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Abstract: Cycloaddition reactions of the functionalized Al-pyrroline-
N-oxides 10 and 19 have been used to prepare the hydroxylated
pyrrolizidines 6 and 7 respectively, which are related to the natural
products alexine and australine.

In recent years there has been much interest in the synthesis of
polyhydroxylated indolizidines such as castanospermine (1)
swainsonine (2), and their stereoisomers,! sustained by the potential
of such compounds as medicinal agents as a consequence of their
ability to inhibit glycosidases.2 Additionally, polyhydroxylated
pyrrolizidines such as australine (3), alexine (4) and various of their
stereoisomers have ‘been isolated,? and australine and two of its
stereoisomers have demonstrated antiviral activity, including against
HIV.4 Further such structures continue to emerge, as illustrated by
the recent report of the pentahydroxylated pyrrolizidine casuarine
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In this letter we illustrate the use of 1,3-dipolar cycloaddition
reactions of oxygenated cyclic nitrones® to gain access to
pyrrolizidines 6 and 7 having a carbon substituent at C-3, as is
characteristic of the australine/alexine class of pyrrolizidine
alkaloids.”

For the synthesis of 6 (Scheme 1), 2,3-O-isopropylidene-§-D-
ribofuranose8 was treated with carboethoxymethylene triphenyl-
phosphorane (CH2Clp, 18 h) to give the cis-enoate 8 (Jp3 11.5 Hz)
which, without rigorous purification, underwent reaction with NalOyg
in aqueous methanol to give the somewhat unstable aldehyde 9 (71%
overall). When 9 was treated with hydroxylamine hydrochloride and
NaOAc (H2O-EtOH, r.t., 18 h), the nitrone 10° was obtained (83%)
as a single epimer. The stereochemistry of 10 was indicated by the
small coupling (1.3 Hz) observed between H-4 and H-5 in the 1H-nmr
spectrum, and confirmed by the observation of strong n.O.e effects
between H-3, H-4 and both protons of the CHy group of the sidechain.

Cycloaddition of 10 and allyl #butyldiphenylsilyl ether (toluene,
reflux) led to the isolation of two cycloadducts in a combined yield of
83% and an isomer ratio of ca. 3:1. The major cycloadduct was
assigned structure 119 on the basis of nmr experiments; in particular,
irradiation of the signal for 3¢-H (8 2.29) caused enhancements of the
signals for 3a-H (8 3.79) and both of the protons of the CH,O[Si] unit,
whilst irradiation of the signal for 33-H (6 2.40) caused enhancements
of the signals for 2-H (8 4.10) and 4-H (6 4.48). In a similar way, the
structure 12 could be assigned to the minor stereoisomer. Both
isomers therefore arise by reaction via exo-transition states, as is well
documented for cycloadditions of cyclic nitrones, 10 with the major
isomer 11 arising from reaction on the more sterically-accessible face
of the nitrone, trans- to the isopropylidenedioxy group.

Treatment of the major cycloadduct 11 with tetrabutyl-
ammonium fluoride (THF, r.t., 1h) gave the corresponding alcohol
{m.p. 55-57 °C, [a]Dp-1269° (¢ 1.45, CHCl3)} in quantitative yield, and
this was converted routinely to the mesylate 13 {m.p. 65-6 °C, [alp -
95.30 (¢ 1.48, CHCI3)}. Hydrogenolysis of the N-O bond was
accompanied by cyclization to give the pyrrolizidine 14° (83%).
Reduction of the ester with LiAlHy, followed by hydrolysis of the
resultant diol with aqueous TFA then gave (69%) the tetraol 6,
isolated as its trifluoroacetate salt.?

The synthesis of the pyrrolizidine 7 is indicated in Scheme 2.
Treatment of 2, 3-O-isopropylidene-L-erythrose (15) (prepared from
L-arabinose without purification of intermediates!!) with methylene
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triphenylphosphorane gave the alkene 16.12 Oxidation of this
[(COCI),, DMSO, CH2Cly, -60 °C, then EtsN] followed by direct
trapping of the volatile aldehyde with hydroxylamine gave the oxime
17 (80%) as a mixture of isomers (E:Z , 5:2). Alternatively, 17 could
be prepared!3 from the D-ribose derivatives 18 (X = Br or I), using
Bernet-Vasella fragmentation,14 followed by direct oximation, but in
our hands this route proceeded in poorer overall yield and was less
convenient than the route from L-arabinose; additionally, the use of
arabinose as starting material permits access to the enantiomeric series
from D-arabinose by the use of the same chemistry.

When oxime 17 was treated with phenyl selenenyl bromide in
dichloromethane, followed by neutralization with K,C 03,15
electrophile-induced cyclization occurred to give a moderate yield
(45%) of two isomeric nitrones 19 and 20, in a ratio of ~1:1.16
Although 19 and 20 were readily separable by chromatography, the
lack of stereoselectivity in the cyclization was disappointing; based on
the precedent of related electrophilic cyclizations of 4-alkeny!
alcohols with an oxygen substituent at the allylic position17 we had
anticipated a predominance of the all-cis-isomer 19. The structures of
19 and 2018 were evident from nmr data ; lH-spectra showed Jy 5 =
6.0 Hz for 19, whilst the equivalent compling was virtually zero in the
spectrum of 20. Additionally the signals for C-3, C-4, C-5 and the
methylene carbon all appeared at higher field in 19 than in 20, as
would be expected on the basis of stereocompression. 19

Cycloaddition of the all-cis nitrone 19 with allyl #butyldiphenyl-
silyl ether gave as major product the isoxazolidine 21 (72%)!8 with
lesser amounts (8%) of the epimer 22.20 The structure of 21 was clear
from n.O.e experiments. In particular, irradiation of 5-H (8 4.81)
gave major enhancements of 4-H (8 4.60) and 6-H (8 3.05),
confirming the all-cis- stereochemistry of the nitrone precursor, whilst
irradiation of 2-H (6 4.22) led to enhancement of 6-H as well as 3 o-H
(8 1.83), a result which is in accordance only with the stereochemistry
shown. Additional confirmatory n.O.e effects were observed between
3¢-H, 2-H and 4-H. Isomer 21 is thus the product of reaction on the
more accessible face of nitrone 19, via an exo-transition state. It is
interesting that significant amounts of 22, formed via an endo-
transition state, are also isolated, since the parent nitrone, Al-
pyrroline-N-oxide, gives exclusively the exo-adduct.10b However,
modelling indicates that the fusion of the isopropylidenedioxy group
onto the pyrroline ring leads to a flattening of the structure which
makes non-bonding intractions in the endo- transition state less
severe.

Desilylation of 21 occured quantitatively on treatment with
tetrabutyl ammonium fluoride in THF, and the resultant alcohol was
converted conventionally to the mesylate 23 {m.p. 109 °C [a]p
+125.2° (¢ 1.15, CH,Clp)} in 92% yield. Since Raney nickel is known
to be effective both for the hydrogenolysis of N-O bonds2! and for
reductive deselenation of phenylselenyl ethers,2? it seemed likely that
this reagent could transform isoxazolidine 23 into the selenium-free
pyrrolizidine 24. This proved to be the case, with 24 being obtained
in ~65% yield, but only if the reaction was carried out in an
atmosphere of hydrogen; use of a nitrogen atmosphere gave the
product of reduction of just the selenoether. Treatment of 24 with
aqueous trifluoroacetic acid led to the deprotected pyrrolizidine 718
isolated as its trifluoroacetate salt.
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