = 991,2(1)	b = 1182, 6(2)	b = 1522,9(1)
	c = 1/5/3(1) pm $\alpha = 86.08(1)^{\circ}$	c = 3487,7(7) pm	c = 1901,6(1) pm $\alpha = 86,17(1)^{\circ}$
	$\beta = 74.80(1)^{\circ}$	$\beta = 99.02(3)^{\circ}$	$\beta = 73.87(1)^{\circ}$
	$\gamma = 62.99(1)^{\circ}$		$\gamma = 86,66(1)^{\circ}$
Zellvolumen [Å ³]	1471,2(2)	7321(3)	3783,3(4)
Zahl der Formel-			
Einheiten pro Zelle	$\mathbf{Z} = 2$	Z = 4	$\mathbf{Z} = 2$
Dichte (berechnet) [g/cm ³]	$\rho = 1,411$	$\rho = 1,685$	$\rho = 2,114$
Kristallsystem, Raumgruppe	triklin, P1	monoklin, P2 ₁ /n	triklin, P1
Meßgerät	Vierkreisdiffraktometer	Vierkreisdiffraktometer	Vierkreisdiffraktometer
	Enraf-Nonius CAD4	Enraf-Nonius CAD4	Enraf-Nonius CAD4
Strahlung	MoK α , Graphit-	CuK α , Graphit-	$CuK\alpha$, Graphit-
	Monochromator	Monochromator	Monochromator
Meßtemperatur	20 °C	−40 °C	-40 °C
Zahl der Reflexe zur			
Berechnung der Gitterkonstanten	25	25	25
Meßbereich,	$\theta = 2,5-25,0^{\circ}, \omega$ -Scan	$\theta = 3,0-59,0^{\circ}, \omega$ -Scan	$\theta = 2,9-60,0^\circ, \omega$ -Scan
Abtastungsmodus	T 10.1		
Zahl der gemessenen Reflexe	5494	10128	14971
Zahl der unabhängigen Reflexe Zahl der beobachteten	$5164 [R_{int} = 0,0098]$	9802 [$R_{int} = 0,0980$]	11201 [$\mathbf{R}_{int} = 0,1215$]
Reflexe mit $I > 2\sigma(I)$	4748	3466	6876
Korrekturen	Lorentz- und Polarisations-	Lorentz- und Polarisations-	Lorentz- und Polarisations-
Refrexedent	faktor empirische Absorp-	faktor empirische Absorp-	faktor empirische Absorn-
	tionskorrektur	tionskorrektur	tionskorrektur
	$\mu(MoK\alpha) = 8.40 \text{ cm}^{-1}$	$\mu(CuK\alpha) = 135.90 \text{ cm}^{-1}$	$\mu(CuK\alpha) = 213.71 \text{ cm}^{-1}$
Strukturaufklärung	Direkte Methoden	Direkte Methoden	Direkte Methoden
Verfeinerung	Vollmatrix gegen F ²	Vollmatrix gegen F ²	Vollmatrix gegen F^2
Bemerkungen	H-Atomlagen in berechne-	H-Atomlagen in berechne-	H-Atomlagen in berechne-
C C	ten Positionen	ten Positionen	ten Positionen
Anzahl der Parameter	281	721	723
Rechenprogramme	SHELXS-86 [27]	SHELXS-86 [27]	SHELXL-86 [27]
	SHELXL-93 [27]	SHELXL-93 [27]	SHELXTL-93 [27]
	SHELXTL-Plus [28]	SHELXTL-Plus [28]	SHELXTL-Plus [28]
	-	DIFABS [29]	DIFABS [29]
Atomformfaktoren,	Internationale	Internationale	Internationale
$\Delta \mathbf{f}', \Delta \mathbf{f}''$	Tabellen, Vol. C	Tabellen, Vol. C	Tabellen, Vol. C
$\mathbf{R} = \boldsymbol{\Sigma} \mathbf{F}_{o} - \mathbf{F}_{c} / \boldsymbol{\Sigma} \mathbf{F}_{o} $	0,030	0,077	0,066
wR_2 (alle Daten)	0,086	0,2110	0,1711

 $(R = CH_3, C_6H_5)$ umgesetzt, wobei zunächst nur die (1:1)-Donor-Acceptorkomplexe entstehen. Die Kristallstrukturanalyse des Phenylderivates **5** zeigt das Zirconiumatom in der seltenen trigonal-bipyramidalen Koordination mit dem N-Atom des

Phosphanimin-Liganden in der Äquatorialposition (Abb. 1).

