Photochemical Rearrangement of 2,3-Dihydroisoxazoles. Formation of Stable Azomethine Ylides *via* Acyl Aziridines as Intermediates

Eloisa Lopez-Calle and Wolfgang Eberbach*

Institut für Organische Chemie und Biochemie der Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany

Irradiation of the 2,3-annulated 2,3-dihydroisoxazoles **3** affords azomethine ylides **4** as isolable compounds, which on heating are transformed into the tetrahydroindolizines **7** and **8**.

Although the photochemical behaviour of five-membered heteroaromatic systems as well as their dihydro analogues has been extensively studied,¹ including the excited state reactions of isoxazoles and 4,5-dihydroisoxazoles,^{2,3} investigations with 2,3-dihydroisoxazoles are still lacking.⁴ We now describe our results with the annulated 2,3-dihydroisoxazoles **3a–d**, which are obtained in 60–80% yield by regioselective cycloadditions of the cyclic nitrone **1** with the alkynes **2a–d**.

Table 1	Photolysis	of the	annulated	2,3-dihydroiso	xazoles
---------	------------	--------	-----------	----------------	---------

Irradiation of 4×10^{-3} mol dm⁻³ solutions of **3a** in benzene with a high-pressure mercury lamp (Pyrex filter, $\lambda > 280$ nm) afforded a crystalline product in 88% yield which was identified as the azomethine ylide 4a. Under similar conditions the tert-butyl derivative 3b is likewise transformed into 4b (Table 1). In the case of the mono- and di-ester substituted compounds 3c and 3d, respectively, the photolysis was performed using a Vycor filter and diethyl ether as solvent (λ > 230 nm; for UV absorptions of **3a-d** see Table 1). Again compounds with dipolar structures, 4c and 4d, were isolated as the main products.[†] The lower yield, especially of 4c, is mainly due to product loss during the chromatographic work-up. According to ¹H NMR analysis prior to the purification procedure, both 4c and 4d are formed in about 80 and 70% yield, respectively. Furthermore, careful inspection of the spectra of the a-c series revealed additional signals which are compatible with the 1-azabicyclo[4.1.0]heptene structure 9 [see below and Scheme 2; the ratio $\mathbf{4}: \mathbf{9}$ was $10: 1(\mathbf{a}), 60: 1(\mathbf{b})$, 6:1 (c)]; unfortunately all attempts at isolation have failed so far.

The azomethine ylides 4 are unambiguously characterised by correct elemental analyses and/or mass spectra as well as by the spectroscopic data;† additional confirmation of the structures is based on their chemical reactivity (see below).

With the successful separation of **4a–d** the first representatives of isolable azomethine ylides are described which bear stabilizing groups only at one terminus of the 1,3-dipolar system. The few other stable systems, which have π -substituents on both sides, are derived from conjugated iminium compounds like isoquinolinium or dihydroisoquinolinium ylides⁵ as well as from non-cyclic azomethine ylides.⁶

The remarkable stability of 4a-d is reflected by their unusually low reactivity with dipolarophiles; *e.g.* cycloaddition experiments with 4a using dimethylacetylene dicarboxylate or *N*-phenylmaleimide as 2π -components were unsuccessful; only 4-methyltriazoline-3,5-dione (MTAD) gave rise to a

Scheme 2

Dihydroisoxazole	$\lambda_{max}/nm(\epsilon)$ (MeCN)	Photolysis conditions ^a	Azomethine ylide ^b
3a	302 (8800)	$0.4 \text{ mmol}, C_6 H_6$	4a (88%, mp 133 °C)
3b	282 (7500)	Pyrex, 30 min $0.5 \text{ mmol}, C_6H_6$ Pyrex, 46 min	4b (75%, mp 104 °C)
3c	269 (5300)	0.6 mmol, diethyl ether Vycor 50 min	4c (25%, oil)
3d	268 (2900)	0.8 mmol, diethyl ether Vycor, 2.5 h	4d (58%, oil)

^a Irradiations were carried out with 100 ml of degassed solutions of the dihydroisoxazoles with a 150 W high-pressure mercury lamp at 20 °C. ^b Isolated yields after chromatographic purification.

Table 2 Thermal transformation of 4 into 7 and 8

4	Reaction time ^{<i>a</i>,<i>c</i>}	7 ^{b,c} (%)	8 ^{b,c} (%)
4a 4b 4c 4d	6 h [42 h] 3.5 h [5 days] 1.5 h [64 h] 3 h [20 h]	71 [48] 62 [56]	18 [18] 11 65 [55] 69 [59]

^a Reflux in toluene. ^b % Yield after chromatographic purification. ^c Values in square brackets refer to the thermolysis of **3a-d** under simultaneous irradiation with a 500 W lamp.

product, namely 5a, formed in 78% yield (CH₂Cl₂, room temp., 10 min) by a Diels-Alder reaction and subsequent H-shift.

On heating 4a-d in refluxing toluene, a rearrangement took place leading to the tetrahydroindolizines 7a, b and 8a-d, respectively (see Table 2). The possible reaction pathway includes a 6π -suprafacial 1,4-H-migration to the enamines 6a-d followed by cyclodehydration (Scheme 1).

Intermediates like 6 have already been suggested for the formation of the corresponding pyrrole derivatives upon thermolysis of simple 2,3-dihydroisoxazoles.^{4,7} In contrast with these results, direct heating of 3a-d in boiling toluene gave only decomposition products. However, a one-pot transformation of 3 into 7–8 can be accomplished by heating a toluene solution of 3a-d with simultaneous irradiation with a 500 W lamp (Table 2).

