
The Effect of Consistency on
Cache Response Time

John Dilley, Hewlett Packard laboratories

Abstract
This report analyzes the impact of cache consistency on the response time of client
requests. The analysis divides cache responses into classes according to whether
or not the cache communicated with a remote server and whether or not object
data was served from the cache. Analysis of traces from deployed proxy cache
servers demonstrates that a round-trip to a remote server is the dominant factor for
response time. This study concludes that improving cache consistency will reduce
response time and allow a cache to serve more user requests.

roxy cache servers in the World Wide Web deliver
information to end users more quickly and efficiently
than serving every request directly from the origin serv-
er. They can improve response time, reduce network
demand, and lighten the load on origin Web servers.

Proxy caches (or simply caches) achieve these benefits by
storing copies of recently requested objects, avoiding the need
to transfer those objects again. Cached objects are usually
served more quickly and do not consume external network or
server resources. Cache servers are typically placed close to a
group of end users and handle all HTTP requests from those
users. Requests for objects that are in the cache can be served
to the user without remote communication and wide area data
transfer. Requests for objects not in the cache are always
resolved externally.

A cached copy of an object ,may differ from the current
copy of that object at the origin server. This happens when a
cache holds an object after the origin server changes that
object. Currently origin servers do not communicate changes
to caches; a cache must ask about them. Cache consistency is
explored in [l, 21. In [3] we propose an invalidation-based
protocol motivated by Cao's work [2] to support stronger
cache consistency.

When a request arrives for a cached object, the cache must
decide whether to serve the object immediately or to validate
it with the origin server. The user's request headers and the
content headers in cache may instruct the cache to validate
the object. Otherwise, the cache will determine whether to
validate the object based on the freshness of the object in
cache. The cache will serve locally any object it considers to
be fresh, but will at tempt to check an object's consistency
before serving the request if the object is stale. The determi-
nation of fresh or stale is made by the cache, not the origin
server. Note also that the cache has no way to know when the
object actually changes, sofresh does not imply that the object
is consistent with the current copy of the object.

This study explores the impact of the consistency decision
on the response t ime of a cache, and finds that making a
round-trip to the origin server to validate freshness is the
dominant component of the response t ime of most user
requests.

We define the response classes used in this analysis and
describe a widely used consistency protocol that is used by a
cache to identify whether an object is fresh or stale. Using
these definitions, we then analyze data from three cache
servers and summarize the findings.

Cache Consistency
This report classifies responses according to cache behavior:
whether it serves the data or just validates freshness, and
whether or not it makes a consistency check. The analysis pre-
sents the response time of each of the following classes of
responses:

Fast hits, where the cache re turns object da ta to the
requester without remote communication. The cache con-
siders the object fresh and serves it directly.
Fast validations, where the cache returns only a validation of
freshness to the requester (€3" code 304 N o t Modified),
who presumably already has a copy of the data. The cache
considers the object fresh without remote communication.
Slow validations, where the cache returns a validation of
freshness after contacting the origin server and learning
that the cached copy is consistent with the original version
of the object.
Slow hits, where the cache returns object data to the requester
after validating it with the origin server. In this case the
client does not have valid object data, but the cache does,
which it determines by contacting the origin server.
This type is also referred to as slow validation with data,
labeled sdat in the figures herein.
Consistency misses, where the cache returns a copy of the

24 0890-8044/00/$10.00 0 2000 IEEE IEEE Network May/June 2000

object after contacting the origin scrvcr and gctting a
fresh copy o f the object. The cache has the data hut
considers it s t a l e and makcs ii consistcncy check,
which returns tlic modificd ol7jcct.
Repilor ririss, wlicrc the cachc returns an ohjcct that
was not in cachc after contacting tlic origin server to
rctricve a copy of that ol3jcct. The analysis docs not
distinguish hetween cold niisscs (the first request for
an object) and capacity misses (whet-c the objcct wits
formerly in cache but has heen evicted by the cache
replacement policy).
Direct, whcre the cache dctermincs that an object is not
c ac h a b I e t h ro i t g h co t i f ig u r a t i o n (certain types a rc
declared noncachablc) or through servcr response hcad-
crs (e.g., Cache-Control: nocache). Thc request is sent to
the origin server, and the response data is relayed to the client.
The cache does not keep a copy of the object.
The key comparisons in this analysis arc bctween fast and

