

Note

Synthesis of Quinolines and Pyrido[3,2-g or 2,3-g]quinolines Catalyzed by Heterogeneous Propylphosphonium Tetrachloroindate Ionic Liquid

Mahboobeh Azizi, Mahboobeh Nasr-Esfahani, Iraj Mohammadpoor-Baltork, Majid Moghadam, Valiollah Mirkhani, Shahram Tangestaninejad, and Reza Kia

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02261 • Publication Date (Web): 06 Nov 2018 Downloaded from http://pubs.acs.org on November 7, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Synthesis of Quinolines and Pyrido[3,2-g or 2,3g]quinolines Catalyzed by Heterogeneous Propylphosphonium Tetrachloroindate Ionic Liquid

Mahboobeh Azizi[†], Mahboobeh Nasr-Esfahani[†], Iraj Mohammadpoor-Baltork^{*,†}, Majid Moghadam[†], Valiollah Mirkhani[†], Shahram Tangestaninejad[†], and Reza Kia[‡]

[†]Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran [‡] Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran

AUTHOR EMAIL ADDRESS imbaltork@sci.ui.ac.ir

CORRESPONDING AUTHOR FOOTNOTE

[†]Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran

This report explains an efficient method for synthesis of an array of quinolines, via the reaction of 2aminoaryl ketones with terminal and internal alkynes in the presence of propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂) as a heterogeneous and reusable catalyst under solvent-free conditions. Inspired by this catalytic system, the first easy one-step synthesis of symmetric and unsymmetric pyrido[3,2-g or 2,3-g]quinolines was investigated through the reaction of diaroylphenylenediamines with one alkyne or two different alkynes.

Quinolines are an important class of nitrogen containing heterocycles, which has been investigated extensively in terms of biological activities, medicinal applications, electric and photonic usages.¹ Due to their importance, several methods such as Skraup, Combes, Friedlander and Doebner–Von have been reported for the synthesis of quinolines.² Recently, the condensation of 2-aminoaryl ketones and alkynes in the presence of various catalysts and reagents under different reaction conditions have also been used fot the synthesis of these compounds.³ However, some of the reported methods suffer from one or more of the disadvantages such as the use of toxic reagents and solvents, costly catalysts, unsatisfactory reaction times and yields, large amounts of catalysts, tedious workup and lack of recovery and reuse of the catalyst from homogenous reaction mixture. More importantly, the simple quinoline derivatives are mostly synthesized by these procedures. In addition, during the past years, little attention has been paid to the synthesis of pyrido[3,2-g]quinolines and pyrido[2,3-g]quinolines, and only a few reports

 involving harsh conditions and multi-steps reactions are available for the prepartation of some derivatives of thes heterocycles⁴ (Scheme 1).

In continuation of our interest on the constraction of quinoline deriveitives using heterogeneous catalysts,⁵ herein, we describe a straightforward method for the synthesis of various substituted quinolines, novel quinolines containing one 2-aminoaryl ketone unit in the backbone, novel symmetric and unsymmetric pyrido[3,2-g or 2,3-g]quinolines using propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂) as an efficient heterogeneous catalyst under solvent-free conditions (Scheme 1).

Scheme 1. Some examples and the proposed strategy for synthesis of pyrido[3,2-g]quinolines and pyrido[2,3-g]quinolines

Recently, we reported propylphosphonium hydrogen carbonate ionic liquid supported on nano-silica (PPHC-nSiO₂) for the synthesis of various fully substituted pyridines.⁶ In the present study, after some preliminary experiments upon the effect of catalyst on the yield of quinolines, the propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂, Figure 1) was prepared and selected as catalyst for quinoline synthesis (for more details, see the Experimental section and Supporting information). The indium content of PPInCl-nSiO₂ is 0.725 mmol per gram of the catalyst as determined by ICP analysis.

Figure 1. The schematic structure of PPInCl-nSiO₂ along with its TEM image

The reaction conditions of 2-amino-5-chlorobenzophenone **1b** and dimethyl acetylenedicarboxylate (DMAD, **2a**) was investigated in point of molar ratios of substrates, the amount of catalyst and temperature. The optimized conditions to give the highest yield of the desired quinoline was found to be; 1:1.3 molar ratio of **1b**:**2a**, 1.8 mol% PPInCl-nSiO₂ (25 mg of catalyst) at 110 °C under solvent-free conditions (Table 1, entry 7).

Entry	Catalyst	1b:2a	Т	Time	Yield
	(mol%) ^a	(eq:eq) ^b	(°C)	(h)	(%) ^c
1	3.6	1:1.5	110	0.5	99
2	1.8	1:1.5	110	0.5	99
3	1.0	1:1.5	110	2	76
4	3.6	1:1	110	2	70
5	1.8	1:1	110	2	67
6	1.8	1:1.2	110	2	86
7	1.8	1:1.3	110	0.5	99
8	1.8	1:1.3	80	2	64
9	1.8	1:1.3	100	2	81
10	18	1.1.3	120	0.5	98

Table 1: Optimization of reaction conditions

^{*a*} Reaction of 2-amino-5-chlorobenzophenone **1b** and DMAD **2a** in the presence of PPInCl-nSiO₂, according to ICP analysis : 50 mg (3.6 mol% In), 25 mg (1.8 mol% In) and 15 mg (1.0 mol% In). ^{*b*} 2-Amino-5-chlorobenzophenone **1b** : DMAD **2a**. ^{*c*} Isolated yield.

The substrates scope of this protocol was then investigated using the optimized conditions. As shown in Scheme 2, different 2-aminoaryl ketones were reacted with internal alkynes such as DMAD **2a** or diphenylacetylene **2b** in the presence of PPInCl-nSiO₂, to afford the desired 2,3,4-trisubstituted quinolines (**3aa-3ea** and **3bb-3eb**) in good to excellent yields (65-99%). Furthermore, the reaction of 2-aminoaryl ketones with terminal alkynes including methyl propiolate **2c** and phenylacetylene **2d** was performed under the same conditions in orther to find out the selectivity of this catalyst. When methyl propiolate **2c** were treated with 2-amino-5-chlorobenzophenone **1b** and/or 2-amino-5-chloro-2'-

fluorobenzophenone 1d, good yields of the corresponding 3,4-disubstituted quinolines (3bc and 3dc) were selectively obtained. On the contrary, the reaction of phenylacetylene 2d with 2-aminoaryl ketones selectively gave the corresponding 2,4-disubstituted quinolines (3bd-3ed) in 50-95% yields. The structures of 3dc and 3cd as representative compounds were confirmed by X-ray crystallographic analysis (Figure 2, CCDC of 3dc: 1857298 and CCDC of 3cd: 1857297).

