Zinc(II) complexes of sulfinamides—II. t-Butyl N-(hydroxyphenyl) and t-butyl N-(o-aminophenyl) sulfinamoyl acetates

M BALTAS, J D BASTIDE, L CAZAUX, L GORRICHON-GUIGON, P MARONI and P TISNES Laboratoire de Synthese et Physicochimie organique et Unite associee au CNRS No 471, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France

(Received 28 July 1984)

Abstract—The $ZnBr_2$ complexes of the four title sulfinamoylesters were formed and investigated by NMR and ir techniques The stoichiometry of the complexes greatly depends on the position of the amino or hydroxyl substituents on the aromatic ring Nevertheless, the occurrence of a tetracoordinated zinc atom is suggested for all the complexes

1 INTRODUCTION

In our preceding paper [1] the complexation with $ZnBr_2$ and $ZnCl_2$ of t-butyl N-phenyl sulfinamoylacetate V and other related compounds was examined A stoichiometry of 2L Zn(II) and a tetrahedral arrangement around the zinc atom were found

The $ZnBr_2$ complexes of the four phenyl substituted ligands I–IV are now studied, the slightly soluble $ZnCl_2$ complexes are not detailed herein

These ligands (I-IV) possess in each case a new potential coordinating site on the phenyl ring and various Zn(II) complexes can be expected

Such compounds, especially I and II, are strong inactivators of coniferyl alcohol dehydrogenase, a zinc-containing metalloenzyme [2], and this complexation study was initiated to model roughly the enzymatic site, as previously done by JAGODZINSKI and PETITCOLAS [3] for horse liver alcohol dehydrogenase

2 EXPERIMENTAL

21 Synthesis of sulfinamoylesters

t-Butyl bromoacetate (69 mmol) and zinc chips (77 mmol) activated by iodine crystal were refluxed in dimethoxyethane (70 cm³) After 1/2 h heating, the reaction mixture turned cloudy On refluxing 4 h more the bromozincic derivative yielded up to 90% Then, the reaction medium was cooled to 0°C and the appropriate sulfinylamine (30 mmol) in solution in dimethoxymethane (50 cm³) was introduced dropwise under magnetic stirring

The mixture was stirred at 0°C 1/2 h more Then, it was hydrolysed at the same temperature with 20% aqueous ammonium chloride and extracted with ether Ether was removed and the sulfinamoyl acetates obtained in 50–60% yield after successive recrystallization from ether petroleum ether (50 50)

t-Butyl N-(O-aminophenyl) sulfinamoylacetate I (m $p \ 87^{\circ}$ C) ¹H NMR (ppm, CDCl₃) = 7 2–7 7 (m, 5H), 3 78 (s, 2H), 3 59 (s, 2H), 1 52 (s, 9H)

t-Butyl N-(O-hydroxyphenyl) sulfinamoylacetate II ($m p 118^{\circ}$ C) ¹H NMR (ppm, CDCl₃) 7 2–6 8 (m, 5H), 6 5 (s, 1H), 3 8 (s, 2H), 1 48 (s, 9H)

t-Butyl N-(m-hydroxyphenyl) sulfinamoyl acetate III (m p 100° C) ³H NMR (ppm, CDCl₃) 78–79 (m, 2H), 74–66 (m, 4H), 395 (s, 2H), 145 (s, 9H)

t-Butyl N-(p-hydroxyphenyl) sulfinamoylacetate IV (m p 136° C) ¹H NMR (ppm, CDCl₃) 80 (s, 1H), 70–66 (m, 5H), 38 (s, 2H), 15 (s, 9H)

$$\begin{array}{c} \mathbf{X} = \mathbf{o} - \mathbf{N}\mathbf{H}_2 \quad \mathbf{I} \\ \mathbf{o} - \mathbf{O}\mathbf{H} \quad \mathbf{I}\mathbf{I} \\ \mathbf{m} - \mathbf{O}\mathbf{H} \quad \mathbf{I}\mathbf{I} \\ \mathbf{p} - \mathbf{O}\mathbf{H} \quad \mathbf{I}\mathbf{V} \\ \mathbf{H} \quad \mathbf{V} \end{array}$$

