COMMUNICATIONS

- [10] K. R. Rajashankar, S. Ramakumar, V. S. Chauhan, J. Am. Chem. Soc. 1992, 114, 9225.
- [11] K. R. Rajashankar, S. Ramakumar, T. K. Mal, R. M. Jain, V. S. Chauhan, Biopolymers 1995, 35, 141.
- [12] K. R. Rajashankar, S. Ramakumar, T. K. Mal, V. S. Chauhan, Angew. Chem. 1994, 106, 1048; Angew. Chem. Int. Ed. Engl. 1994, 33, 970.
- [13] K. R. Rajashankar, S. Ramakumar, R. M. Jain, V. S. Chauhan, J. Am. Chem. Soc. 1995, 117, 10129.
- [14] C. M. Venkatachalam, Biopolymers 1968, 6, 1425.
- [15] I. L. Karle, P. Balaram, Biochemistry 1990, 29, 6747.
- [16] C. Toniolo, E. Benedetti, Macromolecules 1991, 24, 4004.
- [17] G. R. Marshall, E. E. Hodgkin, D. A. Langs, G. D. Smith, J. Zabrocki, M. T. Leplawy, Proc. Natl. Acad. Sci. USA 1990, 87, 487.
- [18] W. F. DeGrado, Adv. Protein Chem. 1988, 39, 51.
- [19] C. Schellman in Protein Folding (Ed.: R. Jaenicke), Elsevier, Amsterdam, 1980, pp. 53-61.
- [20] E. N. Baker, R. E. Hubbard, Prog. Biophys. Mol. Biol. 1984, 44, 97.
- [21] E. J. Milner-White, J. Mol. Biol. 1988, 199, 503.
- [22] H. A. Nagarajaram, R. Sowdhamini, C. Ramakrishnan, P. Balaram, FEBS Lett. 1993, 321, 79.
- [23] J.S. Richardson, D. C. Richardson, Science 1988, 240, 1648.
- [24] R. Preissner, P. Bork, Biochem. Biophys. Res. Commun. 1991, 180, 660.
- [25] R. Aurora, R. Srinivasan, G. D. Rose, Science 1994, 264, 1126.
- [26] E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, A. Bavoso, C. Tarriela, M. Grierra, L. Santara, J. Chur, Sur, Paulie, Tarriela, 21009, 1990.
- Toniolo, M. Crisma, L. Sartore, J. Chem. Soc. Perkin Trans. 2 1990, 1829.
 [27] R. Bosch, G. Jung, H. Schmitt, W. Winter. Biopolymers 1985, 24, 961.
- [28] I. L. Karle, J. L. Flippen-Anderson, K. Uma, P. Balaram, Int. J. Peptide Protein Res. 1993, 42, 401.
- [29] Structure analysis of 1 (T = 295 K): Data were collected from a dry crystal mounted on a glass fiber by using a Enraf-Nonius CAD4 diffractometer. $M_r = 966.2 (C_{53}H_{71}N_7O_{10})$, monoclinic, space group $P2_1$, a = 10.953(2), $b = 20.065(2), c = 12.862(2) \text{ Å}, \beta = 95.1(1), V = 2815.3(7) \text{ Å}^3, Z = 2,$ $\rho_{coled} = 1.14 \text{ g cm}^{-3}$; Cu_{kx} radiation, $\lambda = 1.5418 \text{ Å}$, $\mu = 6.109 \text{ cm}^{-1}$; F(000) =1036.0, $2\theta = 130^\circ$, $(\omega - 2\theta)$ scans; 4926 independent reflections, of which 4674 with $|F_0| > 4\sigma(|F_0|)$ were considered as independent. Lorentz and polarization corrections were applied to the data, but no absorption correction was made. The structure was determined using the direct methods employing the SHELXS86 [29] computer program and full-matrix least-squares refinement was carried out using the software SHELXL93 [30]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms fixed on the basis of stereochemistry were used only for structure factor calculations. The atoms of the benzene ring in residue ΔPhe^6 (except C6G) were found to be disordered between two positions (see Fig. 1). These five atoms were refined isotropically with the effective occupancy adding up to 1. Final R-values (based on $|F_0|$) for the observed reflections 0.046, for all reflections 0.048, (based on I) for all reflections 0.136, GoF = 1.049. Crystallographic data (excluding structure factors) for the structure described in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-179-5". Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: Int. code +(1223)336-033; e-mail: teched(a chemcrys.cam.ac.uk).
- [30] a) G. M. Sheldrick, Crystallographic Computing, Vol. 3. Oxford University Press, New York, 1985, pp. 175; b) Acta Crystallogr. Sect. A 1990, 46, 467.
- [31] E. Benedetti, C. Pedone, C. Toniolo, G. Nemethy, M. S. Pottle, H. A. Scheraga, Int. J. Peptide Protein Res. 1980, 16, 156.
- [32] E. Benedetti, G. Morelli, G. Nemethy, H. Scheraga, Int. J. Peptide Protein Res. 1983, 22, 1.
- [33] C. Toniolo, Crit. Rev. Biochem. 1980, 9, 1.
- [34] E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, M. Crisma, 1g (1/1₀) Biopolymers 1992, 32, 453.
- [35] C. Toniolo, E. Benedetti, Trends Biochem. Sci. 1992, 16, 50.
- [36] D. J. Barlow, J. M. Thornton, J. Mol. Biol. 1988, 201, 601.

