

PII: S0040-4020(96)00397-3

Nitrogen-Containing Remote Functionalised Organolithium Compounds by Reductive Opening of Five- and Six-Membered Heterocycles[†]

Juan Almena, Francisco Foubelo and Miguel Yus*

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain

Abstract: The reaction of different five- or six-membered nitrogen-containing heterocycles such as Nisopropyl-2-phenylpyrrolidine (1), N-phenyl-3-pyrroline (6), N-phenylisoindoline (10), Nphenyltetrahydroisoquinoline (13) and N-methyltetrahydroisoquinoline (19) with an excess of lithium powder and a catalytic amount of DTBB (4.5 mol %), followed by treatment with electrophiles [H₂O, D₂O, MeI, CH₂=CHCH₂Br, PriCHO, Bu'CHO, PhCHO, Me₂CO, PrⁿCOMe, PhCOMe, (CH₂)₄CO, (CH₂)₅CO, CO₂] and final hydrolysis gives a wide series of functionalised amines 3, 8, 9, 12 and 19, the key step in the process, being the reductive opening of the starting material giving a dianionic remote functionalised organolithium compound. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Since nitrogen-containing five- and six-membered rings are very common structures in organic chemistry, their use as starting materials for synthesis is of interest. ¹ Concerning saturated heterocycles, their reactivity is limited because they behave almost as the corresponding open-chain amines. On the other hand, five years ago we discovered that the use of an arene as catalyst [naphthalene or 4,4'-di-*tert*-butylbiphenyl (DTBB)] in the lithiation of chlorinated molecules using metallic lithium is a powerful methodology, which allows the preparation of organolithium compounds under very mild reaction conditions.² Applying this procedure, it is possible to develop new methods to prepare alkyllithium from non-halogenated materials, ³ polylithium synthons⁴ and very reactive functionalised organolithium compounds⁵ by chlorine- or bromine-lithium exchange,⁶ or reductive opening of saturated heterocycles.⁷ Thus three-,^{8a} four-,^{8b} five-⁹ or six-membered^{7,9} oxygen-^{7,8} or sulfur-containing⁹ saturated heterocycles were opened by an arene-catalysed lithiation. In the case of the corresponding nitrogen-containing systems the mentioned reductive opening reaction was applied to the corresponding three-10a,b and four-membered^{10c} rings. In this paper we extend this process to five- and six-membered saturated nitrogenated heterocycles in order to explore the synthetic possibilities of this reaction.

RESULTS AND DISCUSSION

Since the reductive opening of aziridines or azetidines with an arene-catalysed lithiation works only if a phenyl group is present somewhere at the ring, we first studied the reaction with N-phenylpyrrolidine, but after three days at room temperature the starting material remained unchanged. However, the treatment of N-isopropyl-2-phenylpyrrolidine (1) with lithium powder (1:9 molar ratio) in the presence of a catalytic

[†] This paper is dedicated to Professor Rafael Usón on occasion of his 70th birthday.

J. ALMENA et al.

amount of 4,4'-di-*tert*-butylbiphenyl (DTBB; 1:0.09 molar ratio, 4.5 mol %) in THF at room temperature afforded the corresponding "dianion" **2**, the more stable benzylic carbanion, which by reaction with electrophiles [H₂O, D₂O, MeI, Bu⁴CHO, PhCHO, Me₂CO, (CH₂)₄CO, (CH₂)₅CO, CO₂] at -78°C yielded, after hydrolysis, the expected amines (**3**) (Scheme 1 and Table 1). In the case of using methyl iodide (2 eq) the corresponding *C*- and *N*-methylated product **3c'** was isolated. When carbon dioxide was used as electrophile, the carbonation was performed at -50°C, the corresponding amino acid being isolated as the corresponding ethyl ester (**3i'**) by succesive benzoylation (2 eq of PhCOC1, 2.5 M NaOH), treatment with methyllithium (3 eq,-78°C) and final esterification with ethanol in 4 M hydrochloric acid (Table 1, entry 9). The apparently tortuous way to purified the carbonation product is the simplest one in order to separate this compound from the other by-products, specially compound **3a**, obtained by abstraction of a proton from the reaction medium by "dianion" **2**.

