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Abstract 
This report analyzes the impact of cache consistency on the response time of client 
requests. The analysis divides cache responses into classes according to whether 
or not the cache communicated with a remote server and whether or not object 
data was served from the cache. Analysis of traces from deployed proxy cache 
servers demonstrates that a round-trip to a remote server is  the dominant factor for 
response time. This study concludes that improving cache consistency will reduce 
response time and allow a cache to serve more user requests. 

roxy cache servers in the World Wide Web deliver 
information to end users more quickly and efficiently 
than serving every request directly from the origin serv- 
er. They can improve response time, reduce network 
demand, and lighten the load on origin Web servers. 

Proxy caches (or simply caches) achieve these benefits by 
storing copies of recently requested objects, avoiding the need 
to transfer those objects again. Cached objects are usually 
served more quickly and do not consume external network or 
server resources. Cache servers are typically placed close to a 
group of end users and handle all HTTP requests from those 
users. Requests for objects that are in the cache can be served 
to the user without remote communication and wide area data 
transfer. Requests for objects not in the cache are  always 
resolved externally. 

A cached copy of an object ,may differ from the current 
copy of that object at the origin server. This happens when a 
cache holds an object after the origin server changes that 
object. Currently origin servers do not communicate changes 
to caches; a cache must ask about them. Cache consistency is 
explored in [l, 21. In [3] we propose an invalidation-based 
protocol motivated by Cao's work [2] to  support  stronger 
cache consistency. 

When a request arrives for a cached object, the cache must 
decide whether to serve the object immediately or to validate 
it with the origin server. The user's request headers and the 
content headers in cache may instruct the cache to validate 
the object. Otherwise, the cache will determine whether to  
validate the object based on the freshness of the object in 
cache. The cache will serve locally any object it considers to 
be fresh, but will at tempt to check an object's consistency 
before serving the request if the object is stale. The determi- 
nation of fresh or stale is made by the cache, not the origin 
server. Note also that the cache has no way to know when the 
object actually changes, sofresh does not imply that the object 
is consistent with the current copy of the object. 

This study explores the impact of the consistency decision 
on the response t ime of a cache, and finds that  making a 
round-trip to the origin server to  validate freshness is the 
dominant  component  of the  response t ime of most user  
requests. 

We define the response classes used in this analysis and 
describe a widely used consistency protocol that is used by a 
cache to identify whether an object is fresh or  stale. Using 
these definitions, we then analyze data  from three cache 
servers and summarize the findings. 

Cache Consistency 
This report classifies responses according to cache behavior: 
whether it serves the data  or  just validates freshness, and 
whether or not it makes a consistency check. The analysis pre- 
sents the response time of each of the following classes of 
responses: 

Fast hits,  where the  cache re turns  object  da ta  to  the  
requester without remote communication. The cache con- 
siders the object fresh and serves it directly. 
Fast validations, where the cache returns only a validation of 
freshness to the requester (€3" code 304 N o t  Modified), 
who presumably already has a copy of the data. The cache 
considers the object fresh without remote communication. 
Slow validations, where the cache returns a validation of 
freshness after contacting the origin server and learning 
that the cached copy is consistent with the original version 
of the object. 
Slow hits, where the cache returns object data to the requester 
after validating it with the origin server. In  this case the 
client does not have valid object data, but the cache does, 
which it determines by contacting the origin server. 
This type is also referred to  as slow validation with data, 
labeled sdat in the figures herein. 
Consistency misses, where the cache returns a copy of the 
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object after contacting the origin scrvcr and gctting a 
fresh copy o f  the object. The cache has the data hut 
considers it s t a l e  and makcs ii consistcncy check, 
which returns tlic modificd ol7jcct. 
Repilor ririss, wlicrc the cachc returns an ohjcct that 
was not in cachc after contacting tlic origin server to 
rctricve a copy of that ol3jcct. The analysis docs not 
distinguish hetween cold niisscs (the first request for 
an object) and capacity misses (whet-c the objcct wits 
formerly in cache but has heen evicted by the cache 
replacement policy). 
Direct, whcre the cache dctermincs that an object is not 
c ac h a b I e t h ro i t  g h co t i  f ig u r a t i o n (certain types a rc  
declared noncachablc) or through servcr response hcad- 
crs (e.g., Cache-Control: nocache). Thc request is sent to 
the origin server, and the response data is relayed to the client. 
The cache does not keep a copy of the object. 
The key comparisons in this analysis arc bctween fast and 

slow validations, and between fast and slow hits. In  each of 
these cases the differcnce is thc consistency check from thc 
cache to the origin server. The validation case returns only 
HTTP headers from the cache to the client; the fast and slow 
hit cases return object data. 