Chlorine Tetraoxide**

Hinrich Grothe and Helge Willner*

The existence of the ClO_4 radical, one of the simplest chlorine oxides ClO_x (x = 1-4), has not yet been unequivocally established. Yet it has been postulated as a reactive intermediate in several reactions and should be a binary compound of fundamental significance. ClO_4 is probably an intermediate in the photochemical formation of Cl_2O_7 from Cl_2 and O_3 ,^[1] as well as in the thermal decomposition of $\text{Cl}_2\text{O}_6^{[2]}$ and Cl_2O_7 ,^[3] and in the anodic oxidation of ClO_4^- ions.^[4] An indication of the existence of ClO_4 was obtained from ESR measurements on KClO₄ crystals that had been irradiated with X-rays.^[5] However, the assignment and analysis of the ESR signals is still controversial.^[6,7] The formation enthalpy of the endothermic ClO₄, derived from mass spectrometric and kinetic measurements on Cl_2O_7 , amounts to 200–270 kJ mol⁻¹.^[8,9]

The successful synthesis and spectroscopic identification of ClO₃ in the vacuum thermolysis of ClOClO₃ and matrix isolation of the products^[10] encouraged us to generate a ClO₄ radical in the same way. For this purpose a sample of Cl_2O_6 (or Cl_2O_7) in a U-tube was cooled to -35 (or -105 °C) such that the partial pressure was roughly 10^{-3} mbar. Neon or argon was passed over the cold sample to give a 1:500 mixture of starting material and noble gas. This gas stream was thermolyzed at 230 °C (410 °C) at the orifice of the nozzle. Under these conditions 95% of the molecules decay within a few milliseconds. The construction of the vacuum thermolysis and the matrix isolation apparatus is described elsewhere.^[11] IR and UV/Vis spectra of the matrix-isolated thermolysis products were recorded. The proportion of decayed starting material was calculated by comparison with reference spectra of pure matrix-isolated starting material. In a total of 25 experiments we found five new bands in the IR spectra of the thermolysis products of Cl₂O₆ and Cl_2O_7 (Fig. 1, Table 1). These reproducible bands belonging to an

Fig. 1. Difference spectrum before and after the photolysis ($\lambda > 495$ nm) from the IR spectra of the thermolysis products of Cl₂O₆ isolated in a neon matrix. The bands of ClO₄ point upwards and those of the photolysis products downwards. Some noncompensated bands disrupt the spectrum. Bands arising from the by-products OCIO (o). ClO₃ (•), and the starting material Cl₂O₆ (*) are labeled. Cl₂O₄ is formed in the photolysis of Cl₂O₆ [2].