Scheme 1. Reagents and conditions: i, Li, DTBB cat. (4.5 mol %), THF, 20°C; ii, E⁺ = H₂O, D₂O, MeI, Bu^tCHO, PhCHO, Me₂CO, (CH₂)₄CO, (CH₂)₅CO, CO₂, -78°C; iii, H₂O, -78 to 20°C.

	Electrophile E+	Producta				
Entry		No.	Е	Yield (%)b	<i>R</i> _f c or mp (°C) ^d	
1	H ₂ O	3a	Н	95	0.18	
2	D_2O	3b	D	91e	0.18	
3	MeI	3c'	_f	61	0.16	
4	Bu ⁱ CHO	3d	ButCHOH	42g	0.12g	
5	PhCHO	3e	PhCHOH	35s	0.09s	
6	Me ₂ CO	3f	Me ₂ COH	43	108-109	
7	(CH ₂) ₄ CO	3 g	(CH ₂) ₄ COH	41	0.15	
8	(CH ₂) ₅ CO	3h	(CH ₂) ₅ COH	45	0.19	
9	CO ₂	3i'	_f	28	0.16	

Table 1. Preparation of compounds 3

^a All products **3** were >96% pure (GLC and/or 300 MHz ¹H NMR). ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting material **1**. ^c Methanol was used as eluant. ^d From dichloromethane/pentane. ^e >90% Deuterium incorporation (mass spectrum). ^f See text. ^g A 1:1 diastereoisomers mixture was obtained (GLC and/or 300 MHz ¹H NMR), which could not be separated by TLC under these conditions.

Starting material 1 was prepared from the corresponding aminoalcohol 5 (succesive treatment with thionyl chloride and 2.5 M sodium hydroxide; 38% overall yield), which was obtained from 4-chlorobutyrophenone (4) by reduction with sodium borohydride followed by treatment with isopropylamine (51% overall yield; Scheme 2).

Scheme 2. Reagents and conditions: i, NaHCO₃, NaBH₄, EtOH-H₂O, 20°C; ii, PriNH₂, 80°C; iii, SOCl₂, CHCl₃, 60°C; iv, 2.5 M NaOH.

Whereas N-phenylpyrrolidine does not react with lithium in the presence of DTBB as the catalyst (see above), the corresponding 3-pyrroline 6 reacted under the reaction conditions shown in Scheme 1 to give the corresponding allylic delocalised dianion 7, which by condensation with several electrophiles and final hydrolysis yielded the expected mixture of both possible isomers 8 and 9, their being dependent on the electrophile used. For instance, the use of water or deuterium oxide afforded exclusively compounds 8 (Table 2, entries 1 and 2). However, in all other cases the mixture of products 8 and 9 was obtained, the latter being always the most abundant. The use of pivalaldehyde as electrophile yielded a *ca*. 1:1 diastereoisomers mixture, for products 9c (Table 1, entry 4). Finally, when CO_2 was employed as electrophile, under the reaction conditions mentioned for compounds 8g/9g, it was necessary to esterify the crude aminoacids initially obtained with ethanol under acidic conditions in order to isolate the amino esters 8g' and 9g' (Table 2, entries 11 and 12 and footnote i).

Scheme 3. Reagents and conditions: i, Li, DTBB cat. (4.5 mol %), THF, 20°C; ii, $E^+ = H_2O$, D_2O , Bu CHO, Me₂CO, (CH₂)₄CO, (CH₂)₅CO, CO₂, -78°C; iii, H₂O, -78 to 20°C.