f 

HrrP Consistency Validation 
One mechanism to determine object frcshness is the Adaptive 
Time To Livc (TTL) algorithm from thc Alex file system [4]. 
The Alex protocol is described below and depicted in Fig. 1 .  
The Alex protocol has been shown to be effective at maintain- 
ing consistency in practice and is widely used by cache imple- 
mentations, which is why we chose to analyze its performance. 

The Alex protocol defines content freshness as follows: 
Upon first retrieval of an object, the object’s modification 
time is noted. This is a cold miss. 
The time between modification and current time defines the 
object’s age. This value is shown as Age 1 in Fig. 1. 
The cache computes a percentage of the object’s age and 
defines that as the TTL. During the TT L period the object 
is consideredfiedl and will be served from cache. This first 
TTL period is %Age 1 in Fig. 1. Requests for an  object 
within its TTL period will result in onc of two responses: 
-If the requester has a copy of the object and makes an If- 
ModifiedSince (IMS) request, the response is a fast vah- 
dation from the cache. 
-If the requester does not have the object and makes a reg- 
ular GET request without an IMS header, the cache imme- 
diately sends the object data. This is a fast hit. 
After the TTL expires thc object in cache is stale. Upon the 
next request the cache will make an HTTP conditional 
G E T  request with an IMS header to the origin server to 
determine if the object has been modified. The origin serv- 
er will respond to tlic cache in otic of three ways: 
-If the object has not changed, the origin server will reply 
with the  H T T P  status code  3 0 4  N o t  Modified. This  
results in a slow validation if the requester had object data, 
a slow hit if not. 
-If the object has changed, a new copy will be resumed with 
HTTP status code 200 OK. This is a consistency miss. 
-The origin server may fail to respond or may respond with 
an error, such as to indicate that the objcct does not exist 
on that server. 
Aftcr the slow validation check in Fig. 1 a new object age 
(Age 2 )  and TTL period (%Age 2)  are calculated. During 
this second TTL interval a second modification is shown. A 
request to thc cache after this modification will result in an 
iricorisistent reply, where data from cache is different from 
data on the origin server. The cache and user only become 
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‘igure 1 .  The Alewyrotocol. 

aware of the new data after the TTL period expires o r  the 
user forces a reload of the object. 
On the next retrieval after the second TTL expires a ncw 
copy of the object is retrieved (a consistency miss), a new 
age is computed from its last modification time (Age 3), 
and a new TTL period is computed as a percent of this new 
age (%Age 3). 
A cache can only validate object freshness if the origin 

server and cache implement enough of the HTTP specifi- 
cation. T h e  origin server must supply the  object’s Last- 
Modified time for the cache to validate the object. There 
are other mechanisms for validating objects in HTTP, such 
as H T T P h . 1  Etags and Cache-Control, but the Last- 
Modified freshness checking approach is the most widely 
used today. 

Furthermore,  i f  an  object has an  Expires header,  the 
cache will consider the object fresh until the time specified in 
the  Expires header, after which it is stale. Note that the 
object will be served inconsistently from a cache if it changes 
prior to its expiration time. 

Analysis Methodology and limitations 
Cache log files, written by proxy cache servers as they complete 
user requests, contain information about the service of those 
requests. This usually includes the object URL, the object size 
in bytes, the service time of the request at the cache, whether 
object data was returned to the client, and whether the cache 
made a consistency check with a remote server. 

This analysis extracted request service time, response size, 
and response type fields from a set of proxy cache server logs. 
For each response type we computed the frequency distribu- 
tion of the response size and request service time metrics. 
From the frequency distribution we observed the mean, the 
median, and the 80th and 90th percentiles of the distribution, 
which led to conclusions about service time as a function of 
consistency. The  mapping of log fields to response type is 
described in the full version of this article 151. 

There are some limitations with such a log-based analysis 
scheme: 

Cache logs do not indicate when the client received and dis- 
played the response in the browser application, and there- 
fore cannot determine client response time. They record 
only the request residence time at the cache server (request 
servicc time). 
Service t ime is re la ted  to  user response t ime; clearly 
response time can be no  less. It is also related to cache 
throughput: a long response time a t  the cache consumes 
system resources for a longer time, making them unavail- 
able for other requests. 
Scrvice time indicates only how long the cache application 
took to service the request. It does not include proccssing 
time of the operating system (OS) kernel or network card 
on the cache system. The cache believes its task is complete 
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se type as described in “Classes of 

Table 1 . Response attnbutes. 

