

Tetrahedron Letters 39 (1998) 1591-1594

TETRAHEDRON LETTERS

New Electrochemical Carboxylation of Vinyl Triflates. Synthesis of β-Keto Carboxylic Acids

Hisato Kamekawa, Hisanori Senboku, and Masao Tokuda*

Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan

Received 17 November 1997; revised 15 December 1997; accepted 19 December 1997

Abstract: Electrochemical reduction of alicyclic vinyl triflates (1a-1e) in a DMF solution containing 0.1 M Bu₄NBF₄ under an atmospheric pressure of carbon dioxide with a platinum cathode and a magnesium anode resulted in the cleavage of an oxygen-sulfur bond of 1 to give the corresponding β -keto carboxylic acids (2a-2e) in yields of 28-77%. © 1998 Elsevier Science Ltd. All rights reserved.

It has been reported by Silvestri^{1,2} and Perichon^{3,4} that electrochemical carboxylation of organic halides or carbonyl compounds readily occurs under an atmospheric pressure of carbon dioxide to give the corresponding carboxylic acids in high yields when a sacrificial anode, such as a magnesium or aluminum metal, is used in the electrolysis. We recently reported the regioselective synthesis of γ -substituted β , γ -unsaturated carboxylic acids, ⁵ allenic acids, ⁶ and 3-methylene-4-pentenoic acid⁷ by the electrochemical carboxylation of γ -substituted allylic halides, substituted propargylic halides, and 2-bromomethyl-1,4-dibromo-2-butene, respectively, using a magnesium anode. We also reported the efficient electrochemical carboxylation of phenyl-substituted vinyl bromides to give the corresponding α , β -unsaturated carboxylic acids.⁸ We also found that electrochemical carboxylation of alkyl-substituted vinyl bromides occurred in high yields to give the corresponding α , β -unsaturated carboxylic acids when the electrochemical carboxylation was carried out in the presence of 20 mol% of NiBr₂-bpy complex.⁹ On the other hand, quite recently, Jutand reported similar electrochemical synthesis of α , β -unsaturated carboxylic acids by palladium-catalyzed electrochemical carboxylation of vinyl triflates.¹⁰ Their paper prompted us to publish our recent results on a new electrochemical carboxylation of vinyl triflates giving β -keto carboxylic acids.

The trifluoromethanesulfonate group is well known to be an excellent leaving group and, hence, a cleavage of the vinyl carbon-oxygen bond occurs in usual chemical reactions of vinyl triflates. Thus, vinyl triflates have been used as precursors of vinyl cations in various synthetic transformations.¹¹ On the other hand, the present electrochemical carboxylation of vinyl triflates is very unique since a cleavage of the oxygen-sulfur bond can take place to generate the corresponding enolates as an intermediate.

Vinyl triflates 1 were readily prepared in 73-98% yields from the corresponding ketones by their reactions with trifluoromethanesulfonic anhydride in the presence of 2,6-di-*t*-butyl-4-methylpyridine.¹² A 4:1 mixture of two isomeric vinyl triflates (1e and 1f) was obtained in the reaction of β -tetralone.

Electrochemical carboxylation of vinyl triflates 1 (6 mmol) in a DMF solution containing 0.1M Bu_4NBF_4 (15 ml) under an atmospheric pressure of carbon dioxide gave the corresponding β -keto carboxylic acids 2 in

good yields (Scheme 1). Electrolysis was carried out at 5 °C at a constant current of 10 mA/cm² in a onecompartment cell equipped with a platinum plate cathode (2x3 cm²) and a magnesium rod anode (3 mm ϕ). Electricity of 3 Faradays per mol of 1 was passed in these carboxylations. Usual acid treatment of the electrolyzed mixture gave β -keto carboxylic acids 2. The yields of products 2a-2e are summarized in Table 1.

Scheme 1	1
----------	---

Substrate		Product		Yield of 2 (%) ^b
от С	1a	CO2H	2a	75 (100)
	1b	CO ² H	2b	56 (89)
ОТТ	1c	CO2H	2c	28 (59)
CTT.	1d	CO2H	2d	71 (81)
	10	C0₂H	2e	77 (87)
COLOTH 1	1f			

Table 1. Electrochemical Carboxylation of Vinyl Triflates (1a-1f)^a

a) Vinylic triflate (1a-1f)(6 mmol) in 0.1M Bu₄NBF₄-DMF (15 ml) was electrolyzed at 10 mA/cm² under an atmospheric carbon dioxide with a platinum cathode and a magnesium anode. Electricity passed was 3 Faradays per mol of 1.

b) Isolated yields. Yields based on reacted vinyl triflates are shown in parentheses.