Scheme 2. Reaction of 2-aminoaryl ketones and alkynes catalyzed by

PPInCl-nSiO₂

2a: $X = Y = CO_2Me$ 3aa, $R^1 = H$, $R^2 = H$, 98% (20 min) 3ba, $R^1 = CI$, $R^2 = H$, 99% (30 min) 3ca, $R^1 = CI$, $R^2 = CI$, 88% (20 min) 3da, $R^1 = CI$, $R^2 = F$, 98% (20 min) 3ea, $R^1 = NO_2$, $R^2 = H$, 75% (25 min)

2b: X = Y = Ph 3bb, R¹ = Cl, R² = H, 67% (1 h)

3cb, $R^1 = CI$, $R^2 = CI$, 72% (1 h) **3eb**, $R^1 = NO_2$, $R^2 = H$, 65% (1 h)

2c: $X = CO_2Me$, Y = H

3bc, $R^1 = CI$, $R^2 = H$, 79% (1 h) **3dc**, $R^1 = CI$, $R^2 = F$, 66% (1 h)

2d: X = H, Y = Ph 3bd, R¹ = Cl, R² = H, 87% (45 min)

3cd, $R^1 = CI$, $R^2 = CI$, 98% (35 min) **3dd**, $R^1 = CI$, $R^2 = F$, 95% (35 min) **3ed**, $R^1 = NO_2$, $R^2 = H$, 50% (1 h)

Figure 2. Molecular structures of 3dc (a) and 3cd (b), showing 40% probability displacement ellipsoids and the atomic numbering

The synthesis of quinolines was also examined with substrates containing two 2-aminoaryl ketone units such as 4,6-dibenzoyl-1,3-phenylenediamine **1f**, 2,5-dibenzoyl-1,4-phenylenediamine **1g** and 2,5-ditolyl-1,4-phenylendiamine **1h**. As shown in Scheme 3, when compounds **1f-h** were reacted with alkynes **2a-d** in 1:1.3 molar ratios, only one of the 2-aminoaryl ketone groups took part selectively to afford the respected quinolines in high yields. Importantly, the remaining 2-aminoaryl ketone group on the quinoline backbone can be transformed to some other useful functional groups.

Another exceptional aspect of this catalytic system lies in the preparation of various pyrido[3,2g]quinolines and pyrido[2,3-g]quinolines. As evident from Scheme 4, treatment of 4,6-dibenzoyl-1,3phenylenediamine **1f** (1 mmol) and alkynes **2a**, **2b** (2.6 mmol) in the presence of PPInCl-nSiO₂ at 110 °C provided the related pyrido[3,2-g]quinolines in high yields within 10-12 h.

Scheme 3. Selective synthesis of quinolines containing 2-aminoaryl ketone group

yields (Scheme 5).

Scheme 5. Synthesis of symmetric pyrido[2,3-g]quinolines

The Journal of Organic Chemistry

Encouraged by the above mentioned promising results, we turned our attention to the one-pot, threecomponent reaction of 2,5-dibenzoyl-1,4-phenylenediamine 1g (1 mmol) with two different alkynes, DMAD 2a (1.3 mmol) and diphenylacetylene 2b (1.3 mmol). Interestingly, the corresponding unsymmetric pyrido[2,3-g]quinoline 6gab was obtained in 81% yield (Scheme 6). It is worth mentioning that the synthesis of quinolines and pyrido[3,2-g or 2,3-g]quinolines (Schemes 3-6) from diaroylphenylenediamines 1f-h is reported for the first time which clearly indicates the novelty and applicability of this catalytic method and makes this protocol very useful and effective for the preparation of these vital heterocyclic compounds. Another outstanding feature of this method is that such complex molecules are prepared via a single step.

Scheme 6. Synthesis of unsymmetric pyrido[2,3-g]quinoline

As reported in the literature, tetrachloroindate(III) ionic liquid has been used as a Lewis acidic catalyst. ⁷ Accordingly, a plausible mechanism for the selective synthesis of 3,4- and 2,4-disubstituted quinolines in the presence of PPInCl-nSiO₂ is proposed in Scheme S1. First, the amino group of 2-aminoaryl ketone **1** attacks the terminal carbon of methyl propiolate **2c** in the presence of the catalyst to give

intermediate **A**, in which the negative charge is stabilized by the carbonyl group of the ester. Then, **A** is converted to β -enamino ester **B** by a prototropic shift from nitrogen to carbon. Finally, intramolecular nucleophilic addition of carbon of β -enamino ester to the activated carbonyl group affords intermediate **C**, which upon dehydration in the presence of the catalyst results in the desired 3,4disubstituted quinoline selectively. For selective formation of 2,4-disubstituted quinoline, on the basis of observed regiochemistry confirmed by X-ray analysis of **3cd**, it is reasonable to assume that nucleophilic addition of phenylacetylene to the activated carbonyl group of 2-aminoaryl ketone **1** gives intermediate **D**, in which prototropic shift from carbon to oxygen affords propargylic alcohol **E**. Next, the alcohol is transformed to the corresponding enone **G** by Meyer-Schuster rearrangement (via the intermediate allenol **F**),⁸ which upon cyclization and subsequent dehydration in the presence of the catalyst gives the related 2,4-disubstituted quinoline selectively.

The reusability of PPInCl-nSiO₂ which is very important from environmental and economical points of view, was examined in the synthesis of **3ba**. Upon reaction completion, the mixture was diluted with EtOAc and the catalyst was separated, dried and then reused for subsequent reactions. The catalyst could be reused at least 5 times without a significant loss of its activity (Table 2).

Table 2: Reusability of PPInCl-nSiO₂ in the synthesis of 3ba

Entry ^{<i>a</i>}	1	2	3	4	5	6
Yield $(\%)^b$	99	99	98	97	97	95

^{*a*} Reaction conditions: 2-amino-5chlorobenzophenone (**1b**, 1 mmol), DMAD (**2a**, 1.3 mmol) and PPInCl-nSiO₂ catalyst (1.8 mol%), 110 °C. ^{*b*} Isolated yield.

To sum up, we presented a new catalytic strategy for the efficient synthesis of quinolines via the reaction of various 2-aminoaryl ketones with terminal and internal alkynes in the presence of

heterogeneous propylphosphonium tetrachloroindate ionic liquid supported on nano-silica catalyst (PPInCl-nSiO₂) under solvent-free conditions. Selective synthesis of novel quinolines containing one 2amino arylketone group was also carried out using this catalytic system. Also, for the first time, a variety of symmetric and unsymmetric pyrido[3,2-g]quinolines and pyrido[2,3-g]quinolines were prepared by the reaction of diaroylphenylenediamines with one alkyne or two different alkynes. Notably, the PPInCl-nSiO₂ catalyst could be recovered and reused several times by preserving its activity.

EXPERIMENTAL SECTION

General information

The chemicals used in this work were purchased from Fluka and Merck chemical companies. The substrates containing two 2-aminoaryl ketone units **1f-h** were prepared according to reported method.⁹ Melting points were determined with a Stuart Scientific SMP2 apparatus. FT-IR spectra were recorded on a Nicolet-Impact 400D spectrophotometer. ¹H and ¹³C NMR (400 and 100 MHz) spectra were recorded on a Bruker Avance 400 MHz spectrometer using CDCl₃ solvent. The UV–vis diffuse reflectance spectra of the samples were recorded on a JASCO V-670 spectrophotometer. Elemental analysis was performed on a LECO, CHNS-932 analyzer. Thermogravimetric analysis (TGA) was carried out on a Perkin-Elmer STA 6000 instrument under argon flow at a uniform heating rate of 20 °C min⁻¹ in the range 30-600 °C. The scanning electron microscope (SEM) measurement was carried out on a Hitachi S-4700 field emission-scanning electron microscope. The transmission electron microscopy (TEM) was carried out on a Philips CM10 instrument operating at 100 kV. The indium content of the catalyst was determined by a Jarrell-Ash 1100 ICP analyzer.