Slow val (sval) 4.3 0.124 0.769 0.263, 

when the write of the last byte returns, but the task is not 
actually complete for the cache until the OS kernel has suc- 
cessfully t ransmi t ted  all  response bytes to the cl ient ,  
received an acknowledgment, and closed the connection. 
The logs cannot identify which objects are served from the 
browser’s cache. These objects are likely to be displayed 
much more quickly than requests to the proxy cache, just as 
local cache responses are faster than responses requiring 
remote communication, The  logs do  identify when the 
browser validates an object: i t  sends a GET IMS request 
for the object to the cache. 
The  logs do  not indicate whether external requests are  
served by othcr parent proxies or by the origin server. The 
aggregate response time of external caches and origin 
servers is nevertheless useful, since this determines per- 
ceived user response time. 
The  logs do  not always enable us to identify all of t he  
response classes described earlier. 
The users of the caches we studied were connected to high- 
speed networks. The  response t ime to  users on slow 
modems would be substantially different. Also, the logs we 
were able to obtain were from LAN and cable modem 
users in the United States. Results from significant-duration 
cache traces from other geographical regions would likely 
show more dramatic differences in response times. 
We attempted to obtain European and Asian cache logs; 

0.589 

either the logs were not available-or they did not contain suf- 
ficient information to perform our analysis. 

Slow hit (scat) 13.0 4.871 0.776 0.229 

Servers Studied 

0.501 

The analysis is based on the study of log files from three Web 
cache servers: 

granite.hpl.hp.com, January 1998-April 1999. This is a 
Squid server serving a workgroup in HP Laboratories 
(HPL), Palo Alto, California. During the period there were 
3.3 million cachable requests. 

Miss (miss) 49.2 16.440 

responsc time. Since the median is not skewed by a few large 
(or long) rcsponscs, it may be a better indicator of responsc 
timc than the mean. For this reason this analysis prcscnts the 
mean as wcll as the 50th pcrcentilc (thc mcdian) and thc 80th 
pcrccntile responses. 

The analysis also excludes non-HTTP, error,  and otlicr 
rcsponse typcs, so the stmi of the pcrccnt of rcsponscs may bc 
less than 100 perccnt. 

Squid on granite. hpl. hp.com 
The first server studied was a workgroup cache server. I t  
serves requests from a local population of researchers. It is 
connected to the external network through a second Squid 
proxy (parent) that does not cache objects; the parent acts as 
a firewall proxy. 

Sixteen months of responses were analyzed, consisting of 
3.3 million cachable requests. 

Table 2 shows that the mean response time for slow valida- 
tions is approximately eight times longer than fast validations, 
and that both transfer about the same amount of data to the 
client. The median response time for slow validations is about 
IO times longer than the median response time for fast valida- 
tions. The response size is that of the HTTP response head- 
ers.  No object da ta  is sent or  re turned  to  the user for  a 
validation. 

The mean response time for slow hits is 3.5 times that for 
fast hits; the median is 5.5 times. Both of these response class- 
es return object data to the client of about 5 kbytes. Table 2 
also shows that consistency misses take approximately nine 
times longer than fast hits and twice as long as slow hits; the 
median time for consistency misses is seven times longer than 
fast hits. In these cases object data is resumed to the user, but 
fast hits require no remote communication; slow hits receive 
only a small validation from the origin server; and consistency 
misses retrieve full object data from the remote server. The 
data transfer size, wide-area round-trip, and server demand all 
affect response times. 

Note also that consistency misses are considerably larger 
than fast and slow hits. Most of the consistency misses were 
for HTML objects. The  increased response time is due  to 
both larger mean HTML object size (compared with the 
mean object size of images, which accounts for most respons- 
es; see [5] for a breakdown of object size by type), and the 
complexity of generating dynamic HTML objects. The log- 
based analysis could not determine when HTML objects were 
dynamically generated, but we know from experience that 
some of them are. 

