322 Communications synthesis

A Ready Synthesis of 4-Oxo-4H-pyrrolo[3,2,1-ij]quinolines

David St. C. Black,* Andrew J. Ivory, Paul A. Keller, Naresh Kumar

School of Chemistry, University of New South Wales, P.O. Box 1, Kensington, New South Wales, 2033, Australia

4,6-Dimethoxy-7-formylindoles undergo condensation with ethyl acetate in the presence of sodium ethoxide to yield new 4-oxo-4*H*-pyrrolo[3,2,1-*ij*]quinolines.

Pyrroloquinolines and their derivatives have received considerable attention because of their biological interest. Although 5-oxopyrrolo[3,2,1-ij]quinolines are known, information regarding the related 4-oxopyrroloquinoline system is rather scarce. Modified forms of the 4-oxopyrroloquinoline ring system are found in hippadine, 1 pratorinine, 2 and pratorimine alkaloids recently isolated from the *Amaryllidaceae* family. 6-Oxopyrroloquinolines 4-7 are normally prepared by cyanoethylation of the indole nitrogen, followed by hydrolysis of cyano to carboxyl and cyclization with polyphosphoric acid. An isolated report describes the synthesis of 6-methyl-4-oxo-4*H*-pyrrolo[3,2,1-ij]quinoline by the cyclization of 1-acetoacetylindole using forcing conditions.

Our previous use of 4,6-dimethoxyindoles⁹ has enabled 7-substitution to be achieved readily. Thus Vilsmeier formylation leads to the 7-formylindoles 1,¹¹ which have already been converted into a range of useful 7-substituted indoles.¹⁰⁻¹¹ We now report that the 7-formylindoles 1 undergo smooth reaction with ethyl acetate in the presence of sodium ethoxide to

The ease of cyclization is significant as the presumed intermediate 3 was not isolated. However, in certain cases a trace amount

give the 4-oxopyrrologuinolines 2 directly in high yields (Table).

of the α,β -unsaturated ester 4 was detected but also was not isolated. Presumably cyclization is assisted by the buttressing effect of the 6-methoxy group and consequent relief of steric hindrance.

OMe R²

OEt
$$\frac{NaOEt}{reflux, 6h}$$

NaOEt $\frac{NaOEt}{reflux, 6h}$

OMe R²

NaOEt $\frac{NaOEt}{reflux, 6h}$

OMe R²

OBt $\frac{NaOEt}{reflux, 6h}$

OMe R²

AnoEt $\frac{NaOEt}{reflux, 6h}$

OB AnoEt $\frac{NaOEt}{reflux, 6h}$

1-4	R ¹	R ²	1-4	R ¹	R ²
а	H	11	d	4-BrC ₆ H ₄	Н
b	Ph	Ph	e	H	CH ₃
c	Ph	Н	f	-(CH ₂) ₄ -	

Table. 7,9-Dimethoxy-4-oxo-4*H*-pyrrolo[3,2,1-*ij*]quinolines **2** Prepared

Prod- uct	Yield (%) ^a	mp (°C) ^b	Molecular Formula ^e	IR (Nujol) ^d v (C=O) (cm ⁻¹)	¹ H-NMR (CDCl ₃) ^e δ , J (Hz)	MS $(70 \text{ eV})^f$ m/z (%)
2a	89	197-198	C ₁₃ H ₁₁ NO ₃ (229.2)	1676	3.99. 4.09 (2s, 3H each, OCH ₃); 6.34 (s, 1H _{aron}); 6.46 (d, 1H, J = 9.4); 6.90 (d, 1H, J = 3.6); 7.78 (d, 1H, J = 3.6); 7.98 (d, 1H, J = 9.4)	229 (M ⁺ , 100); 214 (60); 188 (55); 171 (28)
2 b	74	246247	C ₂₅ H ₁₉ NO ₃ (381.4)	1678	3.84, 4.03 (2s, 3H each, OCH ₃); 6.40 (s, 1H _{arom}); 6.40 (d, 1H, J = 9.5); 7.21–7.35 (m, 10H _{arom}); 7.99 (d, 1H, J = 9.5)	381 (M ⁺ , 100); 380 (39); 366 (28)
2c	71	216-217	C ₁₉ H ₁₅ NO ₃ (305.3)	1674	3.97, 4.03 (2s, 3H each, OCH ₃); 6.39 (s, 1H _{arom}); 6.50 (d, 1H, $J = 9.5$); 7.35–7.45 (m, 3H _{arom}); 7.73 (d, 2H, $J = 7.4$); 7.85 (s, 1H _{arom}); 8.02 (d, 1H, $J = 9.5$)	305 (M ⁺ , 100); 280 (45)
2d	78	212-213	C ₁₉ H ₁₄ BrNO ₃ (384.2)	1675	3.98, 4.04 (2s, 3H each, OCH ₃); 6.41 (s, 1H _{aron}); 6.50 (d, 1H, J = 9.5); 7.55 (d, 2H, J = 8.4); 7.58 (d, 2H, J = 8.4); 7.84 (s, 1H _{aron}); 8.04 (d, 1H, J = 9.5)	385/383 (M ⁺ , 100); 371/369 (32); 289 (84)
2e	92	183-184	C ₁₄ H ₁₃ NO ₃ (243.3)	1671	2.44 (s, 3H, CH ₃); 4.00, 4.02 (2s, 3H each, OCH ₃); 6.32 (s, $1H_{arom}$); 6.45 (d, 1H, $J = 9.5$); 7.48 (s, $1H_{arom}$); 7.94 (d, 1H, $J = 9.5$)	243 (M ⁺ , 100); 228 (100); 200 (22); 185 (20)
2f	95	189-190	C ₁₇ H ₁₇ NO ₃ (283.3)	1669	1.80-1.91 (m, 4H, CH ₂); 2.84-2.87 (m, 2H, CH ₂); 3.23-3.27 (m, 2H, CH ₂); 3.98, 3.99 (2s, 3H each, OCH ₃); 6.33 (s, 1H _{arom}); 6.40 (d, 1H, <i>J</i> = 9.4); 7.91 (d, 1H, <i>J</i> = 9.4)	283 (M ⁺ , 58); 268 (100)