slow validations, and between fast and slow hits. In each of
these cases the differcnce is thc consistency check from thc
cache to the origin server. The validation case returns only
HTTP headers from the cache to the client; the fast and slow
hit cases return object data.

f

HrrP Consistency Validation
One mechanism to determine object frcshness is the Adaptive
Time To Livc (TTL) algorithm from thc Alex file system [4].
The Alex protocol is described below and depicted in Fig. 1 .
The Alex protocol has been shown to be effective at maintain-
ing consistency in practice and is widely used by cache imple-
mentations, which is why we chose to analyze its performance.

The Alex protocol defines content freshness as follows:
Upon first retrieval of an object, the object’s modification
time is noted. This is a cold miss.
The time between modification and current time defines the
object’s age. This value is shown as Age 1 in Fig. 1.
The cache computes a percentage of the object’s age and
defines that as the TTL. During the TT L period the object
is consideredfiedl and will be served from cache. This first
TTL period is %Age 1 in Fig. 1. Requests for an object
within its TTL period will result in onc of two responses:
-If the requester has a copy of the object and makes an If-
ModifiedSince (IMS) request, the response is a fast vah-
dation from the cache.
-If the requester does not have the object and makes a reg-
ular GET request without an IMS header, the cache imme-
diately sends the object data. This is a fast hit.
After the TTL expires thc object in cache is stale. Upon the
next request the cache will make an HTTP conditional
G E T request with an IMS header to the origin server to
determine if the object has been modified. The origin serv-
er will respond to tlic cache in otic of three ways:
-If the object has not changed, the origin server will reply
with the H T T P status code 3 0 4 N o t Modified. This
results in a slow validation if the requester had object data,
a slow hit if not.
-If the object has changed, a new copy will be resumed with
HTTP status code 200 OK. This is a consistency miss.
-The origin server may fail to respond or may respond with
an error, such as to indicate that the objcct does not exist
on that server.
Aftcr the slow validation check in Fig. 1 a new object age
(Age 2) and TTL period (%Age 2) are calculated. During
this second TTL interval a second modification is shown. A
request to thc cache after this modification will result in an
iricorisistent reply, where data from cache is different from
data on the origin server. The cache and user only become

**
Age 1 %Age 1

\ / I >
,\ J Age2 %Age2 I

Modifications
__ - .-

‘igure 1 . The Alewyrotocol.

aware of the new data after the TTL period expires o r the
user forces a reload of the object.
On the next retrieval after the second TTL expires a ncw
copy of the object is retrieved (a consistency miss), a new
age is computed from its last modification time (Age 3),
and a new TTL period is computed as a percent of this new
age (%Age 3).
A cache can only validate object freshness if the origin

server and cache implement enough of the HTTP specifi-
cation. T h e origin server must supply the object’s Last-
Modified time for the cache to validate the object. There
are other mechanisms for validating objects in HTTP, such
as H T T P h . 1 Etags and Cache-Control, but the Last-
Modified freshness checking approach is the most widely
used today.

Furthermore, i f an object has an Expires header, the
cache will consider the object fresh until the time specified in
the Expires header, after which it is stale. Note that the
object will be served inconsistently from a cache if it changes
prior to its expiration time.

Analysis Methodology and limitations
Cache log files, written by proxy cache servers as they complete
user requests, contain information about the service of those
requests. This usually includes the object URL, the object size
in bytes, the service time of the request at the cache, whether
object data was returned to the client, and whether the cache
made a consistency check with a remote server.