Flectrophile	Producta					
E+	No.	E	Yield (%)b	Rf or mp (°C)°	Global yield (%)d	
H ₂ O	8a	Н	85	0.30e	85	
D_2O	8b	D	80f	0.30e	80	
ButCHO	8c	Bu ^t CHOH	31	0.33s		
	9c	Bu ^t CHOH	19/22 ^h	0.48/0.438	72	
Me ₂ CO	8d	Me ₂ COH	18	0.168	(0	
	9d	Me ₂ COH	42	0.288	60	
(CH ₂) ₄ CO	8e	(CH ₂) ₄ COH	11	0.24s	50	
	9e	(CH ₂) ₄ COH	47	0.318	58	
(CH ₂) ₅ CO	8f	(CH ₂) ₅ COH	25	0.268		
	9 f	(CH ₂) ₅ COH	50	80-81	/5	
CO ₂	8g'	_i	9	0.46s		
	9 g '	_i	25	0.498	34	
	Electrophile E+ H ₂ O D ₂ O Bu ⁴ CHO Me ₂ CO (CH ₂) ₄ CO (CH ₂) ₅ CO CO ₂	Electrophile $\overline{No.}$ H ₂ O 8a D ₂ O 8b Bu'CHO 8c 9c 9c Me ₂ CO 8d 9d (CH ₂) ₄ CO 8e 9e (CH ₂) ₅ CO 8f 9f CO ₂ 8g' 9g' 9g' 9g'	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	Electrophile Froduct* E^+ No. E Yield (%)* R_f or mp (°C)c H_2O 8a H 85 0.30e D_2O 8b D 80f 0.30e D_2O 8b D 80f 0.30e Bu*CHO 8c Bu*CHOH 31 0.33s $Bu*CHO$ 8c Bu*CHOH 19/22* 0.48/0.43s Me ₂ CO 8d Me ₂ COH 18 0.16s $9d$ Me ₂ COH 42 0.28s (CH ₂) ₄ CO 8e (CH ₂) ₄ COH 11 0.24s $9e$ (CH ₂) ₄ COH 47 0.31s (CH ₂) ₅ CO 8f (CH ₂) ₅ COH 25 0.26s $9f$ (CH ₂) ₅ COH 50 80-81 CO ₂ $8g'_{1}$ -i 9 0.46s $9g'_{1}$ -i 25 0.49s	

Table 2. Preparation of compounds 8 and 9

^a All isolated products 8 and 9 were >95% pure (GLC and/or 300 MHz ¹H NMR). ^b Isolated yield after chromatographic separation by column (silica gel, hexane/ethyl acetate). ^c From dichloromethane/pentane. ^d 8+9 Isolated yield. ^e Silica gel, hexane/ethyl acetate: 20/1. ^f >90% Deuterium incorporation (mass spectrum). ^g Silica gel, hexane/ethyl acetate: 3/1. ^h Diastereoisomers ratio determined after chromatographic separation. ⁱ The corresponding aminoacids were isolated as their corresponding ethyl esters 8g' and 9g' (see text).

Starting material 6 was prepared by reaction of aniline with commercially available (Z)-1,4-dichloro-2butene in the presence of *n*-butyllithium in 38% overall yield.

We then considered the reductive opening of isoindoline finding that N-isopropylisoindoline does not react with lithium powder under DTBB catalysis after three days at room temperature. However, when the corresponding N-phenyl derivative 10 was submitted to the reaction conditions shown in Scheme 1 it gave in a two-step process the expected products 12, after hydrolysis, via the corresponding dianion 11 (Scheme 4 and Table 3).

Scheme 4. Reagents and conditions: i, Li, DTBB cat. (4.5 mol %), THF, 20°C; ii, $E^+ = H_2O$, D_2O , PriCHO, Bu⁴CHO, PhCHO, Me₂CO, PhCOMe, -78°C; iii, H_2O , -78 to 20°C.

	Electrophile E+	Product 3 ^a				
Entry		No.	Е	Yield (%)b	<i>R</i> f ^c or mp (°C) ^d	
1	H ₂ O	12a	Н	70	0.48	
2	D ₂ O	12b	D	65e	0.48	
3	PriCHO	12c	PriCHOH	32	0.29	
4	ButCHO	12d	ButCHOH	40	81-82	
5	PhCHO	12e	PhCHOH	35	87-88	
6	Me ₂ CO	12f	Me ₂ COH	49	0.15	
7	PhCOMe	12g	PhC(OH)Me	37	0.25	
-			1	21	0.25	

Table 3. Preparation of compounds 12

^a All products 12 were >94% pure (GLC and/or 300 MHz ¹H NMR). ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting material 10. ^c Silica gel, hexane/ethyl acetate: 5/1. ^d From dichloromethane/pentane. ^e >90% Deuterium incorporation (mass spectrum).