a Yield of isolated pure product.

b Uncorrected, measured with a Kofler melting point apparatus.

Satisfactory microanalyses obtained: $C \pm 0.30$, $H \pm 0.30$, $N \pm 0.30$.

^d Recorded on a Perkin-Elmer 580B spectrophotometer.

e Recorded at 500 MHz using a Bruker instrument.

f Recorded with an AE-1 mass spectrometer (MS12).

Attempts to prepare the compound 2 by a Perkin reaction, ¹² refluxing 7-formylindole 1 with acetic anhydride in the presence of sodium acetate were not successful, and only traces of the pyrroloquinolones were detected.

7,9-Dimethoxy-4-oxo-4*H*-pyrrolo[3,2,1-*ij*]quinolines (2); General Procedure:

NaOEt (0.27 g, 4 mmol) is added to a stirred solution of 4,6-dimethoxy-7-formylindole 11 (0.205 g, 1 mmol) in dry EtOAc (15 mL). After refluxing for 6 h the solvent is evaporated. The residue is diluted with $\rm H_2O$ (40 mL) and acidified with 2N HCl (2 mL). The suspension is extracted with CH₂Cl₂ (3 × 30 mL), dried (Na₂SO₄), evaporated, and recrystallized from CH₂Cl₂/MeOH (1:3) to yield compound **2** (Table).

This research was supported by the Australian Research Grants Scheme.

Received: 11 July 1988; revised: 21 November 1988

- (1) Ali, A.A., Mesbah, M.K., Frahm, A.W. Planta Med. 1981, 43, 407; C.A. 1982, 96, 100930.
- (2) Ghosal, S., Rao, P.H., Jaiswal, D.K., Kumar, Y., Frahm, A.W. Phytochemistry 1981, 20, 2003; C.A. 1982, 96, 85824.
- (3) Ghosal, S., Saini, K.S., Frahm, A.W. Phytochemistry 1983, 22, 2305; C.A. 1984, 100, 65005.
- (4) Neidlein, R., Rietdorf, U. Arch. Pharm. (Weinheim, Ger.) 1982, 315, 901.
- (5) Nakatsuka, S., Asano, O., Goto, T. Heterocycles 1986, 25, 2399.
- (6) Merchant, J. R., Shankarnarayan, V. Curr. Sci. 1979, 48, 585; C. A. 1979, 91, 140696.
- (7) Haerter, H.P., Stauss, U., Osiecki, J.H., Schindler, O. Chimia 1976, 30, 50.
- (8) Franke, U., Roeder, E. Arch. Pharm. (Weinheim, Ger.) 1976, 309, 185.
- (9) Black, D.St.C., Kumar, N., Wong, L.C.H. Aust. J. Chem. 1986, 39, 15; C.A. 1987, 106, 18300.
- (10) Black, D. St. C., Craig, D. C., Kumar, N., Wong, L. C. H. J. Chem. Soc. Chem. Commun. 1985, 1172.
- (11) Black, D.St.C., Kumar, N., Wong, L.C.H. Synthesis 1986, 474.
- (12) Blatt, A.H. Org. React. 1942, 1, 342.