- [*] Prof. Dr. H. Willner, Dipl.-Chem. H. Grothe Institut für Anorganische Chemie der Universität Callinstrasse 9, D-30167 Hannover (Germany) Fax: Int. code + (511)762-3006
- [**] This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

Table 1.	Wavenumb	ers i [cm ⁻¹	¹]. intensities	in paren	theses). and	assignments of
the func	lamental vib	rations of C	CIO ₄ . CIO ₃ F	, and SO ₃ I	F radical.	

³⁵ Cl ¹⁶ O ₄ [b]	³⁵ Cl ¹⁸ O ₄ [b]	CIO ₃ F [c]	SO ₃ F [d]	Assignment [a] XO ₃ Y
1234 (s)	1196 (s)	1315.6 (vs)	1177.4 (m)	$v_4(e) = v_{as}(XO)$
1161 (vs)	1118 (vs)	1062.3 (m)	1053.0 (s)	$v_s(a_1) = v_s(XO)$
874 (w)	832 (w)	712.4 (s)	832.8 (s)	$v_2(a_1) = v(XY)$
646 (m)	609 (m)	588.3 (m)	601 (w)	$v_5(e) = \delta_{as}$
576 (m)	548 (m)	547.5 (w) 405.9 (w)	531.2 (m) 366 (vw)	$\begin{aligned} v_3(a_1) &= \delta_s \\ v_6(e) &= \rho \end{aligned}$

[a] Assignment for point group C_{3v} , [b] In Ne matrix, [c] In Ne matrix [14], [d] In Ar matrix [15].

unknown chlorine oxide are remarkable because their full width at half maximum is up to 10 cm^{-1} . This partly obscures the ^{35/37}Cl isotopic pattern, which is typical of species with one Cl atom. Since the relative intensities of the bands were the same in all experiments and since the bands decreased uniformly after photolysis of the matrix (tungsten-halogen lamp, cutoff filter, $\lambda > 495$ nm), all bands must belong to one single species. By IR spectroscopy we identified only ClOO as a product of the photolysis; it is probably formed by the primary decomposition of ClO₄ to give OClO and O₂ and subsequent photoisomerization of OClO.^[12] In the UV/Vis spectra ClO₄ shows a wide absorption band ranging from 380 to 510 nm (maximum at 425 nm) with vibrational fine structure. The intensity of this band on photolysis decreases in the same fashion as the infrared bands of ClO₄. Below 380 nm the UV spectrum is obscured by the bands of ClO₃, ClO₂, and the starting material.

 ClO_2 and ClO_3 are the most important by-products formed in the thermolysis of Cl_2O_6 and Cl_2O_7 , respectively. Thus the primary decomposition can be described according to Equations (a) and (b), and the new bands can be assigned to the

$$Cl_2O_6 \rightarrow ClO_4 + ClO_2$$
 (a)

 $Cl_2O_- \longrightarrow ClO_4 + ClO_3$

 ClO_4 radical. Experiments with $\text{Cl}_2^{18}\text{O}_6$ and the calculation of the vibrational frequencies with the program NORCOR^[13] verify the existence of ClO_4 . There are numerous possibilities for the arrangement of atoms in a ClO_4 molecule and for its symmetry. Based on the mode of formation, it can be assumed that ClO_4 has a tetrahedral or distorted tetrahedral structure with T_d , C_{3v} , C_{2v} , or C_s symmetry. Therefore two, six, eight, or nine corresponding bands can be expected in the range of fundamental vibrations in the IR spectrum. Comparison of the five new vibrations with the fundamentals of the similarly built FClO₃ and the isosteric FSO₃ radical clearly indicates a ClO_4 molecule with C_{3v} symmetry (Table 1). We have not yet been able to detect the missing $v_6(e)$ vibration, which is expected as a weak band around 400 cm⁻¹.