This analysis extracted request service time, response size,
and response type fields from a set of proxy cache server logs.
For each response type we computed the frequency distribu-
tion of the response size and request service time metrics.
From the frequency distribution we observed the mean, the
median, and the 80th and 90th percentiles of the distribution,
which led to conclusions about service time as a function of
consistency. The mapping of log fields to response type is
described in the full version of this article 151.

There are some limitations with such a log-based analysis
scheme:

Cache logs do not indicate when the client received and dis-
played the response in the browser application, and there-
fore cannot determine client response time. They record
only the request residence time at the cache server (request
servicc time).
Service t ime is re la ted to user response t ime; clearly
response time can be no less. It is also related to cache
throughput: a long response time a t the cache consumes
system resources for a longer time, making them unavail-
able for other requests.
Scrvice time indicates only how long the cache application
took to service the request. It does not include proccssing
time of the operating system (OS) kernel or network card
on the cache system. The cache believes its task is complete

IEEE Nclwork May/Junc 2000 25

se type as described in “Classes of

Table 1 . Response attnbutes.

Slow val (sval) 4.3 0.124 0.769 0.263,

when the write of the last byte returns, but the task is not
actually complete for the cache until the OS kernel has suc-
cessfully t ransmi t ted all response bytes to the cl ient ,
received an acknowledgment, and closed the connection.
The logs cannot identify which objects are served from the
browser’s cache. These objects are likely to be displayed
much more quickly than requests to the proxy cache, just as
local cache responses are faster than responses requiring
remote communication, The logs do identify when the
browser validates an object: i t sends a GET IMS request
for the object to the cache.
The logs do not indicate whether external requests are
served by othcr parent proxies or by the origin server. The
aggregate response time of external caches and origin
servers is nevertheless useful, since this determines per-
ceived user response time.
The logs do not always enable us to identify all of t he
response classes described earlier.
The users of the caches we studied were connected to high-
speed networks. The response t ime to users on slow
modems would be substantially different. Also, the logs we
were able to obtain were from LAN and cable modem
users in the United States. Results from significant-duration
cache traces from other geographical regions would likely
show more dramatic differences in response times.
We attempted to obtain European and Asian cache logs;

0.589

either the logs were not available-or they did not contain suf-
ficient information to perform our analysis.

Slow hit (scat) 13.0 4.871 0.776 0.229

Servers Studied

0.501

The analysis is based on the study of log files from three Web
cache servers:

granite.hpl.hp.com, January 1998-April 1999. This is a
Squid server serving a workgroup in HP Laboratories
(HPL), Palo Alto, California. During the period there were
3.3 million cachable requests.

Miss (miss) 49.2 16.440

responsc time. Since the median is not skewed by a few large
(or long) rcsponscs, it may be a better indicator of responsc
timc than the mean. For this reason this analysis prcscnts the
mean as wcll as the 50th pcrcentilc (thc mcdian) and thc 80th
pcrccntile responses.

The analysis also excludes non-HTTP, error, and otlicr
rcsponse typcs, so the stmi of the pcrccnt of rcsponscs may bc
less than 100 perccnt.

Squid on granite. hpl. hp.com
The first server studied was a workgroup cache server. I t
serves requests from a local population of researchers. It is
connected to the external network through a second Squid
proxy (parent) that does not cache objects; the parent acts as
a firewall proxy.

Sixteen months of responses were analyzed, consisting of
3.3 million cachable requests.

Table 2 shows that the mean response time for slow valida-
tions is approximately eight times longer than fast validations,
and that both transfer about the same amount of data to the
client. The median response time for slow validations is about
IO times longer than the median response time for fast valida-
tions. The response size is that of the HTTP response head-
ers. No object da ta is sent or re turned to the user for a
validation.