Preparation and characterization of propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂)

First, a mixture of 3 mL 3-chloropropyltrimethoxysilane (CPTMS) and nano-SiO₂ (2 g) in 25 mL anhydrous toluene was refluxed for 24 h. The reaction mixture was cooled to room temperature and

The Journal of Organic Chemistry

filtered. The solid material was washed with toluene (40 mL) and a mixture of water-ethanol (40 mL, 1:1) to give chloropropylated nano-silica (CP-nSiO₂). Then, a mixture of CP-nSiO₂ (2 g) and triphenylphosphine (8 g) in anhydrous toluene (25 mL) was refluxed under N₂ atmosphere for 24 h. After cooling to room temperature, the mixture was filtered and the solid material was washed with toluene (40 mL) and ethanol (20 mL) to afford propylphosphonium chloride supported on nano-silica (PPCl-nSiO₂). Finally, a mixture of PPCl-nSiO₂ (0.5 g) and indium chloride (0.442 g, 2 mmol) in toluene (10 mL) was stirred vigorously at 50 °C under N2 atmosphere for 12 h. The mixture was filtrated and the solid material was washed with toluene (20 mL) and then dried under vacuum at 70 °C to afford propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂, Supporting information, Figure S1). The prepared nanocatalyst was characterized by FT-IR, diffuse reflectance UV-vis spectroscopy, TGA/DTG, SEM, TEM, and ICP. FT-IR spectra of nano-silica (nSiO₂) and propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂) are presented in Figure S2. The characteristic bands at 3060 (sp² C–H), 2931 and 1438 (C–H stretching of the alkyl chain), 1101, 807 and 468 (Si–O), 1620 (C=C), 1482 and 789 cm⁻¹ (P–C) were detected which indicate the desired catalyst (PPInCl-nSiO₂) has been prepared. The diffuse reflectance UV-vis spectra of nSiO₂. PPCl-nSiO₂ and PPInCl-nSiO₂ are shown in Figure S3. No absorption peak was observed for nano-silica in the UV-vis spectrum. But PPCl-nSiO₂ showed two significant absorption peaks at 228 nm corresponds to $\pi \rightarrow \pi^*$ transition of C=C phenyl groups and at 271 nm related to $n \rightarrow \pi^*$ lone electron pair in P-Ph.¹⁰ The same absorption peaks at 230 and 271 nm were detected for PPInCl-nSiO₂ catalyst Also, a new absorption peak was observed at 196 nm which is related to a d-d transition of indium.¹¹ The TGA/DTG curves for PPInCl-nSiO₂ catalyst was shown in Figure S4. The observed total weight loss is 44.35%. The first step loss relates to removal of the physically adsorbed water (100-130 °C, 3.03 %), whereas, the main weight loss corresponds to removal of the organic moieties from the surface (350-600 °C, 41.32%). As indicated, the decomposition occurred in the range of 350-600 °C. This high thermal stability provides good activity of the catalyst without any considerable leaching of the active species at high temperature reaction. The morphology of the nano-SiO₂ and PPInCl-nSiO₂ catalysts was investigated by scanning electron microscopy (Figure S5). The morphology of the catalyst

is different from that of nano-SiO₂, indicating IL has been immobilized on the nanoparticles. The energy dispersive X-ray (EDX) results, obtained from SEM analysis of PPInCl-nSiO₂, is shown in Figure S6. The presence of all the expected elements C, O, Si, Cl, P and In, indicates that the catalyst (PPInCl-nSiO₂) has been prepared. The size and morphology of the PPInCl-nSiO₂ catalyst was also investigated by transmission electron microscopy (TEM, Figure S7). The dark colored regions or black spots in the photograph correspond to the indium species, while the colorless parts are related to nano-silica particles.¹² The histogram of size distribution showed that the particles diameter are in the range of 18-26 nm (Figure S8).

Investigation of the effect of catalyst for the synthesis of quinoline: In order to demonstrate the usefulness of the catalyst, reaction 2-amino-5-chlorobenzophenone **1b** the of and dimethylacetylenedicarboxylate (DMAD, 2a) was performed in the absence of the catalyst at 110 °C; no desired product was obtained under this conditions even after 10 h (Table S1). Then, the reaction was performed in the presence of different catalysts such as H₃PW₁₂O₄₀, *p*-TSA, BiCl₃, FeCl₃, ZnCl₂, AlCl₃, nano-silica, propylphosphonium hydrogen carbonate ionic liquid supported on nano-silica (PPHCnSiO₂),⁶ propylphosphonium tetrachloroindate ionic liquid supported on nano-silica (PPInCl-nSiO₂). The results listed in Table S1, clearly indicate that PPInCl-nSiO₂ is the best catalyst for this transformation. In order to show the advantages of supporting of IL on nanoparticles and also to examine the effect of particle size on the activity of the catalyst, the model reaction was also performed in the presence of InCl₃ and homogenous butylphosphonium tetrachloroindate ([BuP]InCl₄). Under these conditions the desired product was obtained in 60% and 71% for InCl₃ and [BuP]InCl₄, respectively, which are considerably lower than the yield obtained with PPInCl-nSiO₂. These results clearly showed that the supporting of IL on nano-silica leads to isolation of the active sites and therefore, the activity of the catalyst is improved compared to the bulk InCl₃ and butylphosphonium tetrachloroindate.

Synthesis of quinoline derivatives catalyzed by PPInCl-nSiO₂ (Scheme 2): A mixture of 2aminoaryl ketone (1 mmol), alkyne (1.3 mmol), and PPInCl-nSiO₂ catalyst (25 mg, containing 0.018 mmol In, 1.8 mol%) was stirred at 110 °C under solvent-free conditions. The progress of the reaction

The Journal of Organic Chemistry

was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and then EtOAc (10 mL) was added. The catalyst was separated by filtration and washed with EtOAc (10 mL). The filtrate was evaporated and the crude product was purified by recrystallization from EtOH or silica gel column chromatography to afford the pure product.

Dimethyl4-phenylquinoline-2,3-dicarboxylate (3aa): Purified by recrystallization from EtOH. Yield: 98% (314.60 mg). M.p = 124-126 °C (124-125 °C)¹³. FT-IR (KBr): v_{max} = 3446, 3064, 2993, 2951, 2924, 2853, 1739, 1616, 1561, 1484, 1447, 1370, 1305, 1244, 1204, 1100, 1049, 975, 849, 757 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 3.67 (s, 3H), 4.10 (s, 3H), 7.38-7.40 (m, 2H), 7.52-7.54 (m, 3H), 7.62-7.68 (m, 2H), 7.83-7.88 (m, 1H), 8.35 (d, *J* = 8.8 Hz, 1H).

Dimethyl 6-chloro-4-phenylquinoline-2,3-dicarboxylate (3ba): Purified by recrystallization from EtOH. Yield: 99% (349.71 mg). M.p = 160-162 °C (164-165 °C)¹³. FT-IR (KBr): $v_{max} = 3426$, 3049, 2952, 2923, 1907, 1742, 1722, 1604, 1558, 1480, 1446, 1395, 1366, 1294, 1240 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.66$ (s, 3H), 4.09 (s, 3H), 7.36-7.38 (m, 2H), 7.55-7.56 (m, 3H), 7.62 (d, J = 2.0 Hz, 1H), 7.77 (dd, ¹J = 6.8 Hz, ²J = 2.4 Hz, 1H), 8.28 (d, J = 9.2 Hz, 1H).

Dimethyl 6-chloro-4-(2-chlorophenyl)quinoline-2,3-dicarboxylate (3ca): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 88% (342.12 mg). M.p = 188-190 °C (190-192 °C)¹⁴. FT-IR (KBr): v_{max} = 3431, 3065, 2923, 2962, 2662, 1787, 1729, 1557, 1470, 1439, 1396, 1365, 1318, 1300, 1242, 1222, 1129, 1062 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 3.66 (s, 3H), 4.07 (s, 3H), 7.26 (s, 1H), 7.28-7.32 (m, 2H), 7.49 (t, *J* = 2.0 Hz, 1H), 7.53-7.57 (m, 1H), 7.77 (dd, ¹*J* = 6.8 Hz, ²*J* = 2.4 Hz, 1H), 8.27 (d, *J* = 9.2 Hz, 1H).