The  mean response times by class in Table 2 are closer 
to the 80th percentile value than to the median value for 
the class. In some cases the mean is larger than the 80th 
percentile. This indicates a heavy-tailed distribution where 

2.332 0.501 1.514 

deployment. During the week there were 8.2 million 
cachable requests. 
The responses from these cache servers are evaluated 

in the remainder of this section. The responses are pre- 
sented in tables using the attributes described in Table 1. 

In a Web workload, mean response time (and response 
size) is often skewed by a relatively small number of long- 
duration (or large) responses. For this reason the median 
response time, which indicates what most responses see, 
is often much less than the mean. Sometimes 80 percent 

I Fast va 0.196 I 0.088 I 0 

I Fast hit (fbit) I 12.6 I 4.986 I 0.218 I 0.041 10.141 I 

1 Cons. miss (cons) I 4.5 I 8.242 I 1.910 1 0.437 I 1.148 1 

o r  more of responses are satisfied in less than the mean W Table 2. grunite.lipl.hp.com responses. 
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1 Consistency miss] 3.018 I 12.015 I 19.485 1 
Miss 2.882 I 12.580 I 27.523 _] 

a few very long t ransfcrs  skew the  mean such that  it no  
longer corresponds to the response time of the majority of 
requests. 

Cold misses are  slower than consistency misses, but the 
mean object sizc is again much larger. This is due to a few 
very large cold misses. The granite cache did not keep any 
objects in cache over 4 Mbytes, so each response over 4 
Mbytes is necessarily a miss. 

The median and 80th percentile object sizes for consisten- 
cy misses and cold misses a r e  nearly equal ,  as shown in 
Table 3;  it is only at the 90th percentile and above that cold 
misses have a distinctly heavy tail relative to other response 
types. This is likely due to a few large objects being request- 
ed through the cache. The  90th percentile value indicates 
that 10 percent of misses from this server were larger than 
27 kbytes. 

Figure 2 shows the distribution of response times observed 
a t  this server. Figure 3 shows the distribution of response 
sizes. These graphs present a cumulative distribution function 
(CDF), which indicates  on t h e  y axis t h e  percentage of 
responses less than or  equal to the time (or size) on the x axis. 
With a CDF the median value is the x value at which a curve 
crosses 50 percent. 

Figure 2 shows that fast validations and fast hits are signifi- 
cantly faster to complete than the other response types, and 
that misses are the slowest response type. Seventy percent of 
fast hits and 80 percent of fast validations complete in under 
100 ms. Fewer than 10 percent of slow validations complete in 
under 100 ms. 

The  response size distribution for fast validations is in a 
very small range, indicated by a nearly vertical line in the 
CDF in Fig. 3. The response size is determined by the headers 
sent by the cache, which are very similar for every response. 
Slow validation headers come from various origin servers, and 
show greater variability and smaller overall size. The  Squid 
proxy cache evidently includes more header information than 
most origin servers do. 

The file size distribution also shows that response sizes for 
fast hits and slow hits are closely matched. This eliminates size 
variation as a likely cause for the difference in response times. 

More detail about response times and sizes for each 
response type is presented in [SI 

Slow vat 9.6 0.00’ 

Netscape on proxy. hpl. hp. com 
The next server studied was the HP Laboratories Palo 
Alto external Netscape cache server. It serves requests 
from local users and other cache servers. It is connected 
to the external network through a packet filtering fire- 
wall. It does not use a parent cache. One month of traffic 
included 11.4 million cacheable requests. 

Table 4 indicates that fast validations were more than 
ten times faster than slow validations: about 14 times 
faster in the mean and median; and about nine times 
faster at the 80th (and 90th) percentiles. In these cases 
the reported data size was zero bytes; the Netscape cache 
did not report header size to the access log. 

The response time for slow hits is about six times longer 
than fast hits at the mean, nine times at the median. 

Note the large response size for misses. Some very 
large objects were served through this cache, which sig- 
nificantly affected the mean transfer size. The response 

0.993 0.447 0.661 

100 

90 

80 - 70 

60 

5 50 

40 

U 30 

20 

10 

0 

s? 
3 

E 

- 

Slow hit 5.9 5.249 0.908 0.468 

1 10 100 1000 10,000 100,000 le+06 
Response time (ms) 

0.692 

W Figure 2. granite.hpl.hp.coni response time CDF. 
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size CDF shows that there were very few of these objects: only 
5 percent of objects were over 27 kbytes. 