The mean response time for slow hits is 3.5 times that for
fast hits; the median is 5.5 times. Both of these response class-
es return object data to the client of about 5 kbytes. Table 2
also shows that consistency misses take approximately nine
times longer than fast hits and twice as long as slow hits; the
median time for consistency misses is seven times longer than
fast hits. In these cases object data is resumed to the user, but
fast hits require no remote communication; slow hits receive
only a small validation from the origin server; and consistency
misses retrieve full object data from the remote server. The
data transfer size, wide-area round-trip, and server demand all
affect response times.

Note also that consistency misses are considerably larger
than fast and slow hits. Most of the consistency misses were
for HTML objects. The increased response time is due to
both larger mean HTML object size (compared with the
mean object size of images, which accounts for most respons-
es; see [5] for a breakdown of object size by type), and the
complexity of generating dynamic HTML objects. The log-
based analysis could not determine when HTML objects were
dynamically generated, but we know from experience that
some of them are.

The mean response times by class in Table 2 are closer
to the 80th percentile value than to the median value for
the class. In some cases the mean is larger than the 80th
percentile. This indicates a heavy-tailed distribution where

2.332 0.501 1.514

deployment. During the week there were 8.2 million
cachable requests.
The responses from these cache servers are evaluated

in the remainder of this section. The responses are pre-
sented in tables using the attributes described in Table 1.

In a Web workload, mean response time (and response
size) is often skewed by a relatively small number of long-
duration (or large) responses. For this reason the median
response time, which indicates what most responses see,
is often much less than the mean. Sometimes 80 percent

I Fast va 0.196 I 0.088 I 0

I Fast hit (fbit) I 12.6 I 4.986 I 0.218 I 0.041 10.141 I

1 Cons. miss (cons) I 4.5 I 8.242 I 1.910 1 0.437 I 1.148 1

o r more of responses are satisfied in less than the mean W Table 2. grunite.lipl.hp.com responses.

26 IEEE Network May/June 2000

http://granite.hpl.hp.com
http://grunite.lipl.hp.com

1 Consistency miss] 3.018 I 12.015 I 19.485 1
Miss 2.882 I 12.580 I 27.523 _]

a few very long t ransfcrs skew the mean such that it no
longer corresponds to the response time of the majority of
requests.

Cold misses are slower than consistency misses, but the
mean object sizc is again much larger. This is due to a few
very large cold misses. The granite cache did not keep any
objects in cache over 4 Mbytes, so each response over 4
Mbytes is necessarily a miss.

The median and 80th percentile object sizes for consisten-
cy misses and cold misses a r e nearly equal , as shown in
Table 3; it is only at the 90th percentile and above that cold
misses have a distinctly heavy tail relative to other response
types. This is likely due to a few large objects being request-
ed through the cache. The 90th percentile value indicates
that 10 percent of misses from this server were larger than
27 kbytes.

Figure 2 shows the distribution of response times observed
a t this server. Figure 3 shows the distribution of response
sizes. These graphs present a cumulative distribution function
(CDF), which indicates on t h e y axis t h e percentage of
responses less than or equal to the time (or size) on the x axis.
With a CDF the median value is the x value at which a curve
crosses 50 percent.

Figure 2 shows that fast validations and fast hits are signifi-
cantly faster to complete than the other response types, and
that misses are the slowest response type. Seventy percent of
fast hits and 80 percent of fast validations complete in under
100 ms. Fewer than 10 percent of slow validations complete in
under 100 ms.

The response size distribution for fast validations is in a
very small range, indicated by a nearly vertical line in the
CDF in Fig. 3. The response size is determined by the headers
sent by the cache, which are very similar for every response.
Slow validation headers come from various origin servers, and
show greater variability and smaller overall size. The Squid
proxy cache evidently includes more header information than
most origin servers do.

The file size distribution also shows that response sizes for
fast hits and slow hits are closely matched. This eliminates size
variation as a likely cause for the difference in response times.

More detail about response times and sizes for each
response type is presented in [SI

Slow vat 9.6 0.00’

Netscape on proxy. hpl. hp. com
The next server studied was the HP Laboratories Palo
Alto external Netscape cache server. It serves requests
from local users and other cache servers. It is connected
to the external network through a packet filtering fire-
wall. It does not use a parent cache. One month of traffic
included 11.4 million cacheable requests.

