## STUDIES IN THE IMIDAZOLE SERIES

XL. Synthesis of New Di-, Tri-, and Tetrasubstituted Derivatives of Pyrrolo[1,2-a] Benzimidazole\*

## R. M. Palei and P. M. Kochergin

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 5, pp. 865-868, 1969

UDC 547.785.5'741.07

A study was made of the action of primary and secondary  $\alpha$ -halogen ketones on 1,2-di- and 1,2,5,6-tetrasubstituted derivatives of benzimidazole. The peculiarities of the structure of the residues of the ketone in position 3 of the quaternary salts of benzimidazole affected the process of their intramolecular cyclization under the action of sodium bicarbonate. A number of new di-, tri-, and tetrasubstituted derivatives of pyrrolo[1,2- $\alpha$ ]benzimidazole were obtained.

In continuing studies [1,2] with the object of obtaining new di-, tri-, and tetra-substituted derivatives of pyrrolo [1,2-a] benzimidazole for biological tests, it was of interest to investigate in more detail the quaternization by primary and secondary  $\alpha$ -halogen ketones of 1,2-di and 1,2,5,6-tetrasubstituted derivatives of benzimidazole, and also to elucidate the effect of the peculiarities of the structure of the ketone residue in position 3 of the quaternary salts of benzimidazole on the process of closure of the pyrrole ring.

It was found that during the interaction of 1,2-diand 1,2,5,6-tetrasubstituted derivatives of benzimidazole (XXXVII-XL, XLII) both with primary and secondary  $\alpha$ -bromo ketones of the aliphatic, aliphatic-aromatic and heterocyclic series in acetone, the corresponding quaternary salts of benzimidazole (I-XIX, Table 1) are formed. In certain cases with secondary bromoketones there is a decrease in the yields of the salts up to 28-36% (VI,X, and XV) which is apparently on account of the lower stability of these halogen ketones or spatial difficulties. The reaction does not proceed so readily with the  $\alpha$ -chloro ketones, and prolonged boiling is required (up to 20 hrs in comparison with 1-3 hrs in the case of bromo ketones) to produce a yield of approximately 50% (V).

The structure of the ketone residue in position 3 of the benzimidazole salts has a much greater effect on the process of their intramolecular condensation in an aqueous solution of NaHCO<sub>3</sub> and on the physicochemical properties of the pyrrolobenzimidazoles obtained. Thus halogenides of 3-phenacylbenzimidazole (IV-VI, XI-XIII, XVI, XVIII, and XIX), irrespective of the nature of the substitutes in the n-position of the benzene nucleus of the ketone, readily undergo cyclization with the formation of the corresponding 2-arylsubstituted pyrrolobenzimidazoles (XXII-XXIV, XXVIII-XXX, XXXIII, XXXV, and XXXVI, Table 2).

Bromides of benzimidazole (I, II, VII-IX, XIV, and XVII, Table 1), containing residues of aliphatic and heterocyclic ketones in position 3 are also converted

\*For part XXXIX, see [11].

into alkylpyrrolobenzimidazoles with satisfactory yields. These substances, as distinct from the arylpyrrolobenzimidazoles, have low melting points or are liquid compounds unstable in air. For the analysis they were characterized in the form of hydrochlorides or pierates (XX, XXI, XXV-XXVII, XXXI, XXXII, and XXXIV, Table 2).

On heating the bromides of  $3-(\alpha$ -phenylacetonyl) benzimidazole (III, VII, and X, Table 1) in an aqueous solution of NaHCO<sub>3</sub>, the reaction proceeds in a different manner. In the case of compound VIII pyrrolobenzimidazole (XXVI) was obtained with a satisfactory yield. Compounds III and X undergo cleavage with the formation of the corresponding 1, 2-diakylbenzimidazoles (XXXVII and XL), as has been observed for certain halogenides of  $3-\beta$ -ketoalkyl(aralkyl)imidazole [3, 4]. One should note that electron donor substitutes (CH<sub>3</sub> group) in the benzole ring of 1, 2-disubstituted derivatives of benzimidazole have no effect either on their reaction of quaternization, or on the process of cyclization of benzimidazole salts.