According to these observations, but in disagreement with results from other 2,3-dihydroisoxazoles,^{4,8} a photochemical step has to be involved during the rearrangement $3 \rightarrow 4$. Thus a mechanism is proposed which is initiated by a light-induced dihydroisoxazole \rightarrow acyl-aziridine isomerisation as the first, symmetry-allowed step $(3 \rightarrow 9)$; followed by ring opening to the iminium ylide 4 (Scheme 2).

Further evidence for this explanation has been obtained from independent photolysis experiments with 4a; after illumination of 0.08 mmol of 4a in 100 ml of benzene (Pyrex filter, 10 min) the ¹H NMR spectrum of the crude reaction mixture indicated the presence of a 10:1 mixture of starting material 4a and a minor compound; the new signals are fully consistent with the bicyclic aziridine structure 9a [250 MHz, in CDCl₃: δ 2.58 (s, CH₃), 3.55 (m, 2H, 5-H), 3.79 (m, 2H, 2-H), 9.29 (s, CHO)] and have already been observed after the preparative irradiation of **3a** (see above).§ It is interesting that the 10:1 ratio of 4a: 9a corresponds remarkably well with the result obtained by photolysis of 3a implying a photochemical equilibrium between 4 and 9.

J. CHEM. SOC., CHEM. COMMUN., 1994

Financial support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Received, 21st September 1993; Com. 3/05685F

Footnotes

[†] Selected spectroscopic data, **4a**: δ_{H} (CDCl₃) 1.93, (m, 2 H, 3-H), 2.09 (m, 2 H, 4-H), 2.34 (s, Me), 2.91 (m, 2 H, 5-H), 3.90 (m, 2 H, 2-H), 8.91 (s, CHO); δ_{C} (CDCl₃) 186.6 (C-2'), 176.7 (CHO), 140.3 (COC) (CDCl₃) 2.6 (COC) (CDCl₃) 2.6 (COC) (CDCl₃) 2.6 (COC) (CDC) (CD (C-6), 123.0, (C-1'), 53.7 (C-2), 33.4 (C-5), 23.8 (Me), 21.5 (C-3), 17.6 (C-4); λ_{max}/nm (MeCN) 333 (ϵ 3500), 280 (ϵ 13 500). 4b: δ_{H} (CDCl₃) 1.31 (CMe₃), 1.89 (m, 2 H, 3-H), 2.00 (m, 2 H, 4-H), 2.18 (s, Me), 2.81 (m, 2 H, 5-H), 3.67 (m, 2 H, 2-H), 9.41 (s, CHO). 4c: $\delta_{\rm H}$ (CDCl₃) 1.88 (m, 2 H, 3-H), 2.02 (m, 2 H, 4-H), 2.32 (s, Me), 2.80 (m, 1 H, 5-H), 2.89 (m, 1 H, 5-H), 3.70 (s, OMe), 3.73 (m, 2 H, 2-H), 9.00 (s, CHO). **4d**: δ_{H} (CDCl₃) 1.90 (m, 2 H, 3-H), 2.03 (m, 2 H, 4-H), 2.36 (s, Me), 2.87 (m, 2 H, 5-H), 3.67 (s, OMe), 3.81 (m, 2 H, 2-H), 3.84 (s, OMe).

‡ According to preliminary results with 3a, the transformation into 4a takes place with equal efficiency using acetone as solvent, hence supporting a reaction from the triplet excited state of 3.

§ Relevant ¹H NMR absorptions (250 MHz, CDCl₃) of 9b: δ 2.41 (Me), 9.70 (CHO); 9c: 8 2.47 (s, Me), 3.57 (m, 2 H, 5-H), 3.90 (m, 2 H, 2-H), 3.73 (CO₂Me), 9.53 (CHO)

References

- 1 For leading references, see A. Lablache-Combier, in Photochemistry of Heterocyclic Compounds, ed. O. Buchardt, Wiley, New York, 1976, p. 123; A. Padwa, in Rearrangements in Ground and Excited States, ed. P. de Mayo, Academic Press, New York, 1980, vol. 3, p. 501.
- 2 K. T. Potts, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press, London, 1984, vol. 6 pp. 12 and 36. Y. Ito and T. Matsura, *Tetrahedron*, 1975, **31**, 1373
- 3
- 4 For a pertinent review on the chemistry of 2,3-dihydroisoxazoles, see J. P. Freeman, Chem. Rev., 1983, 83, 241.
- 5 R. Huisgen and K. Niklas, Heterocycles, 1984, 22, 21, and references therein.
- 6 J. Fleury, J. Schoeni, D. Clerin and H. Fritz, Helv. Chim. Acta, 1975, 58, 2018; A. M. Trozzolo, T. M. Leslie, A. S. Sarpotdar, R. D. Small and G. J. Ferraudi, Pure Appl. Chem., 1979, 51, 261; N. Khan and D. A. Wilson, J. Chem. Res. (S), 1984, 150; R. Grigg, J. F. Malone, T. Mongkolavssauaratana and S. Thianpatanagui, I. Chem. Soc., Chem. Čommun., 1986, 421.
- 7 R. Grigg, Chem. Commun., 1966, 607; G. Schmidt, H. U. Stracke and E. Winterfeldt, *Chem. Ber.*, 1970, **103**, 3196; I. Adachi, K. Harada, R. Miyazaki and H. Kano, *Chem. Pharm. Bull.*, 1974, **22**, 61; Y. Yu, M. Ohno and S. Eguchi, Tetrahedron, 1993, 49, 823.
- 8 G. B. Mullen, G. A. Bennett and V. S. Georgiev, Liebigs Ann. Chem., 1990, 109.