Abb. 1 Ansicht der Struktur des Donor-Acceptor-Komplexes 5 (ohne H-Atome), Ellipsoide der thermischen Schwingung mit 50% Aufenthaltswahrscheinlichkeit

Der Diederwinkel Si–N–P/Cl(3)–Zr–Cl(4) beträgt nur 5,0(1)°, so daß nahezu Coplanarität des Phosphanimingerüstes mit den äquatorial angeordneten Chloratomen erreicht wird. Erwartungsgemäß sind die Zr–Cl-Abstände der axial angeordneten Chloratome Cl(1,2) mit 243,2 und 241,5 pm deutlich länger als die der beiden äquatorial gebundenen Chloratome Cl(3,4) mit 238,2 und 234,2 pm. Insgesamt sind diese Abstände deutlich länger als die terminalen Zr–Cl-Bindungen in [ZrCl₄]_∞ [13] mit 231 pm, während die terminalen ZrCl-Bindungen in (S₄N₄Cl)₂[Zr₂Cl₁₀] [14] mit 240,8 pm etwa den axialen Zr–Cl-Bindungslängen in **5** entsprechen. Etwas längere ZrCl-Abstände werden im [ZrF₂Cl₄]^{2–}-Ion [15] mit 244,2 pm und im [ZrCl₆]^{2–}-Ion [16] mit etwa 247 pm angetroffen.

5 enthält pro Formeleinheit etwa 0,5 Moleküle CH_2Cl_2 , die in zwei Positionen um ein Symmetriezentrum fehlgeordnet sind. Restliche Elektronendichte läßt sich als in Spuren eingelagertes Toluen deuten. Beide Einschlüsse lassen sich i. Vak. vollständig entfernen.

Obwohl die Si-N-Bindung in 5 gegenüber dem nichtkoordinierten Phosphanimin-Molekül [17] um

Tabelle 2Ausgewählte Bindungslängen [pm] und -winkel[°] in $[ZrCl_4(Me_3SiNPPh_3)]$ (5)

Zr–N	216,8(2)	Si–N	179,4(2)
Zr-Cl(1)	243,17(8)	P–N	161,5(2)
Zr-Cl(2)	241,47(8)	Si-C	184,9-186,8(4)
Zr-Cl(3)	238,23(9)	P–C	179,7-180,8(1)
Zr-Cl(4)	234,21(9)		
Cl(1)-Zr- $Cl(2)$	174,59(3)	N-Zr-Cl(1)	88,65(6)
Cl(1)– Zr – $Cl(3)$	88,00(4)	N-Zr-Cl(2)	89,07(6)
Cl(1)– Zr – $Cl(4)$	92,34(3)	N-Zr-Cl(3)	141,09(6)
Cl(2)– Zr – $Cl(3)$	90,69(4)	N-Zr-Cl(4)	111,99(6)
Cl(2)– Zr – $Cl(4)$	93,06(3)	Zr-N-Si	121,33(11)
Cl(3)– Zr – $Cl(4)$	106,88(3)	Zr–N–P	116,17(11)
		Si–N–P	122,41(13)

11 pm gedehnt wird, läßt sich eine Trimethylchlorsilan-Abspaltung selbst > 220 °C nicht erreichen. Erst wenn man den Schmelzen Natriumfluorid zusetzt und zu den am Phosphoratom methylierten Derivaten übergeht, findet Reaktion statt [Gl. (1), (2)].

 $5 \operatorname{ZrCl}_4 + 8 \operatorname{Me}_3 \operatorname{SiNPMe}_3 + 8 \operatorname{NaF} \rightarrow$

$$[Zr_{3}Cl_{6}(NPMe_{3})_{5}]^{+}[Zr_{2}Cl_{6}(NPMe_{3})_{3}]^{-} + 8FSiMe_{3} + 8NaCl (1)$$
6

 $5 \text{ HfCl}_4 + 7 \text{ Me}_3 \text{SiNPMe}_3 + 7 \text{ NaF} \rightarrow$

 $[Hf_{3}Cl_{6}(NPMe_{3})_{5}]^{+}[Hf_{2}Cl_{7}(NPMe_{3})_{2}]^{-} + 7FSiMe_{3} + 7NaCl (2)$ 7

Aus den erstarrten Reaktionsschmelzen lassen sich 6 und 7 nach Extraktion mit Dichlormethan als farblose, feuchtigkeitsempfindliche Einkristalle erhalten. Nach den Kristallstrukturanalysen haben beide Komplexe ionischen Aufbau mit einer clusterähnlichen Struktur der Kationen sowie Anionen, in denen die Metallatome in 6 durch μ_2 -N-Brücken dreier Phosphaniminato-Liganden, in 7 über zwei μ_2 -N-Brücken und eine μ_2 -Cl-Brücke flächenverknüpfte Doppeloktaeder bilden (Abb. 2 und 3). In den analog aufgebauten Kationen von 6 und 7 werden die Metallatome über zwei μ_3 -N-Brücken zu einem nahezu idealen gleichseitigen Dreieck verknüpft, während drei weitere NPMe₃⁻-Liganden mit μ_2 -N-Brücken die Kanten dieses Dreiecks mit nahezu gleich langen M-N-Bindungen besetzen, so daß lokale D_{3h}-Symmetrie resultiert.