After the experimental part of our article had been completed, a letter to the editor by F. S. Babichev and A. F. Babicheva [5] appeared in which it was reported that these authors, independently of our studies [1, 2], synthesized certain derivatives of pyrrolo[1, 2-a]benzimidazole by an analogous method.

## **EXPERIMENT AL**

- 1,2-Dimethyl, 1-Ethyl-2-Methyl- and 1-Methyl-2-Benzylbenzimidazoles (XXXVII-XXXIX) were prepared previously [2].
- 1-Methyl-2-ethylbenzimidazole (XL) was obtained by methylation of 2-ethylbenzimidazole [6] by two methods. With methyl iodide (as described for the synthesis of 1-methylbenzimidazole [7]) and with the methyl ester of benzosulfo acid (as described for the synthesis of 1,2-dimethylbenzimidazole [2]). The yields were 66% and 37% respectively. Bp 148-150° C. Picrate, mp 245-246° C. According to data in the literature [8], the mp is 54.5-55.5° C. The picrate has an mp of 235-236° C.
- 2,5,6-Trimethylbenzimidazole (XLI) was obtained by boiling 4,5-diamino-o-xylol with acetic acid, as described for 2-methylbenzimidazole [6]. Yield, 97%, mp. 235-237° C (from dimethylformamide). According to data in the literature [9], the mp is 233-234° C, and according to other data [10], the mp is 229-231° C.
- 1,2,5,6-Tetramethylbenzimidazole (XLII) was obtained by methylation of compound XLI with methyl iodide in an analogous manner to compound XL. Yield 86%, mp  $165-167^{\circ}$  C. According to data in the literature [9], the mp is  $164^{\circ}$  C.

Halogenides of 1,2-dialkyl-3- $\beta$ -ketoalkyl(aralkyl)benzimidazole (I-XIX, Table 1) were prepared by the interaction between compounds **XXXVII-XL**, **XLII** and  $\alpha$ -halogenketones according to a previously described method [2].

| Table 1 | R N K' | Br CH-CO-R |
|---------|--------|------------|
|---------|--------|------------|

