Tetrahedron Letters 58 (2017) 4459-4464

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Concise synthesis and revision of the proposed biogenesis of helicascolides

^a CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry (CAS), Shanghai 200032, China ^b University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

ARTICLE INFO

Article history: Received 19 September 2017 Accepted 9 October 2017 Available online 13 October 2017

Keywords: Helicascolides A–C δ-Lactones Biogenesis Biomimetic synthesis Boronate

ABSTRACT

A concise synthesis of helicascolides A, B and C was achieved in three to five steps from commercially available materials. The key transformations of the synthesis include an Evans-Metternich *anti*-aldol reaction of the known β -keto imide **10** and strategic base-mediated one-pot cyclization/alkylation. Based on the new chemical evidence of ring-opening reaction of β -keto ester under biocompatible basic conditions, Krohn's proposal for the biosynthetic relationship between helicascolide A (**1**) and a naturally co-existing acyclic dienone **4** was suggested in a reverse manner.

© 2017 Elsevier Ltd. All rights reserved.

Marine microorganisms have been intensely exploited for their novel bioactive secondary metabolites from diverse biosynthetic origins.¹ Helicascolides A (1) and B (2) (Fig. 1) were first isolated by Gloer and co-workers from the marine fungus Helicascus kanaloanus (ATCC 18591) in 1989.² Recently, Tarman and co-workers reported the characterization of structurally related helicascolide C (3) from an Indonesian marine algicolous strain Gracilaria sp. SGR-1.³ Interestingly, only helicascolide C (3) shows a notable ability to inhibit the growth of Cladosporium cucumerinum, a pathogenic plant fungus that affects cucumbers. In 2006, Krohn and co-workers⁴ isolated the biologically active linear metabolite (4E,6E)-2,4,6-trimethylocta-4,6-dien-3-one (4) along with helicascolide A (1) from the endophytic fungus Nodulisporium sp. From a structural perspective, helicascolides (1-3) belong to a small family of partially dehydrated tetraketides that are characterized by a highly congested δ -lactone ring system with gem-dimethyl substitution at the C2 position.

With the ongoing interest in the development of bioinspired synthetic strategies for the efficient syntheses of bioactive polyketides,⁵ the molecular architecture of helicascolides captured our interest, since the specific scaffold is found in various natural products or natural product-like synthetic intermediates (**5–7** in Fig. 1).^{6.7} The first total synthesis of **1** and **3**, disclosed by Krishna and co-workers,⁸ featured a one-pot acid-catalyzed acetonide removal and subsequent lactonization. The Yadav group⁹ achieved a concise total synthesis of **1–3** by employing a similar ring-forming strategy and utilizing iterative aldolization to access the precursor in a more efficient manner.¹⁰ In 2016, Breit and coworkers¹¹ also accomplished the total syntheses of **1–3** by intramolecular Rh-catalyzed diastereoselective additions of chiral ω -allenyl carboxylic acids. Herein, we present a short synthesis of all the representatives of the helicascolide family, which were assembled with the longest linear sequences ranging from three to five steps.

Retrosynthetically, we envisioned that structurally simpler helicascolide C (3), for which the most oxidized carbon is C3, could serve as the primary target and a branching intermediate to access the other congeners of the family via late-stage stereoselective reduction of the C3-ketone (Scheme 1). By taking advantage of this distinctly different tactic, methylation at C2 of cyclic β -keto ester enolate 8 should be feasible. This synthetic strategy is largely simulating a possible biosynthetic pathway that involves chain elongation and methylation initiated by SAM (S-adenosyl methionine). Anionic intermediate 8 should be accessible from the cyclization of aldolate anion 9, in which the entire tetraketide backbone could be derived from the reaction of known Evans' dipropionate synthon 10^{12} with tiglic aldehyde. Integral to this approach was the dramatic increase in the kinetic acidity of the C2 position of **8**, which was a result of the enolization favoring a cyclized product conformation in which better orbital overlap between σ -C2-H and π^* -C3-O could be realized¹³.

Chiral β -keto imide **10** was readily prepared in a two-step protocol (Scheme 2) that included an Evans *syn*-aldol reaction

etrahedro

^{*} Corresponding author. *E-mail address:* rhong@sioc.ac.cn (R. Hong).

Fig. 1. Helicascolides and structurally related compounds.

Scheme 1. Retrosynthetic analysis of the helicascolides. [H] = reduction; R = substituent; LG = leaving group; LLS = the longest linear steps; PG = protecting group.