Dimethyl 6-chloro-4-(2-fluorophenyl)quinoline-2,3-dicarboxylate (3da): Purified by recrystallization from EtOH. Yield: 98% (365.07 mg). M.p = 199-201 °C. FT-IR (KBr): $v_{max} = 3427$, 3077, 2954, 2850, 1728, 1665, 1612, 1559, 1480, 1442, 1399, 1303, 1247, 1224, 1146, 1104, 1053, 957, 835 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.66$ (s, 3H), 4.09 (s, 3H), 7.28 (dd, ¹*J* = 6.0 Hz, ²*J* = 1.6 Hz, 1H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.43 (td, ¹*J* = 6.4 Hz, ²*J* = 1.2 Hz, 1H), 7.49 (td, ¹*J* = 6.4 Hz, ²*J* = 1.6 Hz, 1H), 7.59 (dd, ¹*J* = 6.8 Hz, ²*J* = 1.2 Hz, 1H), 7.78 (dd, ¹*J* = 6.8 Hz, ²*J* = 2 Hz, 1H), 8.30 (d, *J* = 9.2 Hz, 1H). ¹³C NMR

(100 MHz, CDCl₃): δ = 166.3, 164.7, 160.2 (d, ¹*J*_{CF} = 240 Hz), 145.1, 144.8, 141.3, 135.5, 131.9, 131.8, 131.2, 131.1, 130.7, 130.6, 127.9, 127.7, 124.5, 123.9, 123.8, 121.1, 120.9, 115.6 (d, ²*J*_{CF} = 20 Hz), 53.1, 52.2. Anal. Calcd for C₁₉H₁₃ClFNO₄: C, 61.06; H, 3.51; N, 3.75. Found: C, 61.19; H, 3.55; N, 3.68.

Dimethyl 6-nitro-4-phenylquinoline-2,3-dicarboxylate (3ea): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 75% (273.24 mg). M.p = 190-192 °C. FT-IR (KBr): $v_{max} = 3440, 3097, 2955, 2924, 2853, 1917, 1746, 1728, 1620, 1575, 1535, 1482, 1438, 1370, 1347, 1218, 1151, 1088, 1051 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): <math>\delta = 3.69$ (s, 3H), 4.12 (s, 3H), 7.39-7.41 (m, 2H), 7.59-7.61 (m, 3H), 8.49-8.51 (m, 1H), 8.59-8.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2, 164.4, 149.9, 148.4, 147.7, 146.8, 132.5, 132.0, 129.3, 128.7, 128.3, 128.1, 126.5, 123.9, 122.9, 53.3, 52.3. Anal. Calcd for C₁₉H₁₄N₂O₆: C, 62.30; H, 3.85; N, 7.65. Found: C, 62.40; H, 3.80; N, 7.58.$

6-Chloro-2,3,4-triphenylquinoline (**3bb**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 4:1). Yield: 67% (260.34 mg). M.p = 191-193 °C (193-194 °C)^{3a}. FT-IR (KBr): v_{max} = 3426, 3059, 3021, 2959, 2923, 1802, 1730, 1603, 1543, 1468, 1443, 1367, 1344, 1287, 1122, 1075, 1024, 699 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.86-6.89 (m, 2H), 7.00-7.02 (m, 2H), 7.11-7.13 (m, 2H), 7.21-7.22 (m, 2H), 7.25-7.26 (m, 1H), 7.28-7.30 (m, 3H), 7.35-7.37 (m, 2H), 7.54-7.55 (m, 1H), 7.65-7.74 (m, 2H), 8.17-8.20 (m, 1H).

6-Chloro-4-(2-chlorophenyl)-2,3-diphenylquinoline (*3cb*): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 72% (304.50 mg). M.p = 184-186 °C. FT-IR (KBr): $v_{max} = 3423$, 3058, 2921, 2654, 1725, 1607, 1588, 1468, 1440, 1343, 1263, 1223, 1153, 1111, 1078, 1030, 929, 756, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.86-6.87$ (m, 1H), 7.03-7.04 (m, 4H), 7.16-7.20 (m, 1H), 7.21-7.24 (m, 4H), 7.31 (d, J = 2.2 Hz, 1H), 7.38-7.41 (m, 4H), 7.66 (dd, ¹J = 6.7 Hz, ²J = 2.3 Hz, 1H), 8.19 (d, J = 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.4$, 145.6, 144.4, 140.5, 137.7, 135.6, 134.2, 133.7, 132.8, 131.7, 131.5, 130.7, 130.5, 129.9, 129.5, 129.4, 127.9, 127.8, 127.3, 126.9, 126.8, 126.6, 124.8. Anal. Calcd for C₂₇H₁₇Cl₂N: C, 76.06; H, 4.02; N, 3.29. Found: C, 76.19; H, 3.98; N, 3.21.

6-Nitro-2,3,4-triphenylquinoline (3eb): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 65% (259.98 mg). M.p = 179-181 °C. FT-IR (KBr): v_{max} = 3430, 3056, 3028, 2966, 2952, 2922, 1808, 1728, 1616, 1597, 1576, 1549, 1521, 1464, 1339, 1282, 1123, 1074, 1027, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.88 (dd, ¹*J* = 5.8 Hz, ²*J* = 1.5 Hz, 2H), 7.04-7.05 (m, 3H), 7.12-7.14 (m, 2H), 7.33-7.35 (m, 3H), 7.38 (dd, ¹*J* = 6.2 Hz, ²*J* = 1.4 Hz, 3H), 7.52-7.55 (m, 1H), 7.74 (d, *J* = 7.2 Hz, 1H), 8.35 (d, *J* = 9.2 Hz, 1H), 8.48 (dd, ¹*J* = 6.7 Hz, ²*J* = 2.5 Hz, 1H), 8.55 (d, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 162.5, 149.7, 149.4, 145.6, 140.3, 137.3, 135.4, 134.8, 131.5, 131.1, 130.1, 129.9, 128.4, 128.3, 128.2, 127.9, 127.7, 126.9, 125.9, 123.8, 122.9. Anal. Calcd for C₂₇H₁₈N₂O₂: C, 85.58; H, 4.51; N, 6.96. Found: C, 85.73; H, 4.54; N, 7.03.

Methyl 6-chloro-4-phenylquinoline-3-carboxylate (**3bc**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 79% (230.87 mg). yellow gummy mass¹³. FT-IR (KBr): $v_{max} = 3436$, 3060, 2951, 2850, 1727, 1577, 1483, 1439, 1353, 1300, 1260, 1216, 1126, 1077, 840, 758 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.71$ (s, 3H), 7.29-7.32 (m, 2H), 7.55-7.57 (m, 3H), 7.59 (d, J = 2.0 Hz, 1H), 7.75 (dd, ¹J = 6.8 Hz, ²J = 2.0 Hz, 1H), 8.18 (d, J = 9.2 Hz, 1H), 9.35 (s, 1H).

Methyl 6-chloro-4-(2-fluorophenyl)quinoline-3-carboxylate (3dc): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 66% (205.68 mg). M.p = 164-166 °C. FT-IR (KBr): $v_{max} = 3432$, 3028, 2959, 2924, 2853, 1726, 1616, 1575, 1483, 1443, 1355, 1286, 1214, 1125, 1102, 1074, 600 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.79$ (s, 3H), 7.24-7.28 (m, 1H), 7.31-7.37 (m, 2H), 7.53-7.56 (m, 2H), 7.76 (dd, ¹*J* = 6.6 Hz, ²*J* = 2.3 Hz, 1H), 8.16 (d, *J* = 9.0 Hz, 1H), 9.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.1$, 158.3, 149.9, 142.1 (d, ¹*J*_{CF} = 160 Hz), 131.8, 130.9, 130.4, 130.3, 130.1, 130.0, 128.5, 127.7, 125.2, 123.7, 123.6, 115.3 (d, ²*J*_{CF} = 22 Hz), 52.0. Anal. Calcd for C₁₇H₁₁ClFNO₂: C, 64.67; H, 3.51; N, 4.44. Found: C, 64.89; H, 3.48; N, 4.37.