Beim Vergleich der Kationen von 6 und 7 fallen die um durchschnittlich drei pm kürzeren Hf–N-Abstände der μ_3 -verbrückenden Liganden bei konstanten M–N– M-Bindungswinkeln von nahe 90° auf, so daß auch die Hf…Hf-Abstände etwa drei pm kürzer sind als die Zr…Zr-Abstände. Naturgemäß sind die Metall-N-Bindungen der μ_3 -N-Ligandatome deutlich länger als die der μ_2 -N-Atome, bei 6 um 10 pm, bei 7 um acht pm. Die Metall-N-Abstände der μ_2 -gebundenen Phosphaniminato-Liganden sind nur wenig länger als die

Abb. 2 Ansicht von Kation und Anion in der Struktur von 6 in getrennter Darstellung (ohne H-Atome und ohne Fehlordnungsverhalten der C-Atome an P(3)). Wegen der besseren Übersichtlichkeit sind die Ellipsoide der thermischen Schwingung des Anions nur mit 30% Aufenthaltswahrscheinlichkeit wiedergegeben, alle anderen mit 50%.

Abb. 3 Ansicht von Kation und Anion in der Struktur von 7 in getrennter Darstellung (ohne H-Atome und ohne Fehlordnungsverhalten der C-Atome an P(2) und P(3)). Ellipsoide der thermischen Schwingung mit 50% Aufenthaltswahrscheinlichkeit.

Tabelle 3Ausgewählte, gemittelte Bindungslängen [pm]und -winkel [°] in $[Zr_3Cl_6(NPMe_3)_5][Zr_2Cl_6(NPMe_3)_3] \cdot 3 CH_2Cl_2$ (6)

Zr(1,2,3)–Cl	242,8(5)	Zr(4,5)–Cl	248,7(6)
Zr–N(1,2,3)	216(1)	Zr(4,5) - N	215(1)
Zr–N(4,5)	226,5(9)	P(6,7,8)–N	159(2)
P(1,2,3)-N	160(1)	$Zr(1,2,3)\cdots Zr$	316,7(2)
P(4,5)–N	161,9(9)	$Zr(4)\cdots Zr(5)$	299,4(3)
Zr-N(1,2,3)-Zr	· 88,7(4)	Cl-Zr(4,5)-Cl	91,5(2)
Zr-N(4,5)-Zr	94,2(5)	Zr(1,2,3)-N-P(1,2,3)	132,9(7)
Zr(4)-N-Zr(5)	88,2(6)	Zr(1,2,3)-N-P(4,5)	126,1(6)
Cl-Zr(1,2,3)-C	1 92,6(2)	Zr(4,5)-N-P(6,7,8)	133,6(7)

 Tabelle 4
 Ausgewählte, gemittelte
 Bindungslängen [pm]

 und -winkel [°] in
 in

[Hf ₃ Cl ₆ (NPMe ₃) ₅][Hf ₂ Cl ₇ (NPMe	$(\mathbf{z}_{3})_{2}$] · 5 CH ₂ Cl ₂ (7)
--	---

Hf(1,2,3)-Cl	240,9(5)	Hf(4,5)–Cl _{term.}	243,2(5)
Hf-N(1,2,3)	215(1)	$Hf(4,5)-Cl_{br.}$	265,0(4)
Hf-N(4,5)	223,6(9)	Hf(4,5)–N	212(1)
P(1,2,3)–N	159(1)	P(6,7)–N	160(1)
P(4,5)–N	164,6(9)	$Hf(1,2,3)\cdots Hf$	313,9(1)
		$Hf(4)\cdots Hf(5)$	309,9(1)
Hf-N(1,2,3)-I	Hf 93,7(5)	Cl _{term} .–Hf(4,5).–Cl _{term}	93,6(2)
HfN(4,5)-Hf	89,1(4)	Hf(4)-Cl(45)-Hf(5)	71,5(1)
Hf(4)-N-Hf(4)	5) 94,1(5)	Hf(1,2,3)-N-P(1,2,3)	133,1(8)
Cl-Hf(1,2,3)-	Cl 92,5(2)	Hf(1,2,3)-N-P(4,5)	125,9(6)
		Hf(4,5)-N-P(6,7)	132,6(8)

Mittelwerte von η^1 -gebundenen Amido-Liganden wie in **8**

 $\begin{bmatrix} Zr(NHR)_2(NR)Py_2 \end{bmatrix} \qquad \begin{bmatrix} Cp^*Zr(NHR)(NR)Py \end{bmatrix} \\ 8 \qquad 9 \end{bmatrix}$

 $(R = 2,6^{-i}PrC_6H_3; Cp = C_5Me_5)$

(214,2 pm [18]), 9 (210,6 pm [19]) und 10 (209,0 pm [19]).