Starting material 10 was easily prepared from commercially available 1,2-bis(bromomethyl)benzene and aniline in the presence of n-butyllithium (72% yield).

In the last part of this study we considered nitrogen containing six-membered rings as substrates. N-Phenyltetrahydroisoquinoline (13) was lithiated in the presence of DTBB as the electron transfer carrier catalyst at room temperature and after reaction with different electrophiles and final hydrolysis, yielded the expected reaction products 15 through the corresponding dianion 14. In the case of using carbon dioxide as electrophile, the reaction was performed as it was above described for the carbonation of intermediates 2 (Scheme 1), the corresponding final aminoacid being isolated as its ethyl ester 15h' (Scheme 5 and Table 4).

Scheme 5. Reagents and conditions: i, Li, DTBB cat. (4.5 mol %), THF, 20°C; ii, $E^+ = H_2O$, D_2O , Bu⁴CHO, PhCHO, Me₂CO, Pr^DCOMe, (CH₂)₄CO, CO₂, -78°C; iii, H₂O, -78 to 20°C.

Entry	Electrophile E+	Product a				
		No.	E	Yield (%) ^b	R _f	
1	H ₂ O	15a	Н	89	0.45°	
2	D ₂ O	15b	D	84d	0.45°	
3	ButCHO	15c	ButCHOH	40	0.46°	
4	PhCHO	15d	PhCHOH	49	0.23e	
5	Me ₂ CO	15e	Me ₂ COH	47	0.23e	
6	Pr ⁿ COMe	15f	Pr ⁿ C(OH)Me	53	0.22 ^f	
7	(CH ₂) ₄ CO	15g	(CH ₂) ₄ COH	53	0.25°	
8	CO ₂	15h'	-8	34	0.26f	

Table 4. Preparation of compounds 15

^a All products 15 were >97% pure (GLC and/or 300 MHz ¹H NMR): ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting material 13. ^c Silica gel, hexane/ethyl acetate: 10/1. ^d >90% Deuterium incorporation (mass spectrum). ^e Silica gel, hexane/ethyl acetate: 3/1. ^f Silica gel, hexane/ethyl acetate: 5/1. ^g See text.

Starting material 13 was prepared by reaction of aniline with 2-(2-bromoethyl)benzyl bromide 17 [obtained by hydrogen bromide opening of isochromane 16 (56% yield)] under basic reaction conditions (69% yield) (Scheme 6).

Scheme 6. Reagents and conditions: i, 45% HBr, 96% H₂SO₄, Adogen®, 115°C; ii, PhNH₂, K₂CO₃, EtOH, reflux.

Finally we applied the DTBB-catalysed lithiation to N-methyltetrahydroisoquinoline 18. In this case we obtained a surprising result: compounds 19 were obtained instead of the expected ones of type 20 (Scheme 7 and Table 5). When allyl bromide was used as electrophile (1:2.5 molar ratio) the corresponding C- and N-allylation product 19c' was isolated (Table 5, entry 3).

Scheme 7. *Reagents and conditions*: i, Li, DTBB cat. (4.5 mol %), THF, 20°C; ii, E⁺ = H₂O, D₂O, CH₂=CHCH₂Br, (CH₂)₄CO, -78°C; iii, H₂O, -78 to 20°C.

Table 5. Preparation of compounds 19

	Electrophile E+	Producta				
Entry		No.	E	Yield (%) ^b	<i>R</i> ∱ or mp (°C) ^d	
1	H ₂ O	19a	Н	76	134-136	
2	D ₂ O	19b	D	69e	135-137	
3	CH ₂ =CHCH ₂ Br	19c'	_f	47	0.10	
4	(CH ₂) ₄ CO	19d	(CH ₂) ₄ COH	39	0.51	

^a All products **19** were >96% pure (GLC and/or 300 MHz ¹H NMR) except **19a** (92%). ^b Isolated yield after column chromatography (silica gel, hexane/ethyl acetate) based on the starting material **18**. ^c Silica gel, methanol. ^d From dichloromethane/pentane. ^e >90% Deuterium incorporation (mass spectrum). ^f See text.