None of β -keto carboxylic acid arising from 1f was obtained in the electrochemical carboxylation of a mixture of 1e and 1f. In this case, 1f was almost recovered unreacted. This result shows that phenyl-substituted vinyl triflates are more reactive than alkyl-substituted ones. A similar tendency has been observed in the electrochemical carboxylation of phenyl-substituted⁸ and alkyl-substituted vinyl bromides.⁹

The use of a magnesium anode and the presence of reduced species of carbon dioxide are necessary for efficient carboxylation of vinyl triflates. Electrochemical carboxylation of 1a by the use of a platinum cathode and a platinum anode did not give β -keto acid 2a. Even in the presence of electrogenerated magnesium bromide,¹³ electrochemical carboxylation of **1a** with a platinum cathode and anode also gave no **2a**. Therefore, the present electrochemical carboxylation of vinyl triflates giving β -keto carboxylic acids can be achieved only when a reduction of carbon dioxide followed by a fragmentation of vinyl triflates and the formation of magnesium ion by dissolution of a magnesium anode take place at the same time and in the same compartment.⁵ It was also confirmed that no reduction of 1a and no cleavage of the oxygen-sulfur bond occurred when the electrochemical reduction of 1a was carried out in the absence of carbon dioxide with a platinum cathode and a magnesium anode. In these electrolyses, the starting vinyl triflate la was almost recovered. Cyclic voltammetry of 1a showed no reduction peak at > -2.9 V vs Ag/Ag⁺. On the other hand, the reduction peak potential of carbon dioxide in DMF containing 0.1 M Bu₄NBF₄ is -2.6 V vs Ag/Ag⁺. Carbon dioxide is more readily reduced than vinyl triflate 1a. The probable reaction pathways of the present electrochemical carboxylation are shown in Scheme 2. A one-electron reduction of carbon dioxide generates an anion radical of CO₂, which induces the cleavage of an oxygen-sulfur bond of 1 by a nucleophilic attack at sulfur or by an electron transfer reaction.¹⁴ An enolate A thus generated is trapped by atmospheric carbon dioxide to give β -keto carboxylate ion (B). At the anode, on the other hand, a dissolution of magnesium metal takes place to give magnesium ions. The magnesium ion readily captures β -keto carboxylate (B) to give the stable magnesium carboxylate C or D. Acid treatment of C or D gives β -keto carboxylic acid 2. The exact mechanism of the step in which an enolate A is formed is unclear at the present stage. However, a study of cyclic voltammetry showed that the reduction current of carbon dioxide was considerably enhanced by the addition of 1a to a DMF solution containing carbon dioxide (Fig. 1). This result suggests that an anion radical of carbon dioxide actually induces the cleavage of an

Scheme 2

oxygen-sulfur bond of 1 to give A.¹⁴ A detailed study on the reaction mechanism of the present electrochemical carboxylation is now in progress.

Fig. 1. Cyclic voltammograms of CO₂ and 1a in 0.1M Bu₄NBF₄-DMF (Au disc electrode (1.6 mmø); scan rate=0.1 Vs⁻¹)
a) 0.1 M Bu₄NBF₄-DMF; b) CO₂; c) CO₂ + 8.9 mM 1a

Acknowledgment: This work was supported in part by a Grant-in-Aid for Scientific Research (A) (No.07555580) from The Ministry of Education, Science, Sports and Culture. The authors thank Dr. K. Momota of Morita Chemical Co. for supplying trifluoromethanesulfonic anhydride.

REFERENCES AND NOTES

- 1. Silvetsri, G.; Gambino, S.; Filardo, G.; Gulotta, A. Angew. Chem. Int. Ed. Engl., 1984, 23, 979-980.
- 2. Silvetsri, G.; Gambino, S.; Filardo, G. Acta Chem. Scand., 1991, 45, 987-992.
- 3. Sock, O.; Troupel, M.; Perichon, J. Tetrahedron Lett., 1985, 26, 1509-1512.
- Chaussard, J.; Folest, J. C.; Nedelec, J. Y.; Perichon, J.; Sibille, S.; Troupel, M. Synthesis, 1990, 369-381.
- 5. Tokuda, M.; Kabuki, T.; Katoh, Y.; Suginome, H. Tetrahedron Lett., 1995, 36, 3345-3348.
- 6. Tokuda, M.; Kabuki, T.; Suginome, H. DENKI KAGAKU, 1994, 62, 1144-1147.
- 7. Tokuda, M.; Yoshikawa, A.; Suginome, H.; Senboku, H. Synthesis, 1997, in press.
- 8. Kamekawa, H.; Senboku, H.; Tokuda, M. Electrochimica Acta, 1997, 42, 2117-2123.
- 9. Kamekawa, H.; Kudoh, H.; Senboku, H.; Tokuda, M. Chem. Lett., 1997, 917-918.
- 10. Jutand, A.; Négri, S. Synlett, 1997, 719-721.
- 11. Ritter, K. Synthesis, 1993, 735-762.
- 12. Jigajinni, V. B.; Wightman, R. H. Tetrahedron Lett., 1982, 23, 117-120; Stang, P.J.; Treptow, W. Synthesis, 1980, 283-284.
- 13. Magnesium bromide, which is soluble in a DMF solution, can be prepared by electrolysis of 1,2dibromoethane with a platinum cathode and a magnesium anode.
- 14. Magnesium ions generated by dissolution of a magnesium anode might play an important role in the cleavage of an oxygen-sulfur bond of 1, since the electrolysis of 1a using a platinum cathode and anode in the presence of CO_2 gave no 2a, and 1a was almost recovered.