6-Chloro-2,4-diphenylquinoline (3bd): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 87% (273.15 mg). M = 98-99 °C (98-99 °C)^{5a}. FT-IR (KBr): v_{max} = 3431, 3056, 3028, 2927, 1896, 1588, 1538, 1480, 1443, 1355, 1240, 1146, 1074, 886, 823, 788, 700

Cm^{-1. 1}H NMR (400 MHz, CDCl₃): δ = 7.49-7.60 (m, 8H), 7.69 (dd, ¹*J* = 6.6 Hz, ²*J* = 2.3 Hz, 1H), 7.87 (s, 1H), 7.89 (d, *J* = 2.3 Hz, 1H), 8.19-8.22 (m, 3H).

6-*Chloro-4-(2-chlorophenyl)-2-phenylquinoline (3cd)*: Purified by recrystallization from EtOH. Yield: 98% (341.62 mg). M.p = 110-112 °C (112-114 °C)^{5a}. FT-IR (KBr): v_{max} = 3429, 3344, 3214, 3056, 3025, 2920, 2660, 1598, 1585, 1542, 1470, 1435, 1353, 1227, 1156, 1128, 1053, 1029, 885, 829 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.40 (dd, ¹*J* = 5.4 Hz, ²*J* = 1.8 Hz, 1H), 7.46-7.58 (m, 6H), 7.62 (dd, ¹*J* = 6.3 Hz, ²*J* = 1.6 Hz, 1H), 7.69 (dd, ¹*J* = 6.7 Hz, ²*J* = 2.3 Hz, 1H), 7.85 (s, 1H), 8.20 (s, 2H), 8.21-8.23 (m, 1H).

6-*Chloro-4-(2-fluorophenyl)-2-phenylquinoline (3dd)*: Purified by recrystallization from EtOH. Yield: 95% (314.74 mg). M.p = 125-127 °C (124-126 °C)⁵a. FT-IR (KBr): ν_{max} = 3426, 3059, 3032, 1615, 1588, 1542, 1479, 1447, 1360, 1352, 1256, 1232, 1207, 1073, 1025, 884, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ =7.40-7.49 (m, 2H), 7.54-7.67 (m, 5H), 7.76-7.80 (m, 2H), 7.98 (s, 1H), 8.29-8.31 (m, 3H).

6-*Nitro-2,4-diphenylquinoline (3ed)*: Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 50% (161.7 mg). M.p: 265-266 °C (265-266 °C)^{5a}. FT-IR (KBr): $v_{max} = 3414$, 3067, 2958, 2924, 2855, 1729, 1647, 1462, 1381, 1339, 1282, 1122, 1078, 1041, 743, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ =7.52-7.65 (m, 8H), 7.99 (s, 1H), 8.24 (dd, ¹*J* = 6.4 Hz, ²*J* = 1.7 Hz, 2H), 8.33 (d, *J* = 9.2 Hz, 1H), 8.49 (dd, ¹*J* = 6.7 Hz, ²*J* = 2.5 Hz, 1H), 8.86 (d, *J* = 2.4 Hz, 1H).

Synthesis of quinolines contains 2-aminoaryl ketone group catalyzed by PPInCl-nSiO₂ (Scheme 3): The substrates containing two parts of 2-aminoaryl ketones [**1f**, **1g** and **1h** (1 mmol)],⁹ alkyne (1.3 mmol) and PPInCl-nSiO₂ catalyst (25 mg, containing 0.018 mmol In, 1.8 mol%) was stirred at 110 °C under solvent-free conditions. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and then EtOAc (10 mL) was added. The catalyst was separated by filtration and washed with EtOAc (10 mL). The filtrate was evaporated and the crude product was purified by silica gel column chromatography to afford the pure desired quinolines.

(7-*Amino-2,3,4-triphenylquinoline-6-yl)(phenyl)methanone* (**3***fb*): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 1.5:1). Yield: 64% (301.30 mg). M.p = 99-100 °C. FT-IR (KBr): $v_{max} = 3429$, 3067, 2957, 2926, 2857, 1730, 1642, 1458, 1879, 1282, 1123, 1072, 744, 700, 465 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.80$ (s, 2H), 6.76-6.78 (m, 2H), 6.90-6.92 (m, 3H), 6.93-6.96 (m, 2H), 7.02-7.04 (m, 3H), 7.13-7.15 (m, 3H), 7.28-7.31 (m, 5H), 7.36 (s, 1H), 7.54 (m, 2H), 7.69 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.5$, 149.3, 141.0, 138.8, 138.2, 136.4, 135.9, 131.9, 131.5, 129.9, 129.8, 129.7, 129.6, 129.2, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.4, 127.3, 126.2, 122.2, 118.7, 111.2. Anal. Calcd for C₃₄H₂₄N₂O: C, 85.69; H, 5.08; N, 5.88. Found: C, 85.82; H, 5.11; N, 5.78.

Anal. Calcd for C₃₄H₂₄N₂O: C, 85.69; H, 5.08; N, 5.88. Found: C, 85.82; H, 5.11; N, 5.78.

Dimethyl 6-amino-7-benzoyl-4-phenylquinoline-2,3-dicarboxylate (3ga): Purified by recrystallization from EtOH. Yield: 96% (418.15 mg). M.p = 183-185 °C. FT-IR (KBr): $v_{max} = 3474$, 3370, 3056, 2948, 2924, 2857, 1722, 1644, 1619, 1591, 1484, 1429, 1388, 1283, 1250, 1221, 1176 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.65$ (s, 3H), 4.03 (s, 3H), 5.82 (s, 2H), 6.69 (s, 1H), 7.37-7.39 (m, 2H), 7.53-7.55 (m, 5H), 7.64 (t, J = 7.6 Hz, 1H), 7.77 (d, J = 7.2 Hz, 2H), 8.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.5$, 171.1, 166.6, 142.5, 138.1, 136.8, 132.6, 129.8, 129.7, 129.4, 129.3, 129.2, 128.9, 128.6, 128.5, 127.3, 108.1, 53.4, 52.5. Anal. Calcd for C₂₆H₂₀N₂O₅: C, 70.90; H, 4.58; N, 6.36. Found: C, 71.04; H, 4.54; N, 6.28.

Dimethyl 6-amino-7-(4-methylbenzoyl)-4-(p-tolyl)quinoline-2,3-dicarboxylate (3ha): Purified by recrystallization from EtOH. Yield: 92% (428.32 mg). M.p = 258-260 °C. FT-IR (KBr): v_{max} = 3453, 3355, 3056, 2922, 2854, 1744, 1714, 1617, 1486, 1439, 1391, 1299, 1247, 1214, 1183, 1053, 879 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 2.48 (s, 6H), 3.68 (s, 3H), 4.03 (s, 3H), 5.72 (s, 2H), 6.72 (s, 1H), 7.26-7.29 (m, 1H), 7.31 (t, *J* = 7.4 Hz, 5H), 7.70 (d, *J* = 8.1 Hz, 2H), 8.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 198.5, 165.6, 152.0, 148.5, 143.5, 139.9, 138.7, 137.6, 135.9, 133.6, 132.1, 131.4, 130.1, 129.3, 129.2, 127.7, 126.3, 108.1, 53.4, 52.5, 21.7, 21.4. Anal. Calcd for C₂₈H₂₄N₂O₅: C, 71.78; H, 5.16; N, 5.98. Found: C, 71.91; H, 5.19; N, 5.89.