Scheme 2. Synthesis of compound 13.

between commercially available *N*-acyloxazolidinone **11** and propanal followed by Dess-Martin oxidation of corresponding alcohol **12**. Addition of the (*E*)-boron enolate pre-formed from **10** to tiglic aldehyde provided two *anti*-aldol adducts in 90% combined yield with a diastereomeric ratio (d.r.) of $13:1.^{14}$ A second purification using flash column chromatography further enriched the d.r. up to 30:1.

With several grams of the requisite acyclic tetraketide **13** in hand, we were in a position to test the feasibility of the crucial cyclization/alkylation cascade (conversion of **9** to **3** shown in Scheme 1). Initially, the cyclization reaction was carried out under conventional conditions¹⁵ for analogous substrates bearing a C3-hydroxyl group; however, extensive decomposition was observed (entries 1 and 2 in Table 1). Next, we found that treatment of **13**

Table 1

Optimization for "one-pot" cyclization/alkylation of 13.^a

Entry	Conditions	Temperature	Reaction time	Yield (%) ^b		
				3	14	15
1 ^c	LiOOH (2.0 equiv), THF/H ₂ O	0 °C	2 h	-	trace ^c	-
2 ^c	DBU (1.0 equiv), DCM	0 °C	2 h	-	trace ^c	-
3°	^t BuOK, toluene	rt	1 min	-	80	-
4	^t BuOK, then MeI, toluene	rt	10 min	0	78	0
5	^t BuOK, then MeI, toluene	55 °C	10 min	0	72	0
6	^t BuOK, then MeI, benzene	55 °C	10 min	0	75	0
7	^t BuOK, then MeI, DMSO	55 °C	10 min	90	trace ^d	4
8	^t BuOK, then MeI, DMF	55 °C	10 min	88	trace ^d	4
9	^t BuOK, then MeI, DMF	rt	10 min	90	trace ^d	2
10	^t BuOK, then MeI, THF	rt	10 min	92	trace ^d	0
11	MeI, then ^t BuOK, THF	rt	10 min	67	11	0

[Note]: (a) *t*-BuOK (1.05 equiv) and Mel (2.0 equiv) were utilized unless otherwise noted. (b) Isolated yield. (c) For entries 1–3, the reaction mixture was analyzed by ¹H NMR (400 MHz, CDCl₃) after a simple work-up. (d) Less than 2% yield.

with 1.05 equiv of t-BuOK in toluene at room temperature resulted in rapid formation of β -keto lactone **14**, which was isolated as an unstable colorless oil (entry 3). To our surprise, introduction of the methyl group by MeI under the same conditions did not provide the desired alkylation product helicascolide C (3) in an appreciable yield, even at elevated temperature (entries 4 and 5). Interestingly, when more polar aprotic solvents, such as DMF and DMSO, were used, C2-alkylation exclusively occurred, and UVinactive material 3 was generated in excellent yield (entries 7 and 8). Further optimizations proved that the above-described one-pot protocol proceeded reliably and reproducibly in 90% yield on a multi-gram scale (entry 10).¹⁶ The NMR data as well as specific rotation of synthetic helicascolide $C(\mathbf{3})$ were in good agreement with those reported in the literature.³ When MeI was introduced prior to *t*-BuOK, the desired natural product can also be obtained, albeit in a lower yield (entry 11). To further expedite the synthetic route, we telescoped the anti-aldol reaction and the abovedescribed cyclization/methylation (Scheme 3). The resulting aldol reaction was quenched with a solution of methanol in THF. The solution was then titrated with *t*-BuOK to smoothly provide a solution of the enolate form of lactone 14, which was then subjected to methylation to give 3 by sequential addition of DMF and MeI. This unoptimized protocol directly delivered helicascolide C (3) in one flask and in a synthetically acceptable yield from known building block **10**, provided an expedited protocol for purification, and further reduced the overall step count.

We then focused our attention on the late-stage reduction of the C3-keto group (Scheme 4). Unfortunately, initial screening of various reducing agents failed to directly convert **3** to **1** or **2** without reducing the ester functionality. In some cases, such as treatment with L-selectride at low temperature, an epimeric mixture of β -keto- δ -lactols **16** was isolated in 88% yield. Nevertheless, global reduction of **3** with 5 equiv of NaBH₄ smoothly furnished **17** in nearly quantitative yield albeit as an inseparable mixture. Careful analysis of the NMR spectra of the mixture confirmed the compounds are epimeric at the anomeric carbon (C1), and the configuration of C3 was determined to be (*R*) from the diagnostic NOE correlations of each anomer. These structures were confirmed by successful elaboration of **17** to helicascolide B (**2**) via MnO₂ oxidation.