Table 4 indicates that fast validations were more than
ten times faster than slow validations: about 14 times
faster in the mean and median; and about nine times
faster at the 80th (and 90th) percentiles. In these cases
the reported data size was zero bytes; the Netscape cache
did not report header size to the access log.

The response time for slow hits is about six times longer
than fast hits at the mean, nine times at the median.

Note the large response size for misses. Some very
large objects were served through this cache, which sig-
nificantly affected the mean transfer size. The response

0.993 0.447 0.661

100

90

80 - 70

60

5 50

40

U 30

20

10

0

s?
3

E

-

Slow hit 5.9 5.249 0.908 0.468

1 10 100 1000 10,000 100,000 le+06
Response time (ms)

0.692

W Figure 2. granite.hpl.hp.coni response time CDF.

I

100

90
80 - 70 s?
60 5 5 50
40

2
U 30

20

10

0

~.2.. .

10 100 1000 10,000 100,000 le+06
I Response size (bytes)

W Figure 3. granite.hpl.hp.com response size CDF.

size CDF shows that there were very few of these objects: only
5 percent of objects were over 27 kbytes.

The response time distribution for this server shows that
fast validations and fast hits are significantly faster than the
other response types. Furthermore, slow validations and slow
hits take almost exactly the same amount of time. This indi-
cates that the round-trip to the remote server is the dominant
component in cache response time, not the amount of data
transferred to clients. Consistency misses and regular misses
a re slower than slow validations and slow hits, as observed
earlier.

The response size distribution shows that fast hits and slow
hits return similar amounts of data. Consistency misses and

1 Fast Val 113.9 1 0.00’ I 0.071 I 0.032 I 0.072 1
I Fast hit 113.9 I 6.194 I 0.159 I 0.051 I 0.117 I

Table 4. proxy.hpl.hp.com responses.

IEEE Nctwork May/Junc 2000 27

http://granite.hpl.hp.com
http://proxy.hpl.hp.com

I Fast val 0.00 I 0.037 10.013 I 0.030 I
Slow val 10.1 0.00 0.717 0.191 0.380

,
Table 5, Cable modem cache, all responses.

Slow hit

I Fast hit 1 11.188 I 2.343 I 8.506 I
9.91 2 2.510 8.906

Miss 17.034 4.263 13.174

regular misses are also closely matched. Validations (fast and
slow) were reported as zero bytes.

Cable Modem Site
The third server studied was a Netscape cache server at a
cable company acting as an Internet service provider (ISP) for
residential users connected to the Internet through high-speed
cable modems. This cache was connected to the external net-
work through a packet filtering firewall without a parent
proxy. One week of traffic was analyzed for this report, con-
sisting of 8.4 million cachable requests.

The workload of the users at this site during the entire five
month log collection period was studied in detail by Arlitt et
al. [6]. This report extends that characterization to examine
cache response time by cache behavior.

The logs from this site did not contain enough detail to dif-
ferentiate between consistency, proxy-only, and regular misses.
Table 5 summarizes the results from this site.

This data set confirms the LAN findings of fast validations
being more than an order of magnitude faster than slow vali-
dations. Both the mean and the median response time for
slow validations indicate that they take between 15 and 20
times longer to complete than fast validations.

The mean response time for slow hits is about the same as
fast hits, but this is evidently due to a few very long fast hits:
the median and 80th percentile response times show that slow
hits take eight to nine times as long to complete as fast hits.
In Table 5 the mean and median response time for misses is
about 160 percent longer than for slow hits; the mean
response time for misses is 170 percent longer than fast hits.
However, the median response time for misses is 20 times
longer than fast hits.

Table 6 presents the mean, median, and 80th percentile
response size for fast hits, slow hits, and misses.