(6-*Amino-2,3,4-triphenylquinoline-7-yl)(phenyl) methanone* (**3gb**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 68% (320.78 mg). M.p = 268-270 °C. FT-IR (KBr): $v_{max} = 3470$, 3350, 3057, 3026, 2954, 1721, 1637, 1609, 1581, 1525, 1478, 1448, 1411, 1317, 1246, 1202, 1177, 1068, 954, 750, 695 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.83$ (s, 2H), 6.32 (s, 1H), 7.28 (s, 1H), 7.33-7.43 (m, 7H), 7.51-7.60 (m, 6H), 7.73-7.75 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.5$, 169.4, 146.9, 140.2, 139.5, 137.5, 134.2, 131.5, 131.2, 129.3, 129.1, 128.8, 128.4, 128.3, 127.7, 126.3, 119.4, 115.5. Anal. Calcd for C₃₄H₂₄N₂O: C, 85.69; H, 5.08; N, 5.88. Found: C, 85.57; H, 5.05; N, 5.97.

Methyl 6-amino-7-benzoyl-4-phenylquinoline-2-carboxylate (3gc): Purified by recrystallization from EtOH. Yield: 95% (359.14 mg). M.p = 190-193 °C. FT-IR (KBr): $v_{max} = 3474$, 3370, 3056, 2948, 2924, 2857, 1722, 1644, 1619, 1591, 1484, 1429, 1388, 1283, 1250, 1221, 1176 cm^{-1. 1}H NMR (400 MHz, CDCl₃): $\delta = 3.69$ (s, 3H), 5.58 (s, 2H), 6.71 (s, 1H), 7.30 (dd, ¹*J* = 5.6 Hz, ²*J* = 1.6 Hz, 1H), 7.50-7.56 (m, 5H), 7.61-7.65 (m, 1H), 7.72-7.74 (m, 1H), 7.80 (d, *J* = 7.1 Hz, 2H), 8.31 (s, 1H), 9.04 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.7$, 166.9, 146.9, 146.88, 146.85, 136.4, 132.5, 131.2, 131.1, 130.9, 129.9, 129.3, 129.1, 128.8, 128.7, 128.5, 128.3, 128.2, 109.6, 52.3. Anal. Calcd for C₂₄H₁₈N₂O₃: C, 75.38; H, 4.74; N, 7.33. Found: C, 75.51; H, 4.70; N, 7.26.

(6-Amino-2,4-diphenylquinoline-7-yl)(phenyl) methanone (**3**gd): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 83% (330.25 mg). M.p = 261-263 °C. FT-IR (KBr): $v_{max} = 3467$, 3344, 3313, 3197, 3057, 3028, 2921, 2851, 2250, 1722, 1609, 1577, 1526, 1445, 1412, 1318, 1244, 1205, 1177, 1069, 954, 883, 696 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.83$ (s, 2H), 6.32 (s, 1H), 7.23 (s, 1H), 7.35 (t, *J* = 7.2 Hz, 3H), 7.40-7.43 (m, 2H), 7.50-7.54 (m, 4H), 7.57-7.60 (m, 2H), 7.73-7.75 (m, 5H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.5$, 169.5, 147.0, 140.2, 139.5, 137.5, 134.2, 134.1, 133.6, 131.5, 131.2, 130.6, 130.3, 129.6, 129.3, 129.2, 129.1, 128.9, 128.3, 126.3, 119.4, 115.5. Anal. Calcd for C₂₈H₂₀N₂O: C, 83.98; H, 5.03; N, 7.00. Found: C, 83.85; H, 4.99; N, 7.08.

(6-Amino-2-phenyl-4-(p-tolyl)quinoline-7-yl)(p-tolyl)methanone (3hd): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 71% (300.70 mg). M.p = 101-103 °C. FT-IR (KBr): $v_{max} = 3466, 3365, 3028, 2951, 2921, 2734, 2587, 1911, 1724, 1644, 1619, 1598, 1528, 1491,$

1451, 1356, 1289, 1213, 1179, 1072, 895, 769 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.40$ (s, 3H), 2.42 (s, 3H), 5.42 (s, 2H), 7.01 (s, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 6.8 Hz, 2H), 7.36-7.43 (m, 5H), 7.65 (s, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.99-8.01 (m, 2H), 8.27 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 198.2$, 157.2, 151.6, 149.6, 144.7, 143.1, 140.6, 134.8, 132.9, 130.2, 130.0, 129.4, 129.3, 129.1, 128.8, 127.1, 124.3, 121.4, 119.8, 108.1, 21.3. Anal. Calcd for C₃₀H₂₄N₂O: C, 84.08; H, 5.65; N, 6.54. Found: C, 84.20; H, 5.61; N, 6.45.

Synthesis of pyrido[3,2-*g*]**quinolines catalyzed by PPInCl-nSiO**₂ (Scheme 4): A mixture of 4,6dibenzoyl-1,3-phenylenediamine (1f, 1 mmol), alkyne (2.6 mmol) and PPInCl-nSiO₂ catalyst (50 mg, containing 0.036 mmol In, 1.8 mol%) was stirred at 110 °C under solvent-free conditions. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and then EtOAc (10 mL) was added. The catalyst was separated by filtration and washed with EtOAc (10 mL). The filtrate was evaporated and the crude product was purified by silica gel column chromatography to afford the pure desired pyrido[3,2-*g*]quinolines.

Tetramethyl 4,6-diphenylpyrido[*3,2-g*]*quinoline-2,3,7,8-tetracarboxylate (4fa):* Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 1.5:1). Yield: 76% (421.56 mg). M.p = 124-126 °C. FT-IR (KBr): $v_{max} = 3442$, 3330, 2959, 2925, 2856, 2741, 1729, 1602, 1440, 1377, 1262, 1123, 1070, 997, 744 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.91$ (s, 6H), 3.97 (s, 6H), 7.55-7.72 (m, 6H), 7.73-7.79(m, 5H), 8.70 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.3$, 164.4, 139.2, 134.3, 132.6, 130.9, 130.0, 129.5, 129.3, 128.8, 128.7, 128.2, 53.3, 53.2. Anal. Calcd for C₃₂H₂₄N₂O₈: C, 68.08; H, 4.29; N, 4.96. Found: C, 68.21; H, 4.33; N, 4.88.

2,3,4,6,7,8-*Hexaphenylpyrido*[3,2-g]quinoline (**4fb**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 68% (429.38 mg). M.p = 143-145 °C. FT-IR (KBr): v_{max} = 3467, 3306, 3055, 3028, 2959, 2923, 2853, 1952, 1725, 1688, 1593, 1553, 1445, 1490, 1377, 1282, 1119, 1072, 1025, 761, 698 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 6.84-6.86 (m, 2H), 6.90-6.95 (m, 7H), 7.03-7.05 (m, 3H), 7.07-7.09 (m, 1H), 7.12-7.16 (m, 2H), 7.17-7.19 (m, 3H), 7.23-7.29 (m, 4H), 7.30-7.34 (m, 2H), 7.38-7.40 (m, 3H), 7.42-7.48 (m, 3H), 7.69-7.75 (m, 2H). ¹³C NMR (100 MHz,

CDCl₃): δ = 161.1, 131.4, 130.8, 130.1, 130.0, 129.9, 129.4, 128.5. 128.3, 127.9, 127.7, 127.6, 127.4, 127.1. Anal. Calcd for C₄₈H₃₂N₂: C, 90.54; H, 5.07; N, 4.40. Found: C, 90.40; H, 5.04; N, 4.47

Synthesis of symmetric pyrido[2,3-g]quinolines catalyzed by PPInCI-nSiO₂ (Scheme 5): A mixture of 2,5-dibenzoyl-1,4-phenylenediamine 1g / or 2,5-ditolyl-1,4-phenylendiamine 1h (1 mmol), alkyne (2.6 mmol) and PPInCI-nSiO₂ catalyst (50 mg, containing 0.036 mmol In, 1.8 mol%) was stirred at 110 °C under solvent-free condition. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and then EtOAc (10 mL) was added. The catalyst was separated by filtration and washed with EtOAc (10 mL). The filtrate was evaporated and the crude product was purified by silica gel column chromatography to afford the pure desired symmetric pyrido[2,3-g]quinolines.