To override the intrinsic 1,3-diaxial strain of axial hydride delivery, a hindered reagent like LiBHEt₃ was presumed to deliver an axial alcohol through equatorial attack of the ketone.¹⁷ At this point, the crude ¹H NMR spectrum of the organic layer taken immediately after work-up indicated that a new pair of anomeric (3S)-lactols **18** were formed as the major products in a moderate ratio of 2.7:1. Surprisingly, during the conventional work-up procedure, less polar component **19** was isolated, and after extensive

Scheme 3. Expedite "one-pot" aldolization/cyclization/alkylation of the known β-keto imide 10.

Scheme 4. Divergent synthesis of helicascolide A (1) and B (2) via late-stage reduction.

(A) Krohn's biosynthetic hypothesis of helicascolide A (1):

Scheme 5. Biosynthetic relationships between helicascolide C (3) and 4.

NMR analysis, 19 was determined to be a cyclic ethylboronate derivative of 18.18,19 Boronate 19 could be isolated in 51% yield from the chromatographically inseparable lactols 17 and 18, thus providing an opportunity for the establishment of the correct stereochemistry at C3 for helicascolide A (1). As anticipated, heating 19 on neat silica gel yielded (3S)-lactol 18 in 86% yield as a mixture of anomeric isomers, which were further subjected to MnO₂ oxidation to give helicascolide A (1) in 85% yield. Gratifyingly, direct oxidation of cyclic ethylboronate 19 under the same reaction conditions also provided 1 in excellent yield (89%). The NMR spectra and optical rotation of the synthetic samples and natural helicascolides A (1) and B (2) were identical.²

It is also noteworthy that, during the optimization of the cyclization/alkylation cascade, methyl dienoate 15 was isolated as a side product, albeit in very low yield (<5%). We were aware of the structural similarity between this compound and an acid intermediate in Krohn's biogenesis proposal (Scheme 5 A).⁴ Corresponding acid **20**, arising from enzymatic carboxylation of naturally occurring 4, was suggested to be biosynthetically involved in the construction of the lactone ring of helicascolides through an oxa-Michael addition. We considered that the reverse process might be thermodynamically more favorable. To test our hypothesis, helicascolide C (3) was treated with biocompatible conditions like K₂CO₃ in methanol at ambient temperature. Interestingly, the ring-opening process was rapid and completed within minutes. The ring opening resulted in polar compound **20**, which, based on extensive NMR analysis, had a dienoic acid structure (Scheme 5 C).^{20,21} This observation also mechanistically accounts for the formation of side product 15 via the O-methylation of an intermediate carboxylate. However, with β -keto acid **20** in hand, all attempts to realize the putative intramolecular oxa-Michael-type addition⁴ only resulted in decarboxylation to form a less polar, UV-active material. The spectroscopic data were consistent with those reported for isopropyl ketone **4**.⁴ The conditions tested for the oxa-Michael-type addition were as follows: (1) heating a salt-free solution of 20 in methanol for 10 min, which led to the isolation of 4; (2) storage of a solution of 20 in d4-methanol at room temperature for 3 days, which resulted in 50% conversion to the C2deuterated analogue **4a**, as indicated by NMR analysis (Fig. S1);²² (3) treatment of a solution of 20 in THF with TBAF at room temperature, which resulted in the rapid generation of isopropyl ketone 4, and intermediate β -keto acid derivatives were not detected by either TLC or NMR analyses.²³ The facile one-pot elimination and subsequent decarboxylation of 3 under mild conditions suggested a more plausible biogenesis of 4.

In summary, we have developed a cyclization/alkylation approach for the efficient total synthesis of helicascolide C(3) in only two steps from chiral auxiliary-based β -keto imide **10**. The synthetic route can be further shortened by combining aldol reaction and cyclization/methylation, which provided a platform for other bioactive natural products bearing a critical δ -lactone ring system with gem-dimethyl substitution at C2. Based on the practicability of the new route, other congeners of the family could be divergently obtained with additional two steps. Moreover, a chemical intermediacy of β-keto acid derived from eliminative ring-opening of helicascolide C (3) implicates a revised biogenesis of the decarboxylative derivative 4. Such biogenesis proposal may be also possible to form similar natural products through decarboxylation of β-keto esters with or without cooperation of individual enzymes.

Acknowledgments

Financial support from the Shanghai Science and Technology Commission (15JC1400400), the National Natural Science Foundation of China (21290184 and 21472223), the Strategic Priority Research Program (XDB2000000), and the Key Research Program of Frontier Sciences (QYZDY-SSW-SLH026) of the Chinese Academy of Sciences are highly appreciated.