22 Preparation of zinc complexes

They were prepared as previously reported [1] Lower concentrations (0 01 M) and ultrasonic assistance are useful for the solubilization of compound IV

23 Spectra

¹H NMR spectra were performed on a Bruker WH90 for solutions in CDCl₃ with Me₄Si as internal reference. Infrared spectra were recorded on Beckman IR9 and Perkin–Elmer 683 spectrometers in KBr pellets for solids and in 0.05 M CHCl₃ solution by using NaCl 0.5 mm cells in the 4000-400 cm⁻¹ frequency range and polyethylene cells in the 600-200 cm⁻¹ range

3 RESULTS AND DISCUSSION

3.1 Stoichiometry of the complexes

As previously reported [1] the break point of the curve $\Delta \delta_i = f(\rho[Zn]/[L])$ for CH₂ and NH protons gives information about the stoichiometry of the complex (see Fig 1 for the CH₂ proton) The plot for the unsubstituted *N*-phenyl compound V is drawn as a comparative model Thus, the following stoichiometries are obtained

Compound	Ι	II	Ш	IV	V	
Zn L	11	1 1	2 1	12	12	

Compounds I and II are, respectively, substituted by ortho NH_2 or OH groups showing 1 1 stoichiometries

Fig 1 ¹H Chemical shift variation ($\Delta \delta_{CH}$) as a function of $\rho = [Zn^{2+}]/[L]$ in CDCl₃

Table 1 lists the slopes of the straight lines corresponding to the first part of the curves at low ρ values They are informative about the position of the protons studied with respect to the complexing site Thus, the ratio of the slope for CH₂ and NH protons is 1 5 for V,10 for III and 04 for I and II By comparison amide group The cyclic *cis* (CCD) and acyclic *trans* (ATD) dimeric association patterns suggested for the *N*-phenyl compound V[1] are valuable for I too But the additional intra- (or inter-) molecular chelation NH_2 O=S is also to be considered in monomeric (M) or dimeric forms ($R = CH_2COOtBu$)

(ATD)

with the unsubstituted reference compound V the OH and NH_2 ortho substituents increase the shift effect on the NH sulfinamoyl proton indicating its greater proximity to the metal This effect is less pronounced for the meta substitution

32 Infrared study (Table 2)

t-Butyl N-(o-*aminophenyl*) sulfinamoyl acetate I Four v(NH) bands are observed for the ligand in 0.05 M CHCl₃ at 3450 and 3350 cm⁻¹ and at 3295 and 3260 cm⁻¹ The two higher frequency bands can be assigned to the amine group and the other two to the The 3450 and 3350 cm^{-1} frequencies support the participation of the amino group in hydrogen bonding For instance, *p*-bromoaniline associated with butyl-oxide [4] presents two v(NH) with the NH group *anti* and *syn*, respectively, at 3473 and 3364 cm⁻¹ for the 1 1 complex and 3442 and 3359 cm⁻¹ for the 1 2 complex, DMSO gives only the 1 2 complex Similarly, (2-aminophenyl) methyl sulphone intramolecularly hydrogen bonded shows two v(NH) bands at 3473 and 3367 cm⁻¹ while (NH) bands for the *para* derivative are found at 3500 and 3408 cm⁻¹ [5]

When $ZnBr_2$ is added, the v(C=O) and v(C-O)

Table 1 Slopes of the straight lines $\Delta \delta_{CH} = f(\rho)$ at low ρ values

	Compound				
	I	II	III	IV	V
CH ₂ slope	0 16	0 25	017	0 30	0 58
NH slope	0 42	0 64	017	_	0 39

bands remain unchanged, but important frequency decreases are observed for (1) the NH stretching bands which now lie in the 3220 cm⁻¹ region (broad band with two shoulders at 3310 and 3140 cm⁻¹), a v(NH) band was found [6] at the same frequency (3220 cm⁻¹) for the *p*-NH₂-C₆H₄COC₆H₅ ZnBr₂ complex, (11) the $\delta(NH)$ deformation band (Δv = 45 cm⁻¹) but only 25 cm⁻¹ in the above mentioned amino complex, (11) the v(S=O) vibration (Δv = 70 cm⁻¹)

