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Abstract: Intramolecular Claisen-type condensation of amide 1 or imide 7 leads to the same b-&tone 
in racemic (2) or enantiomerically pure form (4) respectively. A side-reaction producing the ll- 
membered ring compound 6 makes imide 3 unsuitable as a starting material for the synthesis of 4. 
A clean two-step reduction of 4 to 9 is also described 

p-Acetoxy esters having one or two a-alkyl substituents undergo intramolecular Claisen condensation 

when treated with lithium hexamethyldisilazide at low temperature.1~2 The products are fotmed stereospeci- 

fically2 and are tautomeric mixtures of j3-keto-6-lactones and the corresponding enols (e.g. 2) in which the 

latters sometimes predominate. We here report an extension of the previous work which involves unprece- 

dented Claisen-type cyclizations of some p-acetoxy amides or imides. The new reactions represent twocarbon 

chain elongations and lead, as before, to P-keto-&lactones. These products are versatile synthetic intermedi- 

ates394 which now have been synthesized in either diastereomerically or enantiomerically pure form. 

Racemic, diastereomerically pure 2 was prepared in three steps from N-propionylphenothiazine. Thus, 

a highly diastereoselective aldol-type condensation5 with propionaldehyde followed by acetylation (Ac20, 

pyridine) afforded 1, m.p. 126-9 oC. A solution of 1 in tetrahydrofuran (THF) was added to lithium hexa- 

methyldisilazide6 in THF (2.5 eq, N2, -78 oC). Reaction at -78 oC+-35 oC, then 1 h at -35 oC and work- 

up involving separation of acidic 2 from the neutral compounds by partition between Et20 and aqueous 

NaHC03 gave racemic 2 in a 78 % yield; m.p. 95103 oC; solutions in CDC13 showed (NMR) both 2 and its 

J+ OAc 

2.5 eq 

(Me3Si)pNLi 

-35’=C,lh - 

78 % 

1 (racemic) 2 (racemic) 
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keto tautomer. No or little Q-elimination of acetic acid from 1 had occurred. Compared to the previous 

synthesis of 2 from &acetoxy ester2, this new route to 2 is two steps shorter, gives a higher yield in the cycli- 

zation step and less elimination, 

In order to prepare 2 in enantiomerically pure form, we fist investigated a route based on Evans’ 

asymmetric aldol condensation.7 The condensation product was acetylated and a THF solution of the acetate 

(3) was added dropwise to a solution of lithium hexamethyldisilazide6 (2.5 eq, THF, -78 oC). Workup after 

2 h and analysis by lH NMR spectroscopy showed an 88 % conversion of 3. Beside the Glactone 4 (37 %) 

and the chiral auxiliary 5 (45 %), there was also formed a byproduct (43 %), m.p. 73-5 oC. Its EI-MS 

showed, supported by FAB-MS, that it was a structural isomer of the starting material: M+ = 333.1574 + 

0.0010 (base peak), talc. for Cl8H23N05: Mf = 333.1577. We assigned the 1 l-membered ring structure 6 

to the byproduct. The malonate unit was seen in the 1H NMR spectrum as an AB-spectrum (2 H) centered at 6 

Ph 

i 

OH 

Jk + 
0 0 

Ph 

3 4 5 6 

Reagent: i) (Me3Si)zNLi (2.5 eq), -78 “C, 2 h 

3.50 (J 15.2 Hz) and the amide NH as a doublet (J 7.8 Hz) at 6 540.8 On exchange with CD3OD (22 oC) the 

NH signal disappeared and the ddq multiplet (1 H) at 6 4.26, ascribed to the N-methine group, turned into a 

dq signal (loss of a 7.8 Hz coupling). The formation of the byproduct most likely involves deprotonation of 

the acetoxy group, attack of the resulting enolate on the remote cat-bony1 of the N-acyl carbamate group, and 

subsequent opening of the five-membered ring. The C-C bond-forming steps of the reactions leading to 4 and 

6 are probably practically irreversible. This means that the six-membered ring transition state which even- 

tually leads to 4 and the eight-membered ring transition state which eventually leads to 6 are comparable in 

energy. A similar product mixture was obtained from the sodiwn enolate of 3. 

To avoid the side-reaction which lowered the yield of 4, we changed chiral auxiliary and carried out an 

asymmetric aldol condensation according to 0ppolzer.9 Subsequent acetylation gave the crystalline acetate 

7,1° m.p. 97-9 OC!, which was subjected to intramolecular Claisen-type condensation. Lithium hexamethyl- 

disilazide (3.0 eq) in THF (initially -78 OC but probably somewhat warmed during the aansfer) was added 

during 25 min to a solution of 7 (2.50 g) in THF (-78 OC) and the mixture then allowed to react for 1 h 

(-78 oC) before workup. Crystalline 4 was obtained in 77 % yield; m.p. 94-9 oC; [cL]D21 +8.3o (c 1.0, 
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7 4: R=H 9 
ii 

8: R=Ts 

Rmgents: i) (MesSi)aNLi (3.0 eq). -78 “C, 1 h, 77 %; ii) T&l, NEtFY;, CHCl3, reflux, 0.5 h, 91 %; 

iii) H2 (1 atm), Pd, 73 % 

CHC13); the chiral sultam auxiliary was recovered in 95 8 yield. The base-induced elimination of HOAc from 

7 was negligible (~1 8). 

Exhaustive reduction in the J3 position of P-keto-6-lactones has previously been carried out by pre- 
paration of the corresponding enol acetate and subsequent reduction with H2 and Pt02.3 However, the 

conversion of 4 into 9 by this technique suffered from an incomplete hydrogenolysis in the second step (Et20 

as solvent); 5-7 % of the saturated p-acetoxy lactone was formed along with 9 (setting all GLC response 

factors equal). It was thus evident that a more efficient leaving group was to be preferred. The enol tosylate 

~11 (91%), and also an enol phosphate, were reduced to 9 with increased efficiency using H2 and PtO2, but 

the purest product was obtained when 8 (2.90 g) was reduced with H2 (1 atm, EtOAc) and Pd/C, using 

MgHP047H20 (5 eq) as acid scavenger. Crude 9 (GLC purity: 94.9 %; 0.6 % trans isomer + 4.5 % others) 

was purified by silica gel chromatography (Et20-hexane) and subsequent distillation (SO-54 oC, 0.3 mbar); 

73 % (GLC purity: 98.8 %I; 0.6 % trans isomer + 0.6 % others); [ol]~21 -920 (c 1.1, alcohol-free CHCl3); 

lit.12 value: [CX]D24 -65.820 (c 1.0, CHC13). 13 When methanol-containing chloroform (ca. 1 %, v/v) was 

used as solvent for 9, the specific rotation decreased during the measurement until [CZ]JJ~~ -780 was reached 

(0.5 -1 h). This was due to a methanolysis of 9 forming a methyl ester (1H NMR, GLC); the equilibrium 

content of the latter under the actual conditions was 20 %. An inversion of configuration at both asymmetric 

carbons in the side chain of 7 during the conversion of 7 into 9 seems almost impossible. Therefore, the 

enantiomeric purity of 9 should not be lower than the diastereomeric purity10 of 7 (YB %). 

Compound 9 has been converted by two steps into the pheromone serricornin. 14 Previous routes to 9 

involve several steps12914 but shorter routes have been used for some similar lactones.l5-17 

It is thus clear that the &acetoxy amide 1 and the P-acetoxy imide 7 are better suited starting materials 

for intramolecular Claisen-type condensations than the previously studied &acetoxy esters. Tbis means that 

improved routes to the synthetically versatile P-keto-&&tones have been found 
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