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tetlet.2017.10.021.

References

- 1. (a) Selected reviews: Gerwick WH, Fenner AM. Microb Ecol. 2013;65:800-806; (b) Kobayashi J. Chem Pharm Bull. 2016;64:1079–1083; (c) El-Hossary EM, Cheng C, Hamed MM, et al. Eur J Med Chem. 2017;126:631-651;
- (d) Lane AL, Moore BS. Nat Prod Rep. 2011;28:411–428.
- Poch GK, Gloer IB. I Nat Prod. 1989:52:257-260. 2
- Tarman K, Palm GJ, Porzel A, et al. Phytochem Lett. 2012;5:83-86. 3
- Dai JQ, Krohn K, Flörke U, et al. Eur J Org Chem. 2006;3498-3506. 4
- (a) Yang L, He G, Yin R, Zhu L, Wang X, Hong R. Angew Chem Int Ed. 5. 2014:53:11600-11604: (b) Yang L, Lin Z, Huang S-H, Hong R. Angew Chem Int Ed. 2016;55:6280-6284: (c) He G, Wang Y, Lai C, Li W, Hong R. Sci China Chem. 2016;59:1197–1204;
- (d) Zheng K, Shen D, Hong R. J Am Chem Soc. 2017;139:12939-12942. https:// doi.org/10.1021/iacs.7b08500. (a) Kormann EC, Amaral Pde A, David M, Eifler-Lima VL, Cechinel Filho V, 6.
- Campos Buzzi F. Pharmacol Rep. 2012;64:1419–1426: (b) Javasuriva H. Guan Z. Dombrowski AW. et al. I Nat Prod. 2007:70:1364-1367
- 7. Chen Y, Li Y. United States patent US8030503 B2.
- Krishna PR, Mallula VS, Arun Kumar PV. Tetrahedron Lett. 2012;53:4997–4999. 8
- Yadav JS, Reddy AB, Shankar KS. Synthesis. 2013;45:1034-1038. 9
- 10. (a) For a general discussion on iterative approach in polyketide synthesis, see: Zheng K. Xie C. Hong R. Front Chem. 2015:3:e32: (b) Kumar P, Dwivedi N. Acc Chem Res. 2013;46:289-299; (c) Horst BT, Feringa BL, Minnaard AJ. Chem Commun. 2010;46:2535-2547; (d) Hanessian S, Giroux S, Mascitti V. Synthesis. 2006;38:1057–1076.
- 11. Haydl AM, Berthold D, Spreider PA, Breit B. Angew Chem Int Ed. 2016:55:5765-5769.
- 12. Evans DA, Clark JS, Metternich R, Novack VJ, Sheppard GS. J Am Chem Soc. 1990:112:866-868.
- (a) For selected examples of configurationally stable chiral α -substituted-1,3-13. dicarbonyl compounds: Evans DA, Ennis MD, Le T, Mandel N, Mandel G. J Am Chem Soc 1984:106:1154-1156:
 - (b) Evans DA, Sjogren EB. Tetrahedron Lett. 1986;27:4961-4964;
 - (c) Soucy F, Grenier L, Behnke ML, et al. J Am Chem Soc. 1999;121:9967-9976;
 - (d) Calter MA, Liao W. J Am Chem Soc. 2002;124:13127-13129;
 - (e) Jeffery DW, Perkins MV, White JM. Org Lett. 2005;7:407-409;
 - (f) Lister T, Perkins MV. Org Lett. 2006;8:1827-1830.
- 14. Evans DA, Ng HP, Clark JS, Rieger DL. Tetrahedron. 1992;48:2127–2142.
- 15 (a) Castonguay R, He W, Chen AY, Khosla C, Cane DE. J Am Chem Soc. 2007:129:13758-13769:
- (b) Magauer T, Martin HJ, Mulzer J. Angew Chem Int Ed. 2009;48:6032-6036; Evans DA, Fitch DM, Smith TE, Cee VJ. J Am Chem Soc. 2000;122:10033-10046;
- (d) Yuan Y, Men H, Lee C. J Am Chem Soc. 2004;126:14720-14721;
- (e) Smith AB, Brandt BM. Org Lett. 2001;3:1685-1688;
- (f) Beck BJ, Aldrich CC, Fecik RA, Reynolds KA, Sherman DH. J Am Chem Soc. 2003;125:12551-12557
- 16. For a 4-g scale reaction performed in THF, the reaction mixture became vicious due to the solubility issue, and the sluggish magnetic stirring led to a diminished yield.
- Wong SS, Paddon-Row MN. J Chem Soc, Chem Commun. 1990;456-458. 17.
- Data for *cyclic ethylboronate* **19**: **TLC** (petroleum ether/ethyl acetate = 4:1 v/v, KMnO₄): $R_f = 0.81$; $[\alpha]_D^{25} = +2.7$ (*c* = 0.69 in CHCl₃); ¹¹B NMR (128 MHz, CDCl₃): 18. $\delta = 31.7$ ppm; ¹H NMR (400 MHz, CDCl₃): $\delta = 5.52$ (qq, J = 6.8, 0.8 Hz, 1H, HC₇), 4.77 (d, J = 1.6 Hz, 1H, HC₁), 3.60 (br t, J = 2.0 Hz, 1H, HC₃), 3.53 (d, J = 11.2 Hz, 1H, HC_5), 2.09 (m, 1H, HC_4), 1.66 (s, 3H, H_3C_{11}), 1.62 (d, J = 6.4 Hz, 3H, H_3C_{12}), 1.12 (s, 3H, H_3C_8), 1.00 (s, 3H, H_3C_9), 0.96 (t, J = 7.2 Hz, 3H, H_3C_{14}), 0.80 (q, J7.2 Hz, 2H, H_2C_{13}), 0.78 (d, J = 6.8 Hz, 3H, H_3C_{10}) ppm; ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 132.4 (C_6), 125.4 (C_7H), 97.4 (C_1H), 77.8 (C_3H), 77.5 (C_5H), 35.4 (C_2), 77.5 (C_5H), 7$ 31.8 (C4H), 23.1 (C9H3), 21.7 (C8H3), 14.4 (C10H3), 13.2 (C12H3), 11.2 (C11H3), 8.1 (C₁₄H₃) ppm; **IR** (thin film): v_{max} = 2962, 2934, 2878, 1739, 1461, 1404, 1378, 1328, 1266, 1217, 1188, 1106, 1072, 1048, 1030, 959, 935, 816, 758, 747 cm⁻¹; **HRMS-DART** (*m*/*z*): calcd. for C₁₄H₂₆O₃¹⁰B[M+H]⁺: 252.2006, found: 252.2004.
- (a) Reduction with L-selectride also provided analogous sec-butyl boronate 19a. See the Supporting information for details. For other examples of cyclic boronate formation in the context of borohydride reductions: Garlaschelli L, Mellerio G, Vidari G. Tetrahedron Lett. 1989;30:597-600; (b) Rodríguez-Hahn L, Cárdenas J, Esquivel B, Toscano RA, Rodríguez B. Tetrahedron Lett. 1995;36:6391-6394;
 - (c) Renata H, Zhou Q, Baran PS. Science. 2013;339:59-63.