Moreover, two new bands are observed at 475 and 275 cm⁻¹ The band at 275 cm⁻¹ was considered [1] as a possible v(Zn-O) and/or v(Zn-Br) vibration, while the band at 475 cm⁻¹ could be assigned to the v(Zn-N) vibration The frequency of this latter type of vibration greatly varies in the far i r region depending on the structure of the complexes In particular v(Zn-N) was found at 540 cm⁻¹ for the tetrahedral zinc complex with 2-ethylamino 1,3,4-thiadiazole [7],

the frequency decreases from tetracoordinated to hexacoordinated Zn(II) as, for instance, in the cases of ammine complexes v(ZnN) 414 cm⁻¹ for Zn(NH₃)₂Br₂ but only 294 cm⁻¹ for Zn(NH₃)₆Br₂[8]

These 1r results and the 1 1 stoichiometry determined by ¹H NMR spectroscopy lead us to suggest the following tetracoordinated structure (C) for the $ZnBr_2$ I complex (R = CH₂ COOtBu)

t-Butyl N-(o-hydroxyphenyl) sulfinamoyl acetate II In 0.05 M CHCl₃ compound II shows a weak free OH stretching vibration at 3600 cm⁻¹, polymeric OH and bonded NH bands at 3250–3380 cm⁻¹ On diluting up to 0.005 M the intensity of the 3250–3300 cm⁻¹ band decreases while those of the 3600 and 3380 cm⁻¹ bands increase

The frequency of the intramolecularly bonded OH vibrator greatly depends [9] on the nature of the proton acceptor and its position inside the molecule

	L	I ZnBr ₂ L	L	II ZnBr ₂ L	L	III 2ZnBr ₂ L	L	IV ZnBr ₂ 2L*
			3600 w	3510 m	3600 w	3515 s	3600 m	
v(OH)			3575	3430 w	2200 1	2420		
	2450	2210.1		3380 W	3200 sn	3430 W		
- AUN	3450	3310sh						
$v(\mathbf{NH})$	3330	2220						
amine	2205	3220	2200		22001-		22001	
$v(\mathbf{NH})$	3295	21.40.1	3300	22501	2200 DL	22201	3300 Dr	22501
amide	3260 sh	3140 sh	3250	3250 br	1727	3230 br	1795	3250 br
v(C=O)	1725 vs	1725 vs	1723 vs	1/21 vs	1/2/vs	1/29 vs	1/25 vs	1/26 s
0(NH)	1625 m	1580 br			44.60			
v(C-N)	1158 s	1155 s	1155 vs	1155	1160	1155	1160 s	1160 s
v(C–O)	1123 m	1120 m	1125 s	1123	1130	1131		
v(S=O)	1078 vs		1080 vs		1070 vs		1075 s	
v(S=O Zn)		1008 s		1008 vs		1008 s		995
v(S–N)	890 m	920 m	890 w	918 w	965 w	975 w	†	+
v(Zn–N)		475 m						
	(530 w	540 w		542 w		550 w		
	1		497 w	532 br	530 w	530 w	510 w	508 m
	462 m	462 w	470 sh	497 w				
Other bands	{	432 w	457 sh	457 m	458 w	46 0 w	463 w	
			435 s	431 w			430 w	
	390 w		382 w		380 w	380 w	378 w	390 w
	L 325 m	325 m	323 w	329 w	324 w	324 w	325 w	325 w
v(Zn Br)								
or		275 m		268 m		265 m		260 m
v(Zn O)								

Table 2 Principal 1r bands (cm⁻¹) of ligands and their zinc complexes in CHCl₃ 0.05 M

*0.01 M solution

†Very weak bands in this region

A 3380 cm⁻¹ value can be in agreement with a v(OH) related to an OH O=S intramolecular bond and/or with a v(free NH)