The response size of fast hits is 10 percent larger on aver-
age than slow hits, but slightly smaller at the median and
80th percentiles. The mean response size for misses is 72
percent larger than for slow hits, the median 70 percent
larger.

Object size does not appear to be a dominant factor in
response time, but object service location (direct from the
proxy vs. requiring validation at the origin) does.

Caching of objects near cnd users significantly reduces
object retrieval time. When an object is in cache it takes
approximately half thc time to validate and return thc
object to thc rcquester than whcn it is not in cache and
must be rctricvcd. This corroborates earlier research in
caching, and helps to explain the widespread deployment
of Web proxy cachc servers.

In this report we demonstrate that performing a consis-
tency check prior to resuming an object from cachc also has
a significant impact on object retrieval time. When a valida-
tion is returned directly from a cache it is resumed eight to

15 times faster than an object that requires a consistency check
with the origin server. This effect is especially significant if the
origin server is slow, distant, overloaded, or has failed. Reduc-
ing the service time of requests will also allow a cache to sup-
port more total user requests.

Our results are similar across two very different proxy
cache implementations and user bases, and widely ranging lev-
els of request demand. This indicates that the characteristics
observed are likely to be fundamental. This concurs with intu-
ition: requests satisfied nearby are expected to be satisfied
faster than requests to more distant servers.

Based on these results we suggest that there is an opportunity
to improve user response time from caches by improving cache
consistency. Earlier work in this area suggests strong consistency
is possible to achieve in the Web at the same cost as weak consis-
tency by using server invalidations [2]. We have proposed such a
mechanism and shown via simulation that i t provides better
object consistency, is faster for end users, consumes slightly less
network bandwidth, and reduces origin server load 131.

As faster end systems and residential networks a re
deployed, content consistency will have more relative impact
on the performance of user requests and caches.

Acknowledgments
We are grateful for the time and expertise of Tai Jin who sup-
plied logs from the local Squid cache and provided insight into
its operation, and to Mike Rodriquez who ran our scripts
across the full HPL logs. Thanks to Rich Friedrich for suggest-
ing and supporting this work, and for his review comments.
Thanks also to Martin Arlitt, John Barton, Ilja Bedner, Nina
Bhatti, Radhika Malpani, Mark Nottingham, Stephane Perret,
Jerry Rolia, Bill Weihl, Anna Zara, and the anonymous review-
ers for their helpful comments, suggestions, and feedback.

References
111 J. Gwertzmon and M. Seltzer, "World-Wide Web Cache Consistency,"

USENIX I996 Annual Tech. Conf., Jan. 1996.
[2] C. Liu and P. Coo, "Maintaining Strong Cache Consistency in the World-

Wide Web," IEEE Trans. Comp., vol. 47, no. 4, Apr. 1998, pp. 445-57.
[3] J. Dilley et al., "The Distributed Object Consistency Protocol," Tech. rep.

HPL1999-109, HP Lobs, Se t 1999.
[4] V. Cate, "Alex - A GlobaPFilesystem," Proc. USENIX File Sys. Wksp., May

1992, pp. 1-1 2.
[SI J. Dilley, "The Effect of Consistency on Cache Response Time," Tech. rep,

HPL-1999.107, HP labs, Sept. 1999.
[6] M. Arlitt, R. Friedrich, and T. Jin, "Workload Characterization of a Web

Proxy in a Cable Modem Environment," ACM SfGMFTRlCS Perf. €vol. Rev.,
vol. 27 no. 2, Aug. 1998, pp. 25-36.

Biography
JOHN DltEY [MI (iadQokamai.com) i s a distributed systems orchitect with Akamai
Technologies. His research interests include architecture and design of distributed
applications, obect location and distributed directory services, and obiect-orient-
ed application design and development. He received B.S. degrees in mathemat-
ics and computer science from Purdue University in 1984 and an M.S. in
computer science in 1985. He is a member af ACM.

28 IEEE Network May/Junc 2000