The response time distribution for this server shows that 
fast validations and fast hits are significantly faster than the 
other response types. Furthermore, slow validations and slow 
hits take almost exactly the same amount of time. This indi- 
cates that the round-trip to the remote server is the dominant 
component in cache response time, not the amount of data 
transferred to clients. Consistency misses and regular misses 
a re  slower than slow validations and slow hits, as observed 
earlier. 

The response size distribution shows that fast hits and slow 
hits return similar amounts of data. Consistency misses and 

1 Fast Val 113.9 1 0.00’ I 0.071 I 0.032 I 0.072 1 
I Fast hit 113.9 I 6.194 I 0.159 I 0.051 I 0.117 I 

Table 4. proxy.hpl.hp.com responses. 
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I Fast val 0.00 I 0.037 10.013 I 0.030 I 
Slow val 10.1 0.00 0.717 0.191 0.380 

, 
Table 5, Cable modem cache, all responses. 

Slow hit 

I Fast hit 1 11.188 I 2.343 I 8.506 I 
9.91 2 2.510 8.906 

Miss 17.034 4.263 13.174 

regular misses are also closely matched. Validations (fast and 
slow) were reported as zero bytes. 

Cable Modem Site 
The third server studied was a Netscape cache server at a 
cable company acting as an Internet service provider (ISP) for 
residential users connected to the Internet through high-speed 
cable modems. This cache was connected to the external net- 
work through a packet filtering firewall without a parent 
proxy. One week of traffic was analyzed for this report, con- 
sisting of 8.4 million cachable requests. 

The workload of the users at this site during the entire five 
month log collection period was studied in detail by Arlitt et 
al. [6]. This report extends that characterization to examine 
cache response time by cache behavior. 

The logs from this site did not contain enough detail to dif- 
ferentiate between consistency, proxy-only, and regular misses. 
Table 5 summarizes the results from this site. 

This data set confirms the LAN findings of fast validations 
being more than an order of magnitude faster than slow vali- 
dations. Both the mean and the median response time for 
slow validations indicate that they take between 15 and 20 
times longer to complete than fast validations. 

The mean response time for slow hits is about the same as 
fast hits, but this is evidently due to a few very long fast hits: 
the median and 80th percentile response times show that slow 
hits take eight to nine times as long to complete as fast hits. 
In Table 5 the mean and median response time for misses is 
about  160 percent  longer than for  slow hits; the mean 
response time for misses is 170 percent longer than fast hits. 
However, the median response time for misses is 20 times 
longer than fast hits. 

Table 6 presents the mean, median, and 80th percentile 
response size for fast hits, slow hits, and misses. 

The response size of fast hits is 10 percent larger on aver- 
age than slow hits, but slightly smaller at the median and 
80th percentiles. The mean response size for misses is 72 
percent larger than for slow hits, the  median 70 percent 
larger. 

Object size does not appear to be a dominant factor in 
response time, but object service location (direct from the 
proxy vs. requiring validation at the origin) does. 

Caching of objects near cnd users significantly reduces 
object retrieval time. When an object is in cache it  takes 
approximately half thc time to validate and return thc 
object to thc rcquester than whcn it  is not in cache and 
must be rctricvcd. This corroborates earlier research in 
caching, and helps to explain the widespread deployment 
of Web proxy cachc servers. 

In this report we demonstrate that performing a consis- 
tency check prior to resuming an object from cachc also has 
a significant impact on object retrieval time. When a valida- 
tion is returned directly from a cache it is resumed eight to 

15 times faster than an object that requires a consistency check 
with the origin server. This effect is especially significant if the 
origin server is slow, distant, overloaded, or has failed. Reduc- 
ing the service time of requests will also allow a cache to sup- 
port more total user requests. 

Our results are  similar across two very different proxy 
cache implementations and user bases, and widely ranging lev- 
els of request demand. This indicates that the characteristics 
observed are likely to be fundamental. This concurs with intu- 
ition: requests satisfied nearby are expected to be satisfied 
faster than requests to more distant servers. 

Based on these results we suggest that there is an opportunity 
to improve user response time from caches by improving cache 
consistency. Earlier work in this area suggests strong consistency 
is possible to achieve in the Web at the same cost as weak consis- 
tency by using server invalidations [2]. We have proposed such a 
mechanism and shown via simulation that i t  provides better 
object consistency, is faster for end users, consumes slightly less 
network bandwidth, and reduces origin server load 131. 

As faster end systems and residential networks a re  
deployed, content consistency will have more relative impact 
on the performance of user requests and caches. 
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