20. Data for β-keto acid **20**: **TLC** (petroleum ether/ethyl acetate = 4:1 v/v, KMnO₄): $R_f = 0.01$; ¹H NMR (400 MHz, CD₃OD): δ = 7.03 (s, 1H, HC₅), 5.70 (q, J = 7.2 Hz, 1H, HC₇), 1.92 (s, 3H, H₃C₁₀), 1.84 (s, 3H, H₃C₁₁), 1.74 (d, J = 7.2 Hz, 3H, H₃C₁₂), 1.33 (s, 6H, H₃C₈, H₃C₉) ppm; ¹³C NMR (100 MHz, CD₃OD): δ = 206.8 (C₃=O), 182.6 (C₁=O), 144.3 (C₅H), 134.6 (C₆), 132.9 (C₄), 131.4 (C₇H), 56.3 (C₂), 26.2 (C₈H₃, C₉H₃), 16.3 (C₁₁H₃), 14.6 (C₁₀H₃), 14.1 (C₁₂H₃) ppm; **IR** (thin film): *v*_{max} = 3394, 2991, 2965, 2928, 2864, 1643, 1617, 1575, 1396, 1348, 1310, 1243, 1158,

1048, 1034, 896, 845 cm⁻¹. **HRMS-ESI** (*m*/*z*): calcd. for C₁₂H₁₈O₃Na [M+Na]⁺: 233.1148, found: 233.1147.

- **21.** For a recently reported *β*-keto acid with similar structure: Wu W, Wu Y, Liu B. *Tetrahedron.* 2017;73:1265–1274.
- See the Supporting Information for details.
 For C2-enolizable lactone 14, decarboxylation reactions using methanolic K₂CO₃ or TBAF under similar conditions only resulted in recovery of starting materials, and elimination products were not formed to any extent.