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Abstract: Thefmtimphtedpolymers with entmtioseiecdve cm!ytic axivity a sported. 

We report a successful application of molecular imprintingtJ to the ‘designed” synthesis of a 
stereoselectives esterolylic catalyst4 By allowing a network polymr to form in the presence of a template 
molecule and subsequently liberating the template, a polymer containing selective binding sites can be prepamd 
This technique, called Molecular Imprinting, has been used to prepare highly crosshnked network polymers that 
are selective for enantknners of carbohydrates5 and amino acids? as well as ~blockers.6 and nucleotide bases.7 

In these examples, molecular recognition arises kom a combination of covalent, ion-pairing and hydrogen bonds 
hetweenthefunctionalmonomersandthetemplatemolecule. 

The esterase site was designed to provide a steseoseleetive binding site for a ten&e&al intermediate in 
addition to positioning a nucleophile in proximity to tbe reactive carbonyl group and an imidaxole and carhoxyl 
group at hydrogen bond distance to the nucleophile.s 

The templatesa, synthesized as described elsewhere,tu 
shown in Scheme 1. 

were incorporated into the network polymers as 
PhotGnitiated free radical polymerization of the monomer mixture at 5 l C gave gel-like 

transparent polymers11 which were crushed then subjected to various treatments in order to remove the co&ntly 
linked template from the polymers. These consisted of (1) wash in methanol/chlorofam: l/l (v/v) for 5 h and (2) 
soxhlet extmction in methanol overnight. Subsequently they were tmated overnight in either (3) CsF (anhydmus) 
in methanol at 60 OC, (4) sodium carbonate (0.5 M) / methanol : l/l (v/v) at room kmpemmm, 
hydroxide (1 M) / methanol : l/l (v/v). While most of templates 2.3 and 4 were liberated by mild W&%z 
and (2). template 1 rcqukd treatment (3) (transesterificationt~). (4) or (5) fJty&olysis) for effkient splitting.t3 
Following template removal, we anticipated that 1 would provide an active site complementary to the D 
ensntiomer of t-butoxycarbonyl-phenylaknine pnitrophenylester (BooD-PheONP) (see Scheme l), equipped 
with a phenol-imidaxole catalytic group in proximity to the reactive carbonyl group of the substrate. In the control 
polymer P2 however, the carboxylic acid groups responsible for substrate binding are expected to be randomly 
distributed in the polymer (ion-paired with 4). temkdml 
2 no stereoselectivity is expected” 

complementarity is absent and with the achiral template 
Control polymer P3, equal to Pl except for the absence of the Boc group in 

the template, we believed would probe the stntcmral requirements of the site and the simplest control polymer, 
P4, would reveal the role of the catalydc phenol-imidaxole group. 

The rate of hydrolysis of D or L BocPheONP was measured in the presence of the polymers or soluble 
phenol-imidaxole (Phi) (see Table 1 and Figure 1). The hydrolysis of the complementary substrate, Boc-D- 
PheONP, was fastest in the presence of Pl. Moreover the D enantiomer was hvdrolvxed faster than the L 
enantiomer only in the preserice of Pl. The rate enhancement nm higher for the p&m& sthjected to jiuther 
template splittittg. This shows that the catalysis takes place in the imprinted active sites. The polymers treated 
with aqueous base showed the largest rate enhancements. Interestingly, this effect seems to be unrelated to the 
splitting yield in view of the similar splitting results obtaked after treatment (3) and (4).13 When the hydrolytic 
treabtwtt w carried out at elevated temperature, enantioseiectivity was comuletelv lost. At the svne time, the 
rate enhancement relative to the control -kas un#ected. Apparently the functionai groupa of the sites are still 
positioned for substrate binding while the smcal complementarity has been lost. ‘Ihe importance of a 
complementary binding site for catalysis is also seen in the control polymer P3 
the Boc group) which is clearly less eflkient than PI in cataiyxing the hydrolysis 

The catal 
*%XZ. 

from template lacking 

shown in a diiy 
sts described here are truly Yesigned” since enantioselectivity is pmdicmble. This was further 

ferent model system by using the enantiomer of template 1 where iastcad L-selectivity was 
obscrvcd.~O It is further noted from Table 1 that the reactions took place in an acidic medium. Above pH 7, the 
polymers inhibited the reaction and only at low pH was catalysis okrved. 
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Figure 1. Evaluation of 
$“d” 

fkstudcrratc 
la) or L- BocMtcONP ( 

constantsasdescdxdinTable1fortbehydrolysisufD-(Figure 
.025 DM) (Figwe 1 b) in acctoaitril~tassium iuxpbatc 0.05 M. PH 4.51: U1 (v/v) 

catalyzed by the N~&!OJ aq treated (prodwe 4 - 48 h) polymers (PI, $I or ktb no added cdyst (BL). 

SPLITTING 
PROCEDURE 

(1+2): M&H 
(3): CsF/?ulcoH 
(4): NqCOj424h 

(4): NezC%,* 

(3: Na4 

Q: -46ooc 

Le 1. Kinetic Data fFom the Hydrolysis of D or L JJoc-Pk-ONP in the 
:nceofImprintil%&musSu~toVarIousNucleophilicTnatmnts 

(mh-1) $, 
kD x 1 kPdkP2 kD&L kP#Pu 

(b) (d (d) 
Pl P2 P3 P4 
0.026 0.024 0.038 0.014 1.08 1.04 2 
0.057 0035 1.63 1.06 4 
0.140 1.75 1.37 10 

(ko.OOl)= 

;z)6 

0.122 0.048 2.54 1.85 7f 

0.102 0.046 0.056 0.022 2.22 1.40 6f 

0.108 0.046 12.35 1.00 6f 
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In suaunary, fully predictable enantioselective catalysis of ester hydrolysis has been achieved with template 
imprinted polymers containing similar catalytic elements believed to be responsible for the catalytic action of 
chymotrypsin. Hydrogen bonding is the main driving force in the stereose lective bindin 

gh 
step and a phenol- 

imidamle group responsible for the catalytic action. Although modest, the rate enhancenxsus em reparted should 
be considered as a first step in the development of imprinted polymers for enantioselective catalysis. Simple 
modifications of the template as well as mechanistic investigations of the catalysts ate guide-lines for our future 
efforts to achieve an efficient mimic of chymotrypsin. 
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template r* vmg a transition state 
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phosphonate) only resolved aad semined the phosphonate m 
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