[Cp*Hf(NHPh)(NPh)]₂

10

Deutlich kürzere M-N-Abstände werden in **11** (200,9 pm [19])

 $\begin{bmatrix} Cp*Zr(NH^tBu)_3 \end{bmatrix} \qquad \begin{bmatrix} MeZr(NHSi^tBu_3)_3 \end{bmatrix} \\ 11 \qquad 12 \\ \end{bmatrix}$

und 12 (203,9 pm [20]) beobachtet. Die μ_2 -N-gebundenen Imido-Liganden $(NPh)^{2-}$ in **10** (206,7 pm [19]) sind dagegen trotz ihrer zweifach negativen Ladung nur wenig kürzer als die μ_2 -N-gebundenen (NPMe₃)⁻-Liganden in 6 und 7. Die M-N-M-Bindungswinkel an den μ_2 -N-Atomen von Kationen und Anionen, die alle planare Umgebung entsprechend sp²-Hybridisierung aufweisen, sind nahezu gleich groß und insgesamt nur etwa 5° grö-Ber als an den μ_3 -N-Atomen. Die M-N-M-Bindungswinkel scheinen nur wenig anpassungsfähig zu sein, da das $[V_3Cl_6(NPMe_3)_5]^+$ -Ion [21] wegen der kurzen V····V-Abstände von 289 pm eine kantenüberbrückende μ_2 -N-Koordination nicht mehr zuläßt, so daß diese NPMe₃⁻-Gruppen monofunktionell gebunden sind. In dem analogen Titankomplex [Ti₃Cl₆(NPMe₃)₅]⁺ [22] ist diese Frage wegen der Fehlordnung der Titanatome nicht zu beantworten. Die Metallatome der Kationen von 6 und 7 ergänzen ihre Koordinationszahl zu sechs durch je zwei terminale Chloratome, deren M-Cl-Abstände nur geringfügig länger sind als die terminalen M-Cl-Bindungen in $Zr_2Cl_{10}^{2-}$ mit 240,8 pm [14] und in $Hf_2Cl_{10}^{2-}$ mit 239,2 pm [23].

In den Anionen von 6 und 7 (Abb. 2 und 3) sind die M-N-Abstände nur wenig kürzer als die der μ_2 -N-Brücken in ihren Kationen. Dennoch ist der Zr \cdots Zr-Kontakt in 6 17 pm kürzer als im Kation, während der Hf \cdots Hf-Abstand im Anion von 7 wegen der zugleich fungierenden Hf-Cl-Hf-Brücke nur vier pm kürzer ist als im Kation. Die Chlorobrücke im Anion von 7 ermöglicht offenbar einen Hf \cdots Hf-Abstand, der noch keine Abstoßung der Metallatome bewirkt, wie er bei Vorliegen dreier μ_2 -N-Brücken mit einem geschätzten Abstand von 296 pm wegen der ¹⁴f-Orbitalexpansion [24] bereits zu erwarten wäre. Vermutlich liegt hierin auch die Ursache für die verschieden zusammengesetzten Anionen von 6 und 7 trotz vergleichbarer Reaktionsbedingungen bei ihrer Synthese [Gl. (1), (2)].

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit. Die verwendeten Lösungsmittel wurden entsprechend getrocknet

und jeweils vor Gebrauch frisch destilliert. Die Tetrachloride von Zirconium und Hafnium erhielten wir aus den Elementen; zur Reinigung wurde i. Vak. umsublimiert. Die silylierten Phosphanimine Me₃SiNPPh₃ und Me₃SiNPMe₃ wurden nach Literaturangaben [25, 26] aus den handelsüblichen Edukten PPh₃ und PMe₃ mit Me₃SiN₃ (Merck) durch Staudinger-Reaktion erhalten und zur Reingiung destilliert. Für die IR-Spektren stand das Bruker-Gerät IFS-88 zur Verfügung, CsBr- und Polyethylenscheiben, Nujolverreibungen.

[ZrCl₄(Me₃SiNPPh₃)] (5): Man suspendiert 1,01 g ZrCl₄ (4,33 mmol) und 1,51 g Me₃SiNPPh₃ (4,33 mmol) [25] in 70 ml Toluen, rührt 12 h, filtriert den Niederschlag und kristallisiert aus 40 ml CH₂Cl₂ um. Ausbeute 1,84 g (73%). IR-Spektrum (Nujol), cm⁻¹: 1103 st (ν_{as} SiNP), 372 st, 343 st, 330 vst, 311 m (ν ZrCl).

 $C_{21}H_{24}Cl_4NPSiZr$ (582,53)

Analysen: C 44,67 (ber. 43,29); H 4,62 (4,15); N 2,23 (2,41); Cl 22,13 (24,34)%.