Tetramethyl 4,9-diphenylpyrido[*2,3-g*]*quinoline-2,3,7,8-tetracarboxylate (5ga*): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 1.5:1). Yield: 86% (482.45 mg). M.p >300 °C. FT-IR (KBr): $v_{max} = 3431$, 3060, 2951, 2924, 2854, 1734, 1654, 1570, 1525, 1442, 1353, 1259, 1216, 1146, 1111, 974, 700, 469 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.58$ (s, 6H), 3.99 (s, 6H), 7.35-7.37 (m, 5H), 7.47-7.50 (m, 5H), 8.72 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.3$, 164.2, 157.0, 150.9, 144.3, 133.8, 130.3, 129.9, 129.4, 129.3, 128.8, 128.7, 53.8, 52.7. Anal. Calcd for C₃₂H₂₄N₂O₈: C, 68.08; H, 4.29; N, 4.96. Found: C, 67.92; H, 4.25; N, 5.04.

2,3,4,7,8,9-Hexaphenylpyrido[2,3-g]quinoline (5gb): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 76% (480.12 mg). M.p= 288-290 °C. FT-IR (KBr): $v_{max} =$ 3427, 3056, 3026, 2922, 2850, 1952, 1725, 1619, 1574, 1464, 1441, 1315, 1260, 1150, 1075, 1025, 764 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.72-6.80$ (m, 3H), 6.91-6.97 (m, 5H), 7.08-7.11 (m, 6H), 7.17 (s, 2H), 7.21-7.28 (m, 9H), 7.31-7.42 (m, 3H), 7.73-7.75 (m, 2H), 7.81 (s, 1H), 7.83-7.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.8$, 147.1, 138.1, 137.5, 136.5, 131.5, 131.2, 130.3, 130.2, 129.8, 129.5, 128.9, 128.3, 128.1, 127.9, 127.7, 127.4, 126.4, 116.4. Anal. Calcd for C₄₈H₃₂N₂: C, 90.54; H, 5.07; N, 4.40. Found: C, 90.51; H, 5.11; N, 4.30.

Dimethyl 4,9-diphenylpyrido[2,3-g]quinoline-2,7-dicarboxylate (5gc): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 83% (368.54 mg). M.p = 157-160 °C. FT-

IR (KBr): $v_{max} = 3445$, 3049, 2955, 2926, 2856, 1731, 1595, 1538, 1491, 1438, 1348, 1282, 1212, 1121, 1072, 1034, 769, 700 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.74$ (s, 6H), 7.39-7.41 (m, 4H), 7.55-7.60 (m, 8H), 8.61 (s, 1H), 9.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.2$, 168.8, 162.4, 151.6, 130.9, 129.5, 128.8, 128.77, 128.73, 128.5, 116.4 52.5. Anal. Calcd for C₂₈H₂₀N₂O₄: C, 74.99; H, 4.50; N, 6.25. Found: C, 75.15; H, 4.53; N, 6.17.

Dimethyl 4,9-di-p-tolylpyrido[2,3-g]quinoline-3,8-dicarboxylate (**5hc**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 71% (332.90 mg). M.p = 235-237 °C. FT-IR (KBr): v_{max} = 3466, 3365, 3028, 2951, 2921, 2734, 2587, 1911, 1724, 1644, 1619, 1598, 1528, 1491, 1451, 1356, 1289, 1213, 1072, 895, 769 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 2.43 (s, 6H), 3.62 (s, 3H), 3.99 (s, 3H), 7.23-7.31 (m, 8H), 7.45-7.48 (m, 2H), 7.63-7.65 (m, 1H), 8.72 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.4, 149.5, 144.3, 139.4, 130.9, 130.8, 130.3, 129.4, 129.2, 129.1, 128.8, 128.6, 53.8, 52.7, 23.7, 23.0. Anal. Calcd for C₃₀H₂₄N₂O₄: C, 75.62; H, 5.08; N, 5.88. Found: C, 75.48; H, 5.12; N, 5.95.

3,8-Diphenyl-4,9-di-p-tolylpyrido[2,3-g]quinoline (5hd): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1).Yield: 80% (408.65 mg). M.p >300 °C. FT-IR (KBr): $v_{max} = 3427$, 2948, 2924, 2867, 2734, 1737, 1609, 1500, 1445, 1360, 1252, 1219, 1114, 1048, 788 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.46$ (s, 6H), 7.35 (d, J = 7.8 Hz, 4H), 7.41-7.48 (m, 7H), 7.53 (d, J = 7.9 Hz, 4H), 7.79 (s, 2H), 8.14 (d, J = 7.1 Hz, 3H), 8.81 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 141.5$, 130.0, 129.7, 129.6, 129.5, 129.4, 129.0, 128.9, 128.8, 127.7, 127.6, 127.2, 126.9, 119.6, 21.4. Anal. Calcd for C₃₈H₂₈N₂: C, 89.03; H, 5.51; N, 5.46. Found: C, 89.17; H, 5.49; N, 5.27.

Synthesis of unsymmetric pyrido[2,3-g]quinolines catalyzed by PPInCl-nSiO₂ (Scheme 6): A three-component reaction of 2,5-dibenzoyl-1,4-phenylenediamine 1g (1 mmol) with DMAD 2a (1.3 mmol) and diphenyl acetylene 2b (1.3 mmol) in the presence of PPInCl-nSiO₂ catalyst (50 mg, containing 0.036 mmol In, 1.8 mol%) was stirred at 110 °C under solvent-free conditions. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and then EtOAc (10 mL) was added. The catalyst was separated by filtration and

washed with EtOAc (10 mL). The filtrate was evaporated and the crude product was purified by silica gel column chromatography to afford the pure desired unsymmetric pyrido[2,3-g]quinolines.

Dimethyl 4,7,8,9-*tetraphenylpyrido*[2,3-g]quinoline-2,3-dicarboxylate (**6gab**): Purified by silica gel column chromatography (eluent: petroleum ether/EtOAc, 2:1). Yield: 81% (484.35 mg). M.p>310 °C. FT-IR (KBr): $v_{max} = 3439$, 3060, 2955, 2924, 2730, 1969, 1732, 1579, 1526, 1446, 1358, 1259, 1218, 1111, 1051, 977, 756, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.69$ (s, 3H), 4.09 (s, 3H), 7.51-7.56 (m, 10H), 7.60-7.65 (m, 6H), 7.72-7.74 (m, 1H), 7.94 (s, 1H), 8.20 (dd, ¹ *J* = 6.4 Hz, ² *J* = 1.4 Hz, 2H), 8.64 (s, 1H), 9.01 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 174.5$, 173.6, 150.7, 149.4, 131.4, 131.0, 130.3 129.6, 129.4, 129.0, 128.9, 128.8, 128.6, 128.3, 128.1, 127.8, 120.5, 118.3, 105.6, 53.7, 52.6. Anal. Calcd for C₄₀H₂₈N₂O₄: C, 79.98; H, 4.70; N, 4.66. Found: C, 80.11; H, 4.66; N, 4.57.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications websiteat.

Detailed preparation and characterization of PPInCl-nSiO₂ catalyst, proposed mechanism, copies of ¹H

and ¹³C NMR spectra of the products and X-ray crystallographic data (PDF).

X-ray crystallographic data for compound 3cd (CIF)

X-ray crystallographic data for compound 3dc (CIF)

Accession Codes

CCDC 1857297 and 1857298 contain the supplementary crystallographic data for this paper.