| Yield,        | %                 | 79                                                 | 68              | 69          | 83                                                 | 49                                                | 36         | 2         | 62      | 35      | 28              | 8                             | 22                                | 8       | 8       | 9           | 282          | 8           | 8          | 8                                                                |  |
|---------------|-------------------|----------------------------------------------------|-----------------|-------------|----------------------------------------------------|---------------------------------------------------|------------|-----------|---------|---------|-----------------|-------------------------------|-----------------------------------|---------|---------|-------------|--------------|-------------|------------|------------------------------------------------------------------|--|
| Calculated, % | z                 | 9.43                                               | 8.61            | 2.80        | 7.79                                               | 8.03                                              | 6.43       | 9.01      | 7.50    | 7.67    | 7.50            | 7.79                          | 1                                 | 10.39   | 7.79    | 7.50        | 9.01         | 9.00        | 7.50       | 6.19                                                             |  |
|               | Br                | 26.88                                              | 24.57           | 22.24       | 22.24                                              | 10.14                                             | 18.35      | 25.67     | 21.41   | 21.89   | 21.41           | 22,24                         | 36.48                             | 19.76   | 1       | 21.40       | 17.13        | 25.67       | 21.40      | 35.34                                                            |  |
|               | Ξ                 | 5.76                                               | 6.51            | 5,33        | 5.33                                               | 6.07                                              | 5.32       | 6.15      | 2,67    | 4.69    | 2.67            | 5.33                          | 4.14                              | 4.48    | 5,33    | 2.67        | 4.30         | 6.15        | 5.67       | 4.45                                                             |  |
|               | υ                 | 52.53                                              | 55.39           | 60.17       | 60.17                                              | 61.39                                             | 66.21      | 54.03     | 61.13   | 52.60   | 61.13           | 60.17                         | 49.34                             | 53.47   | 60.17   | 61.13       | 59.24        | 54.02       | 61.13      | 50.44                                                            |  |
|               | z                 | 9,33                                               | 8.40            | 7.81        | 7.69                                               | 7.82                                              | 6.25       | 8.86      | 7.48    | 7.35    | 7.71            | 7.56                          | I                                 | 10.45   | 8.13    | 7.13        | 60.6         | 9.23        | 7.67       | 6.09                                                             |  |
| d, %          | Br                | 27.10                                              | 24.28           | 22.30       | 22.04                                              | 10,30                                             | 18.12      | 26.04     | 21.76   | 22.01   | 21.58           | 22.51                         | 36.16                             | 19.85   | 1       | 21.52       | 17.41        | 25.85       | 21.64      | 35.56                                                            |  |
| Found, %      | H                 | 5.74                                               | 6.72            | 5.59        | 5.32                                               | 6.14                                              | 5.41       | 5.96      | 5.77    | 4.67    | 5.66            | 5.26                          | 4.37                              | 4.61    | 5.01    | 2.30        | 4.26         | 6.41        | 5.61       | 4.43                                                             |  |
|               | O                 | 52.40                                              | 55.16           | 29.68       | 29.77                                              | 61.74                                             | 65.97      | 53.90     | 61.41   | 52.21   | 60.71           | 60.02                         | 49.15                             | 53.61   | 60.14   | 61.26       | 59.29        | 53.68       | 60.76      | 50.37                                                            |  |
| 4             | Empirical formula | C <sub>13</sub> H <sub>17</sub> BrN <sub>2</sub> O | C15H21BriN2O    | C18H19BrN2O | C <sub>18</sub> H <sub>19</sub> BrN <sub>2</sub> O |                                                   |            |           |         |         |                 | C18H19BrN2O                   |                                   |         |         | CigH21BrN2O | C23H23BrN3O3 | C14H19BrN2O | CieHe Bryo | C <sub>19</sub> H <sub>20</sub> Br <sub>2</sub> N <sub>2</sub> O |  |
| Mp,°C         | (decomp.)a        | 255—257                                            | 236-238         | 217—218     | 235—237                                            | 211-213                                           | 243-244    | 261 - 262 | 216-217 | 223-224 | 241-242         | 226-228                       | 233-234                           | 244-246 | 213-215 | 217-219     |              | 264—266     | t          | -                                                                |  |
| 7             | ż                 | CH3                                                | C3H,            | Ç,          | Ξ                                                  | Ξ                                                 | CH         | CH        | CoH     | H       | CH              | Ξ                             | Ξ                                 | Ξ       | Ξ       | ĊĦĴ         | Ξ            | Ξ           | 7          | Ξ                                                                |  |
| R.            |                   | CH3                                                | CH <sub>3</sub> | CH3         | P-CH <sub>3</sub> -C <sub>6</sub> H <sub>4</sub>   | p-CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub> | p-C,H,-C,H | CH3       | CH,     | C,H,Sd  | CH3.            | C <sub>6</sub> H <sub>5</sub> | p-BrC <sub>6</sub> H <sub>4</sub> | P-ONC.H | LH.     | CH.         | m-O,NC,H,    | CH          | Ť          | n-BrCeH4                                                         |  |
| Î             | ž                 | H                                                  | I               | I           | Ξ                                                  | I                                                 | I          | I         | Ξ       | Ξ       | CH <sub>3</sub> | CH3                           | ĊĦ,                               | CH,     | CH      | CH          | C,H;         | Ξ.          | Ξ          | ==                                                               |  |
| i             | ×                 | CH3                                                | CH3             | Ë,          | CH³                                                | CH,                                               | CH3        | C2H5      | C2H5    | C.H.    | CH              | CH3                           | CH³                               | CH      | H)      | CH.         | CH3          | CH          | Ë          | CH3                                                              |  |
|               | ×                 | Н                                                  | I               | I           | I                                                  | Ξ                                                 | I          | I         | I       | Ξ       | I               | H                             | H                                 | Ξ       | I       | Ξ           | Ξ            | CH3         | CH,        | CH3                                                              |  |
| Com-<br>pound |                   |                                                    | ll p            | Ξ           | <u>&gt;</u>                                        | ر<br>د                                            | ΙΛ         | qIIΛ      | VIII    | ×       | ×               | ×                             | XII                               | XIII    | ΛIX     | X           | XVI          | XVII        | XVIII      | XIX                                                              |  |