Different forms can be expected for this compound monomeric (M), dimeric (CCD) or (ATD) as for I, and polymerics

The 1r spectrum of the $ZnBr_2$ complex shows an important lowering of frequency for v(free OH) and v(S=O), respectively, 90 and 72 cm⁻¹ and the presence of a band at 268 cm⁻¹ assigned to ZnO or (and) ZnBr These results and the 1 1 stoichiometry determined by ¹H NMR are in agreement with a tetracoordinated structure of the (C) type as previously reported for the sulfinamoylester I

t-Butyl N-(m-hydroxyphenyl) sulfinamoyl acetate III Some differences appear between 1r spectra of compounds II and III Thus, in 0 005 CDCl₃ a very strong v (free OH) band is observed at 3600 cm^{-1} and broad bands around 3200 and 3300 cm⁻¹ with two shoulders at 3280 and 3320 cm^{-1} These two last frequencies are similar to those assigned to v(bonded NH) [1] for the unsubstituted compound V Consequently, in 0005 M CDCl₃ solution, dimeric forms are expected However, in 0.05 M CHCl₃ solution the intensity of the free OH band is very weakened, while that of the broad band at 3200 cm^{-1} is reinforced Thus, S=O HO and S=O HN associations occur In particular, the first type of chelation can be related to the 3200 cm⁻¹ frequency, a similar value (3212 cm^{-1}) being found for [9]

The 1r spectrum of the ZnBr₂ III complex shows the following peculiarities (1) no perturbation of v(C=O) and v(C-O), (11) an important lowering of frequency for v(OH), v(bonded NH) and v(S=O), respectively, 85, 70 and 62 cm⁻¹, (111) a new band in the far 1r region at 265 cm⁻¹ assigned to v(ZnO) and/or v(ZnBr), (1v) a 2 1 ZnBr₂ L stoichiometry These facts can be explained by a tetracoordinated zinc(II) provided that $ZnBr_2$ adopts a dimeric form as in the following scheme ($R = CH_2COOtBu$)

t-Butyl β -(p-hydroxyphenyl) sulfmamoylacetate IV This compound is slightly soluble in CHCl₃ so that a free OH is observed, the broad ν (NH) band at 3300 cm⁻¹ reveals dimeric association as for compound V [1] Zn(II) complexes of IV and V [1] are also comparable For instance, the following facts can be noticed (i) the same 2L ZnBr₂ stoichiometry, (ii) no perturbation for ν (C=O), (iii) a large decrease for ν (NH) and ν (S=O), respectively, 50 and 80 cm⁻¹ Although the solubilities of the complexes are different, the occurrence of a para hydroxyl group greatly increases the insolubility and similar tetracoordinated structures can be suggested for the two complexes

REFERENCES

- [1] M BALTAS, J D BASTIDE, A DE BLIC, L CAZAUX, L GORRICHON-GUIGON, P MARONI, M PERRY and P TISNES, Spectrochim Acta 41A, 789 (1985)
- [2] F SARNI, C GRAND and A BOUDET, Eur J Biochem 139, 259 (1984)
- [3] P W JAGODZINSKI and W L PETITCOLAS, J Am chem Soc 103, 234 (1981)
- [4] J LAURANSAN, P PINEAU and M L JOSIEN, Ann Chim 9, 213 (1964)
- [5] (a) A N HAMBLY and J BONNYMAN, Austr J Chem 11, 529 (1958), (b) A N HAMBLY and B V O'GRADY, Austr J Chem 17, 860 (1964)
- [6] I M VEZZOSI, A F ZANOLI and G PEYRONEL, Spectrochim Acta 36A, 1065 (1980)
- [7] A C FABRETTI, G C FRANCHINI and G PEYRONEL, Spectrochim Acta 38A, 175 (1982)
- [8] J R FERRARO, Low Frequency Vibrations of Inorganic and Coordination Compounds, p 194 Plenum Press, New York (1971)
- [9] W MASSCHELEIN, in Structure et Proprietes Moleculaires—VII Hydrocarbures et Fonctions Univalentes, p 399 Masson, Paris (1970)