 $[Zr_3Cl_6(NPMe_3)_5][Zr_2Cl_6(NPMe_3)_3]$ (6): Man erhitzt eine Mischung aus 1,83 g ZrCl₄ (7,85 mmol), 2,9 ml Me₃SiNPMe₃

Tabelle 5 Atomkoordinaten ($\times 10^4$) und äquivalente isotrope Temperaturfaktoren (Å² $\times 10^3$) für

 $[ZrCl_4(Me_3SiNPPh_3)]\cdot 0,5\,CH_2Cl_2$ (5) bei 20 °C. U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors

Atom	х	у	Z	U(eq)	
Zr	685(1)	4435(1)	2671(1)	40(1)	
Р	3806(1)	4494(1)	2896(1)	37(1)	
Cl(1)	95(1)	3918(1)	4060(1)	70(1)	
Cl(2)	1356(1)	5108(1)	1327(1)	68(1)	
Cl(3)	-1635(1)	6803(1)	2983(1)	65(1)	
Cl(4)	-61(1)	2686(1)	2313(1)	69(1)	
Si	4397(1)	1395(1)	2424(1)	59(1)	
N	3167(2)	3391(2)	2650(1)	40(1)	
C(12)	1802(2)	7395(2)	2604(1)	50(1)	
C(13)	594(2)	8860(2)	2812(1)	64(1)	
C(14)	-250(2)	9284(2)	3597(1)	73(1)	
C(15)	115(2)	8244(2)	4174(1)	69(1)	
C(16)	1323(2)	6779(2)	3966(1)	53(1)	
C(11)	2167(2)	6355(2)	3181(1)	39(1)	
C(22)	5745(2)	5816(2)	2194(1)	52(1)	
C(23)	6694(3)	6152(3)	1553(1)	67(1)	
C(24)	7045(3)	5506(3)	805(1)	83(1)	
C(25)	6447(3)	4523(3)	698(1)	88(1)	
C(26)	5498(3)	4187(2)	1340(1)	62(1)	
C(21)	5147(2)	4834(2)	2087(1)	43(1)	
C(32)	6048(2)	3789(2)	3771(1)	47(1)	
C(33)	6643(2)	3217(2)	4422(1)	57(1)	
C(34)	5844(2)	2657(2)	5026(1)	61(1)	
C(35)	4450(2)	2668(3)	4980(1)	65(1)	
C(36)	3855(2)	3240(2)	4329(1)	54(1)	
C(31)	4654(2)	3800(2)	3725(1)	41(1)	
C(41)	4273(5)	923(4)	1450(3)	92(1)	
C(42)	6500(4)	860(4)	2377(3)	86(1)	
C(43)	3670(6)	333(4)	3190(3)	97(1)	
C(5)	1420(3)	-244(16)	598(9)	187(11)	
Cl(5)	1339(19)	1300(16)	21(8)	466(13)	
Cl(6)	170(2)	-970(2)	444(13)	540(3)	

Tabelle 6 Atomkoordinaten (× 10⁴) und äquivalente isotrope Temperaturfaktoren (Å² × 10³) für

[Zr ₃ Cl ₆ (NPMe ₃) ₅][Z	Lr ₂ Cl ₆ (NPI	$(Me_3)_3] \cdot 30$	CH_2Cl_2 (6	i) bei −40 °C.
U(eq) ist definiert	als ein D	rittel der	Spur des	orthogonali-
sierten U _{ij} -Tensors				