<sup>1</sup>For analysis the compounds were purified by crystallization from anhydrous ethanol (I,II,IV,V,VII,IX-XV, and XVII-XI) ether from anhydrous ethanol (III,VIII, and XVI).

<sup>b</sup>The values of  $p_{CO}$  in cm<sup>-1</sup> in the IR spectra (recorded in vaseline oil in the UR-10 apparatus) are: 1723 (II), 1735 (VII).

<sup>c</sup>Compound V represent the corresponding chloride. dC<sub>4</sub>H<sub>3</sub>S=thienyl-2. Found %: S 8.44. Calculated, %: S 8.78.

| نو ا              | . ;      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Yield             | 28       | 77<br>670<br>70<br>70<br>70<br>70<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Calculated, %     | z        | 10.34<br>15.38<br>10.14<br>10.14<br>13.91<br>13.91<br>14.31<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44<br>11.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | н        | 7.07<br>4.65<br>6.19<br>6.19<br>6.19<br>6.19<br>6.19<br>6.19<br>6.19<br>6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cal               | v        | 57.66<br>55.38<br>83.34<br>77.83<br>88.30<br>88.30<br>88.30<br>55.46<br>83.30<br>83.30<br>75.19<br>75.19<br>68.31<br>75.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | z        | 10.22<br>10.86<br>10.86<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16<br>10.16     |
| Found, %          | Ξ        | 6.69<br>6.274<br>6.274<br>6.274<br>7.502<br>7.502<br>7.503<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7.500<br>7 |
| 1                 | C        | 55.480<br>55.480<br>78.83.244<br>78.556<br>59.530<br>71.20<br>71.20<br>71.20<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>68.3.19<br>74.75<br>74.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Empirical formula |          | C <sub>13</sub> H <sub>14</sub> N <sub>2</sub> . HCI. · 2H <sub>2</sub> O<br>C <sub>15</sub> H <sub>18</sub> N <sub>2</sub> . · G <sub>4</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub><br>C <sub>14</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>14</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>14</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>19</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>19</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>19</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub><br>C <sub>19</sub> H <sub>16</sub> N <sub>2</sub> . · C <sub>6</sub> H <sub>3</sub> N <sub>3</sub> O <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mp,°C             | (decomb) | 114—116<br>136—138<br>131—132<br>141—142<br>191—192<br>138—140<br>138—140<br>138—140<br>138—141<br>162—163<br>143—154<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>172—173<br>173—173<br>173—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—173<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174—174<br>174<br>174<br>174<br>174<br>174<br>174<br>174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                 | ž.       | nanaganananggangganggangganggangganggan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| î                 | R.       | CH3<br>CH3<br>CH3<br>P-CH3CGH4<br>P-CH3CGH4<br>CH3<br>CH3SG<br>CH3SG<br>CGH3SG<br>CGH3<br>P-BrCGH4<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | <br>     | TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ī                 | ž.       | ĔĔĔĔĔĨĬĬĬĬĔĔĔĔĔĔĔĔĔĔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,                 | ez       | EEEEEEEEEEEEEEÉÉÉÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Com-              | punod    | XXXIIIP<br>XXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIIIP<br>XXXXIII<br>XXXXIII<br>XXXIII<br>XXXXIII<br>XXXXIII<br>XXXXIII<br>XXXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXIII<br>XXXI                                                                                                                                                                                                                                                                |