Our assignment of the bands to the vibrational modes is supported by the product rule for the mode a_1 . The wavenumbers of the three a_1 vibrations of ${}^{35}Cl^{16}O_4$ and ${}^{35}Cl^{18}O_4$ were used to calculate the quotient of the wavenumber products (observed: 1.311; calculated: 1.308). In addition, a normal coordinate analysis of the vibrational data was performed with the bond lengths listed and a bond angle of 116° between the short ClO bonds of OCIO. The results are three strong $(8.7 \times 10^2 \text{ Nm}^{-1})$ and one weak ClO bond $(5.3 \times 10^2 \text{ Nm}^{-1})$. The correlation of the force constant with the bond length (Fig. 2) leads to the structure of the ClO₄ radical shown in Figure 3.

The distortion of the ClO_4 radical to C_{3v} symmetry is dynamic (Jahn – Teller effect). One electron switches from an antibond-

Fig. 2. Plot of the length of the Cl- O versus the force constant in 10^2 N m⁻¹ for the Cl- O bond for a) FClO₃, b) FClO₂, c) ClO₄, d) OClO, e) ClO₃, and f) ClO. An exponential function was fitted to the data. The broken lines relate the force constants of the ClO₄ radical with the corresponding bond lengths.

ing σ^* orbital of one ClO bond to that of another, resulting in the broadening of the IR bands.

The ClO₄ radical completes the series of mononuclear binary chlorine oxides known, which can combined formally to give the binuclear species Cl_2O_2 , Cl_2O_3 , Cl_2O_4 , Cl_2O_6 , and Cl_2O_7 . We have demonstrated that the primary thermal

Fig. 3. Structure of ClO_4 .

decay of two binuclear chlorine oxides yields the corresponding mononuclear radicals, with a preference for the formation of OCIO. The chemistry of NO_x is analogous: the radicals NO, NO₂, and NO₃ participate in the formation and the decomposition of N₂O₃, N₂O₄, and N₂O₅, respectively.

> Received: October 26, 1995 [Z8499IE] German version: Angew. Chem. 1996, 108, 816-818

Keywords: chlorine compounds · IR spectroscopy · matrix isolation

- [1] R. Simonaitis, J. Heicklen, Planet. Space Sci. 1975, 23, 1567-1567.
- [2] M. Jansen, G. Schatte, K. M. Tobias, H. Willner, Inorg. Chem. 1988, 27, 1703 1706.
- [3] R. V. Figini, E. Coloccia, H. J. Schumacher, Z. Physik. Chem. 1958, 14, 32-58.
- [4] H. Schmidt, J. Noack, Z. Anorg. Allgem. Chem. 1958, 296, 262-272.
- [5] J. R. Morton, J. Chem. Phys. 1966, 45, 1800-1802.
- [6] J. R. Byberg, J. K. Jensen, J. Chem. Phys. 1970, 52, 5902-5910.
- [7] J. R. Byberg, J. Phys. Chem. 1995, 99, 13392-13396.
- [8] A. J. Colussi, M. A. Grela, J. Phys. Chem. 1993, 97, 3775-3779.
- [9] V. I. Alekseev, T. S. Zyubina, A. S. Zyubin, A. V. Baluev, Bull, Acad. Sci. USSR. Div.Chem. Sci. Engl. Transl. 1989, 38, 10, 2092–2096.
- [10] H. Grothe, H. Willner, Angew. Chem. 1994, 106, 1581-1582; Angew. Chem. Int. Ed. Engl. 1994, 33, 1482-1484.
- [11] G. A. Argüello, H. Grothe, M. Kronenberg, H. Willner, H.-G. Mack, J. Phys. Chem. 1995, 99, 17525-17531.
- [12] H. S. P. Müller, H. Willner, J. Phys. Chem. 1993, 97, 10589 10598.
- [13] D. Christen, J. Mol. Struct. 1978, 48, 101.
- [14] K. O. Christe, E. C. Curtis, W. Sawodny, H. Härtner, G. Fogarasi, Spectrochim. Acta, Part A 1981, 37, 549 - 556.
- [15] E. M. Suzuki, J. W. Nibler, J. Molec. Spectrosc. 1975, 58, 201 -215.

(b)