Atom	x	у	Z	U(eq)
Zr(1)	3030(1)	6662(1)	415(1)	54(1)
Zr(2)	2541(1)	8926(1)	-38(1)	49(1)
Zr(3)	1902(1)	6584(1)	-383(1)	55(1)
P(1)	3767(3)	9171(5)	827(2)	80(2)
P(2)	1353(3)	9000(5)	-915(2)	84(2)
P(3)	2366(3)	4049(5)	81(2)	86(2)
P(4)	1210(3)	7617(5)	431(2)	70(2)
P(5)	3770(3)	7208(5)	-433(2)	79(2)
Cl(11)	4298(3)	5920(5)	539(2)	105(2)
Cl(12)	2757(3)	6058(5)	1042(1)	104(2)
Cl(21)	3414(3)	10261(4)	-264(2)	89(2)
Cl(22)	1746(2)	10465(4)	131(2)	78(1)
Cl(31)	2136(3)	5655(5)	-968(2)	107(2)
Cl(32)	584(2)	6025(5)	-477(2)	101(2)
N(1)	3243(6)	8467(11)	498(3)	50(4)
N(2)	1816(6)	8338(11)	-553(3)	54(4)
N(3)	2430(7)	5391(11)	48(4)	61(4)
N(4)	1900(6)	7485(11)	186(4)	53(4)
N(5)	3075(6)	7334(11)	-195(3)	47(4)
C(11)	4025(13)	8449(21)	1255(6)	149(11)
C(12)	3374(13)	10436(18)	926(7)	173(14)
C(13)	4659(14)	9523(28)	707(7)	206(18)
C(21)	1224(16)	8190(25)	-1341(6)	207(17)
C(22)	1713(15)	10372(26)	-990(7)	183(14)
C(23)	411(13)	9319(24)	-839(7)	156(13)
C(31)	2580(34)	3329(31)	-246(15)	634(91)
C(32)	2846(26)	3453(27)	449(13)	438(49)
C(33)	1543(21)	3583(26)	67(20)	773(104)
C(41)	848(10)	6274(18)	564(6)	108(8)
C(42)	395(8)	8261(15)	176(6)	84(6)
C(43)	1449(10)	8386(17)	853(5)	91(7)
C(51)	4629(9)	7870(18)	-191(7)	107(8)
C(52)	4018(10)	5758(18)	-501(7)	109(8)
C(53)	3585(13)	7838(19)	-901(6)	122(9)
Zr(4)	-51(1)	8359(2)	2153(1)	88(1)
Zr(5)	582(1)	7078(2)	2871(1)	85(1)
CI(41)	-33(3)	7679(7)	1477(2)	135(3)
Cl(42)	376(3)	10273(7)	1986(2)	151(3)
CI(43)	-1390(3)	8965(6)	1998(2)	111(2)
CI(51)	1583(3)	7823(7)	3385(2)	126(3)
CI(52)	1200(4)	5222(8)	2860(2)	172(3)
CI(53)	-159(3)	6428(6)	3376(1)	105(2)
P(6)	-684(4)	5617(8)	2201(2)	130(3)
$\mathbf{P}(I)$	80(4)	9838(7)	3002(2)	112(2)
P(8)	1824(3)	/595(8)	2222(2)	132(3)
N(0)	-307(8)	6/46(15)	2390(4)	91(5)
IN(7) NI(9)	40(7)	0034(13)	2/02(4)	00(4)
C(61)	1073(7)	1/4/(10)	2389(4)	90(0) 221(10)
C(01)	-00(10) 1522(12)	4023(30)	1913(8)	231(19)
C(02)	-1323(13)	3930(24) 1627(26)	1002(7)	133(12) 183(14)
C(03)	-943(13)	403/(20)	2333(10)	102(14) 170(12)
C(71)	900(13) AG(12)	10393(20)	3023(8) 2504(6)	170(13) 150(12)
C(72)	-40(13)	10891(23)	3304(0) 2824(7)	150(12) 145(10)
C(3)	-000(14)	10001(20) 8714(20)	2024(7) 1019(6)	143(10) 176(15)
COL	2037(12)	0/14(20)	1210(0)	170(13)

Atom	x	у	z	U(eq)	
C(82)	1773(16)	6198(30)	1909(9)	207(18)	
C(83)	2641(11)	7447(30)	2596(6)	183(17)	
Cl(2)	1423(6)	1565(11)	1030(5)	195(7)	
Cl(3)	1091(9)	3588(13)	1323(5)	244(9)	
C(2)	1399(20)	2358(34)	1396(11)	140(16)	
Cl(4)	7064(5)	3709(10)	1840(3)	183(5)	
CI(5)	7561(5)	1681(12)	2243(4)	251(7)	
C(3)	6845(16)	2648(29)	2152(7)	144(14)	
Cl(6)	6361(8)	6919(12)	1157(4)	272(8)	
Cl(7)	6370(5)	9002(12)	1481(4)	242(7)	
C(4)	6791(24)	7873(29)	1405(16)	274(32)	

Tabelle 7 Atomkoordinaten (× 10⁴) und äquivalente isotro-
pe Temperaturfaktoren (Å² × 10³) für $[Hf_3Cl_6(NPMe_3)_5][Hf_2Cl_7(NPMe_3)_2] \cdot 5 CH_2Cl_2$ (7) bei -40 °C.
U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors

Atom	Х	у	Z	U(eq)
Hf(1)	7373(1)	9272(1)	3090(1)	35(1)
Hf(2)	6083(1)	8130(1)	2389(1)	35(1)
Hf(3)	7900(1)	9189(1)	1381(1)	37(1)
Cl(11)	6842(4)	10583(3)	3775(3)	52(1)
Cl(12)	8420(4)	8728(4)	3870(3)	63(2)
Cl(21)	4298(3)	8334(3)	2444(3)	48(1)
Cl(22)	5973(4)	6552(3)	2516(3)	57(1)
Cl(31)	7802(5)	10396(4)	521(3)	68(2)
Cl(32)	9440(4)	8559(4)	591(3)	63(2)
P(1)	5440(4)	8129(3)	4282(3)	43(1)
P(2)	6575(4)	8002(4)	512(3)	48(1)
P(3)	9379(4)	10469(4)	2055(3)	55(2)
P(4)	8528(4)	7328(3)	2354(3)	41(1)
P(5)	5688(4)	10382(3)	2239(3)	41(1)
N(1)	6084(10)	8455(9)	3480(7)	34(3)
N(2)	6758(10)	8343(9)	1241(8)	36(3)
N(3)	8491(10)	9817(10)	2146(7)	37(4)
N(4)	7711(9)	8161(9)	2327(6)	23(3)
N(5)	6492(8)	9541(8)	2268(7)	26(3)
C(11)	5749(19)	8667(16)	5004(11)	70(7)
C(12)	5615(20)	7013(13)	4493(12)	78(8)
C(13)	4098(16)	8332(19)	4449(12)	78(8)
C(21)	7258(33)	8448(30)	-280(17)	213(28)
C(22)	5340(26)	8184(42)	449(19)	285(42)
C(23)	6706(58)	6910(22)	437(25)	377(61)
C(31)	9072(29)	11515(23)	2042(32)	256(34)
C(32)	9965(24)	10297(22)	2770(18)	122(13)
C(33)	10374(24)	10323(28)	1296(19)	182(22)
C(41)	9815(13)	7652(13)	2269(12)	50(5)
C(42)	8635(15)	6611(12)	1662(11)	49(5)
C(43)	8185(16)	6667(13)	3197(10)	50(5)
C(51)	4664(14)	10403(14)	3065(11)	56(6)
C(52)	6286(17)	11418(13)	2115(13)	60(6)
U(55)	50/9(16)	103//(15)	1506(11)	58(6)
H1(4)	2081(1) 1006(1)	2988(1)	25/3(1)	39(1)
$\Pi(3)$	1090(1)	4550(1)	25/2(1)	40(1)
Cl(41)	4074(3)	2084(3)	1469(3)	51(1)
CI(42)	2233(4)	1436(4)	2733(4)	72(2)