\*For analysis the compounds were purified by crystalization from: acetone (XXI); ethanol (XXII, and XXXII); dimethylformamide (XXIV,XXVIII-XXX,XXXIII,XXX,XXXII); and XXXXV, and XXXXV, and XXXVI); at the third of dimethylformamide and water (XXXIV); and by precipitation with ether from anilydrous ethanol (XX). bUy spectra (recorded in alcoholic solutions in the EBS-3 appearatus). Compounds, Amax, nn (10ge); XXII, 330 (330), 263 (4.20); 263 (4.20); XXIV, 369 (4.60), 256 (4.22); XXXIII, 268 (4.35). Found %: Cl 13.34. Calculated, %: Cl 13.30. Picrate with a mp of 151-153 °C (from water, decomp.). Found, %: N 16.30. Calculated, %: N 16.39. According to data in the literature [5] of the base of XX, 96° C., mp C<sub>4</sub>H<sub>3</sub>thienyl-2. The compound is chromatographically pure. Picrate, mp 155-156° C (from water, decomp.). Found, %: C 88.79; H 4.02; N 14.11., mp Calculated for C<sub>18</sub>H<sub>16</sub>N<sub>2</sub> · C<sub>18</sub>H<sub>16</sub>N<sub>2</sub> · C<sub>18</sub>H<sub>2</sub>SO, %: C Calculated, %: Br 23.56. Fround, %: Br 22.74.

Pyrrolo[1,2-ß]benzimidazoles (XX-XXXVI, Table 2) were obtained by boiling compounds I, II, IV-IX, and XI-XIX in an aqueous solution of NaHCO<sub>3</sub> by previously described methods [1,2]. The bases of compounds XX, XXI, XXV-XXVII, XXXII, XXXII and XXXIV were extracted with ether. Because of their instability they were characterized as hydrochlorides or picrates. On heating compounds III and X under the same conditions, extraction of the reaction solutions with ether and addition of picric acid, picrates of 1,2-dialkylbenzimidazoles XXXVII (mp 235-237° C) and XL (mp. 245-246° C) were isolated with yields of 35% and 77% respectively.

## REFERENCES

- 1. P. M. Kochergin, A. A. Druzhinina, and R. M. Palei, KhGS [Chemistry of Heterocyclic Compounds], 149, 1966.
- 2. R. M. Palei and P. M. Kochergin, KgGS [Chemistry of Heterocyclic Compounds], 536, 1967.
- 3. A. A. Druzhinina and P. M. Kochergin, KhGS [Chemistry of Heterocyclic Compounds], 527, 1967.
- 4. A. A. Druzhinina, P. M. Kochergin, and N. P. Bychkova, KhGS [Chemistry of Heterocyclic Compounds], 856, 1969.

- 5. F. S. Babichev and A. F. Babicheva, KhGS [Chemistry of Heterocyclic Compounds], 187, 1967.
- 6. W. O. Pool, H. I. Harwood, and A. W. Ralston, J. Am. Chem. Soc., 59, 178, 1937.
- 7. A. F. Pozharskii and A. M. Simonov, ZhOKh, **33**, 197, 1963.
- 8. R. Weidenhagen, G. Train, H. Wegner, and L. Nordström, Ber., 75, 1936, 1942.
- 9. G. R. Beaven, E. R. Holiday, E. A. Johnson, B. Ellis, P. Mamalis, V. Petrow, and B. Sturgeon, J. Pharm. Pharmacol., 1, 957, 1949.
- 10. G. R. T. Vegyeszeti, Hungarian Patent no. 149980, 1963; Chemical Abstracts, **59**, 14000, 1963.
- 11. A. A. Druzhinina and P. M. Kochergin, KhGS [Chemistry of Heterocyclic Compounds], 862, 1969.

21 June 1967

Ordzhonikidze All-Union Chemical and Pharmaceutical Research Institute, Moscow.