AUTHOR INFORMATION

Corresponding Author

* E-mail: imbaltork@sci.ui.ac.ir

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We are grateful to the Iranian National Science Foundation (INSF) project number 95828022 and the Research Council of the University of Isfahan for the financial support of this work.

REFERENCES

(1) For general review regarding the quinolines, see: (a) Manske, R. H. The Chemistry of Quinolines. *Chem. Rev.* 1942, *30*, 113. (b) Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. *Eur. J. Med. Chem.* 2015, *97*, 871. (c) Marella, A.; Tanwar, O. P.; Saha, R.; Ali, M. R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M. Quinoline: A versatile heterocyclic. *Saudi Pharm. J.* 2013, *21*, 1. (d) Gopaul, K.; Shintre, S. A.; Koorbanally, N. A. A Review on the Synthesis and Anti-cancer Activity of 2-substituted Quinolines. *Anticancer Agents Med. Chem.* 2015, *15*, 631. (e) Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. *Mini-Rev. Med. Chem.* 2009, *9*, 1648.

(2) To inform about mentioned method please see: (a) Batista, V. F.; Pinto, D. C.; Silva, A. M. Synthesis of quinolines: A green perspective. *ACS Sustainable Chem. Eng.* **2016**, *4*, 4064. (b). Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.; Patel, H. D. Recent advances in the synthesis of quinolines: a review. *RSC Adv.* **2014**, *4*, 24463.

(3) (a) Zhou, W.; Lei, J. Palladium-catalyzed synthesis of polysubstituted quinolines from 2-amino aromatic ketones and alkynes. *Chem. Commun.* 2014, *50*, 5583. (b) Pandit, R. P.; Lee, Y. R. Copper (II) triflate-catalyzed reactions for the synthesis of novel and diverse quinoline carboxylates. *RSC Adv.* 2013, *3*, 22039. (c) Yaragorla, S.; Pareek, A. Regioselective intramolecular annulations of ambident β-

enamino esters: A diversity-oriented synthesis of nitrogen-containing privileged molecules. *Tetrahedron Lett.* 2018, *59*, 909. (d) Cai, S.; Zeng, J.; Bai, Y.; Liu, X. W. Access to quinolines through gold-catalyzed intermolecular cycloaddition of 2-aminoaryl carbonyls and internal alkynes. *J. Org. Chem.* 2011, *77*, 801. (e) Chanda, T.; Verma, R. K.; Singh, M. S. InCl₃-driven regioselective synthesis of functionalized/annulated quinolines: Scope and limitations. *Chem. asian J.* 2012, *7*, 778. (f) Gal'pern, M. G.; Kudrevich, S. V.; Novozhilova, I. G. Synthesis and spectroscopic properties of soluble aza analogs of phthalocyanine and naphthalocyanine. *Chem. Heterocycl. Compd.* 1993, *29*, 49.

(4) (a) Ruggli, P.; Hindermann, P.; Frey, H. 4, 6-Dinitro-und Diamino-isophtalaldehyd II; lin. Benzo-di-α-picolin und Benzo-di-pyridin. 35. Mitteilung über Stickstoff-Heterocyclen. *Helv. Chim. Acta* 1938, *21*, 1066. (b) Ruggli, P.; Reichwein, H. Über 4, 6-Diamino-1, 3-diacetyl-benzol und seine Überführung in Derivate des lin. Benzo-dipyridins. *Helv. Chim. Acta* 1937, *20*, 905. (c) Ruggli, P.; Preiswerk, E. Über lineare und angulare Benzo-dipyridine VI (1, 5-Anthrazoline und 4, 5-Phenanthroline). *Helv. Chim. Acta* 1939, *22*, 478. (d) Ruggli, P.; Brandt, F. Über ein neues lineares Benzo-dipicolin, das 2, 6-Dimethyl-1, 5-anthrazolin. *Helv. Chim. Acta* 1944, *27*, 274.

(5) (a) Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. Microwave-promoted alkynylation-cyclization of 2-aminoaryl ketones: a green strategy for the synthesis of 2, 4-disubstituted quinolines. *Synlett*, 2010, 20, 3104. (b) Anvar, S.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Khosropour, A. R.; Kia, R. Efficient and environmentally-benign three-component synthesis of quinolines and bis-quinolines catalyzed by recyclable potassium dodecatungstocobaltate trihydrate under microwave irradiation. *RSC Adv.* 2012, *2*, 8713. (c) Anvar, S.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, A.; Kia, R. New pyridinium-based ionic liquid as an excellent solvent–catalyst system for the one-pot three-component synthesis of 2,3-disubstituted quinolines. *ACS Comb. Sci.* 2014, *16*, 93 (d) Asadi, B.; Landarani-Isfahani, A.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Rudbari, H. A. Microwave-assisted, regioselective

one-pot synthesis of quinolines and bis-quinolines catalyzed by Bi(III) immobilized on triazine dendrimer stabilized magnetic nanoparticles. *Tetrahedron Lett.* **2017**, *58*, 71.

(6) Rahmani, F.; Mohammadpoor-Baltork, I.; Khosropour, A. R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Propylphosphonium hydrogen carbonate ionic liquid supported on nano-silica as a reusable catalyst for the efficient multicomponent synthesis of fully substituted pyridines and bis-pyridines. *RSC Adv.* **2015**, *5*, 39978.

(7) (a) Kim, Y. J.; Varma, R. S. Microwave-assisted preparation of imidazolium-based tetrachloroindate(III) and their application in the tetrahydropyranylation of alcohols. *Tetrahedron Lett.*2005, 46, 1467. (b) Joseph, J. K.; Jain, S. L.; Singhal, S.; Sain, B. Efficient synthesis of 3,4-dihydropyrimidinones in 1-n-Butyl-3-methylimidazolium tetrachloroindate (BMI·InCl₄). *Ind. Eng. Chem. Res.* 2011, *50*, 11463. (c) Brown, L. C.; Hogg, J. M.; Swadźba-Kwaśny, M. Lewis acidic ionic liquids. *Top Curr. Chem. (Z)* 2017, *375*, 78.

(8) Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 3403.

(9) Imai, Y.; Johnson, E. F.; Katto, T.; Kurihara, M.; Stille, J. K. Synthesis of aromatic polymers containing anthrazoline and isoanthrazoline units. *J. Polym. Sci. Part A: Polym. Chem.* **1975**, *13*, 2233.

(10) Jaffe, H. H.; Freedman, L. D. The ultraviolet absorption spectra of arylphosphonic and diarylphosphinic acids. J. Am. Chem. Soc. 1952, 74, 1069.

(11) Ross, M. B.; Schatz, G. C. Aluminum and indium plasmonic nanoantennas in the ultraviolet. *J. Phys. Chem. C* **2014**, *118*, 12506.

(12) Krajczyk, L.; Jabłoński, J. M.; Nyk, M.; Stręk, W.; Misiewicz, J. TEM study of indium and gallium nitride nanocrystals in silica gasses obtained by the sol-gel method. *J. Microsc.* **2006**, *223*, 231.

(13) Bagdi, A. K.; Santra, S.; Rahman, M.; Majee, A.; Hajra, A. Synthesis of polysubstituted quinolines via copper (II)-catalyzed annulation of 2-aminoaryl ketones with alkynoates. *RSC Adv.* **2013**, *3*, 24034.

ACS Paragon Plus Environment

(14) Qandalee, M.; Alikarami, M.; Mighani, H.; Asghari, S.; Beikjani, Sh.; Hatami, M. Unexpected simultaneous synthesis of trisubstituted quinolines and acylhydrazones under catalyst-free conditions. *Int. nano Lett.* **2013**, *3*, 1.