Tabelle 7(Fortsetzung)

Atom	х	у	Z	U(eq)
Cl(43)	3760(4)	2888(4)	3382(3)	56(1)
Cl(45)	1412(3)	3180(3)	1727(3)	51(1)
Cl(51)	-730(4)	4344(4)	2793(3)	64(2)
Cl(52)	1146(4)	5480(4)	1465(3)	60(1)
Cl(53)	857(4)	5709(4)	3379(3)	62(1)
P(6)	3597(4)	4979(3)	1860(3)	49(1)
P(7)	563(4)	3041(4)	4035(3)	49(1)
N(6)	2706(9)	4362(9)	2312(8)	35(4)
N(7)	1316(11)	3450(11)	3296(8)	48(4)
C(61)	3849(15)	4968(16)	883(11)	63(6)
C(62)	4776(16)	4660(15)	2057(14)	71(7)
C(63)	3337(18)	6100(13)	2085(14)	70(7)
C(71)	-326(18)	2346(19)	3817(15)	91(9)
C(72)	-203(20)	3820(19)	4597(14)	91(9)
C(73)	1243(21)	2379(19)	4574(13)	93(9)
Cl(1)	7724(7)	5485(6)	4872(5)	111(3)
Cl(2)	6887(7)	3955(6)	5763(6)	131(3)
C(1)	7116(22)	5073(19)	5772(18)	104(10)
Cl(3)	5642(6)	4653(5)	3999(5)	106(2)
Cl(4)	6704(6)	2969(5)	3588(5)	112(3)
C(2)	6670(26)	4114(20)	3445(24)	164(19)
Cl(5)	6664(6)	2713(6)	169(5)	108(2)
Cl(6)	2485(6)	8174(6)	1174(4)	107(3)
C(3)	2202(17)	7568(18)	498(15)	86(9)
Cl(7)	1463(7)	8233(8)	3819(6)	139(3)
Cl(8)	1615(8)	9636(7)	4741(7)	149(4)
C(4)	1430(38)	9306(25)	4002(27)	263(38)
Cl(9)	9573(7)	3418(7)	375(5)	138(4)
Cl(10)	7768(10)	4361(12)	1165(11)	269(10)
C(5)	9025(30)	4327(33)	801(26)	274(40)

(16,07 mmol) [26] und 0,36 g NaF (8,57 mmol) 3 h auf 220 °C, kondensiert überschüssiges Phosphanimin i. Vak. ab und extrahiert nach dem Abkühlen den Rückstand mit 30 ml CH₂Cl₂. Zugabe von 3 ml n-Hexan und Ruhigstellen des Ansatzes führt zu 1,28 g blaßgelben Einkristallen (57%), die beim Evakuieren das eingelagerte CH₂Cl₂ abgeben. IR-Spektrum (Nujol), cm⁻¹: 1021 vst, 950 st (ν PN), 330 sh, 305 sh, 269 vst (ν ZrCl).

 $C_{24}H_{72}Cl_{12}N_8P_8Zr_5$ (1602,27)

Analysen: C 18,27 (ber. 17,99); H 5,32 (4,53); N 6,86 (6,99); Cl 26,88 (26,55)%.

[Hf₃Cl₆(NPMe₃)₅][Hf₂Cl₇(NPMe₃)₂] (7): Man arbeitet wie für 6 beschrieben. 2,31 g HfCl₄ (7,21 mmol), 2,25 ml Me₃SiNPMe₃ (13,00 mmol), 0,55 g NaF (13,00 mmol). Man isoliert 1,77 g farblose Kristallnadeln (10%). Einengen des Filtrats erhöht die Ausbeute an Rohprodukt. IR-Spektrum (Nujol), cm⁻¹: 1062 st, 1006 st, 945 st (ν PN), 294 st, 267 st (ν HfCl), 220 sh (ν HfClHf).

C₂₁H₆₃Hf₅N₇P₇ (1983,96)

Analysen: C 13,02 (ber. 12,71); H 3,84 (3,20); N 4,75 (4,94)%.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für großzügige finanzielle Unterstützung.

Literatur

- [1] K. Dehnicke, J. Strähle, Polyhedron 1989, 8, 707.
- [2] D. S. Williams, M. H. Schofield, J. T. Anhaus, R. R. Schrock, J. Am. Chem. Soc. 1990, 112, 6728.
- [3] D. S. Williams, J. T. Anhaus, M. H. Schofield, R. R. Schrock, W. M. Davis, J. Am. Chem. Soc. 1991, 113, 5480.
- [4] G. Parkin, A. van Asselt, D. J. Leahy, L. Whinnery, N. G. Hua, R. W. Quan, L. M. Henling, W. P. Schaefer, B. D. Santarsiero, J. E. Bercaw, *Inorg. Chem.* **1992**, *31*, 82.
- [5] A. N. Chernega, M. L. H. Green, A. G. Suárez, J. Chem. Soc., Dalton Trans. 1993, 3031.
- [6] S. R. Huber, T. C. Baldwin, D. E. Wigley, Organometallics 1993, 12, 91.
- [7] S. Schmidt, J. Sundermeyer, J. Organomet. Chem. 1994, 472, 127.
- [8] J. Sundermeyer, D. Runge, Angew. Chem. 1994, 106, 1328; Angew. Chem. Int. Ed. Engl. 1994, 33, 1255.
- [9] J. Sundermeyer, D. Runge, J. S. Field, Angew. Chem. 1994, 106, 679; Angew. Chem. Int. Ed. Engl. 1994, 33, 678.
- [10] T. Rübenstahl, F. Weller, S. Wocadlo, W. Massa, K. Dehnicke, Z. Anorg. Allg. Chem. 1995, 621, 953.
- [11] T. Rübenstahl, F. Weller, K. Harms, K. Dehnicke, D. Fenske, G. Baum, Z. Anorg. Allg. Chem. 1994, 620, 1741.
- [12] H.-J. Mai, R. Meyer zu Köcker, S. Wocadlo, W. Massa, K. Dehnicke, Angew. Chem. **1995**, 107, 1349; Angew. Chem. Int. Ed. Engl. **1995**, 34, 1235.
- [13] B. Krebs, Angew. Chem. 1969, 81, 120; Angew. Chem. Int. Ed. Engl. 1969, 8, 146.
- [14] J. Eicher, U. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 1985, 521, 37.
- [15] E. Hartmann, K. Dehnicke, D. Fenske, H. Goesmann, G. Baum, Z. Naturforsch. 1989, 44b, 1155.
- [16] H. Schmidbaur, R. Pichl, G. Müller, Z. Naturforsch. 1986, 41 b, 395.
- [17] F. Weller, H.-C. Kang, W. Massa, T. Rübenstahl, F. Kunkel, K. Dehnicke, Z. Naturforsch. 1995, 50 b, 1050.
- [18] R. D. Profilet, C. H. Zambrano, P. E. Fanwick, J. J. Nash, I. P. Rothwell, *Inorg. Chem.* **1990**, 29, 4362.
- [19] Y. Bai, H. W. Roesky, M. Noltemeyer, M. Witt, Chem. Ber. 1992, 125, 825.
- [20] C. C. Cummins, G. D. Van Duyne, C. P. Schaller, P. T. Wolczanski, Organometallics 1991, 10, 164.
- [21] T. Rübenstahl, K. Dehnicke, J. Magull, Z. Anorg. Allg. Chem. 1995, 621, 1218.
- [22] T. Rübenstahl, F. Weller, K. Harms, K. Dehnicke, D. Fenske, G. Baum, Z. Anorg. Allg. Chem. 1994, 620, 1741.
- [23] F. Calderazzo, P. Pallavicini, G. Pampaloni, P. F. Zanazzi, J. Chem. Soc., Dalton Trans. 1990, 2743.
- [24] N. Wiberg, Hollemann-Wiberg Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin – New York, 101. Aufl., 1995.
- [25] L. Birkofer, A. Ritter, P. Richter, Chem. Ber. 1963, 96, 2750.
- [26] H. Schmidbaur, W. Wolfsberger, Chem. Ber. 1967, 100, 1000.
- [27] G. M. Sheldrick, SHELXS-86, SHELXL-93, Programme zur Kristallstrukturanalyse, Göttingen 1986, 1993.
- [28] G. M. Sheldrick, SHELXTL-Plus. Release 4.2 for Siemens R3 Crystallographic Research Systems. Siemens Analytical X-Ray Instruments, Inc., Madison, Wisconsin, USA, 1990.
- [29] DIFABS, N. Walker, D. Stuart, Acta Crystallogr. 1983, A 39, 158.