J. ALMENA et al.

A possible explanation of this strange behaviour can be as follows: a benzylic lithiation takes initially place¹¹ to give a β -nitrogenated organolithium compound I, which undergoes spontaneous β -elimination¹² giving the vinylic derivative II. The styrene derivative can add an electron from the strong reductive medium to form an unstable radical-anion of type III:¹³ this intermediate can take a proton from the reaction medium giving a benzylic radical IV (stabilysed by delocalisation through the phenyl group), which by taking a new electron from the activated lithium affords the dianion intermediate V. The final trapping of the organolithium species by the electrophile gives the obtained products **19** (Scheme 8).

Scheme 8

Starting material **18** was prepared from commercially available tetrahydroisoquinoline hydrochloride by succesive treatment with *n*-butyllithium (2.1 eq) and methyl iodide (92% yield).

As a conclusion, we have shown that the tandem DTBB-catalysed lithiation of some five- and sixmembered nitrogenated heterocycles-reaction with electrophiles is an adequate way to prepare a wide series of functionalised amines (the key step of the process is the regioselective opening of the heterocycle).

EXPERIMENTAL PART

General.- For general information see, for instance, reference 10b.

Preparation of 4-Isopropylamino-1-phenylbutanol (5). To a suspension of sodium hydrogencarbonate (1 g, 1.20 mmol) and 4-chlorobutyrophenone (4) (1.6 ml, 10 mmol) in ethanol (10 ml) was dropwise added a water solution (5 ml) of sodium borohydryde (0.189 gr, 5 mmol) at room temperature, and the resulting mixture was stirred at the same temperature for 1 h. Ethanol was evaporated (15 Torr) and the residue was hydrolysed with water (25 ml), acidified with 3 M hydrochloric acid (15 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting brown oil

was added to isopropyl amine (2.6 ml, 30 mmol) in a sealed tube and was heated to 75°C for 15 h. The reaction mixture was then basified with 2.5 M sodium hydroxide (15 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then recrystallised from pentane/dichloromethane to yield pure product 5. Yield is given in the text; mp 63-64°C (pentane/dichloromethane); v_{max} (KBr) 3600-3080 cm⁻¹ (OH, NH); δ_H 1.03 [6H, d, J=6.3, (CH₃)₂CH], 1.47-1.86 (4H, m, HOCHCH₂CH₂), 2.49-2.53 (1H, m, HCHNH), 2.64-2.67 (1H, m, HCHNH), 2.74 (1H, heptet, J=6.3, CHNH), 3.90 (2H, br s, OH, NH), 4.57 (1H, dd, J=8.5, 3.0, HOCH), 7.12-7.31 (5H, m, ArH); δ_C 22.4, 22.6 [(CH₃)₂CH], 27.5 (CH₂CH₂N), 39.5 (HOCHCH₂), 46.9 (CH₂N), 48.6 (CHN), 73.4 (CHOH), 125.7, 126.5, 128.0, 145.8 (ArC); *m/z* 207 (M+, 14%), 174 (22), 131 (38), 91 (14), 79 (12), 77 (20), 72 (100), 58 (12), 44 (11) (Found : C, 75.17; H, 10.63; N, 6.40. C₁₃H₂₁NO requires: C, 75.32; H, 10.21; N, 6.76).

Preparation of N-Isopropyl-2-phenylpyrrolidine (1).- To a stirred chloroform (20 ml) solution of aminoalcohol 5 (1.04 gr, 5 mmol) was added thionyl chloride (1 ml, 13.7 mmol) at 0°C. The reaction mixture was heated to 60°C for 3 h. The reaction mixture was then carefully hydrolysed with water (20 ml), basified with 2.5 M sodium hydroxide (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was evaporated (15 Torr) and the residue was treated with 2.5 M sodium hydroxide (20 ml) overnight. Then it was extracted with ethyl acetate (3x25 ml) and the organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) to yield pure product 1. Yield is given in the text; R_{f} =0.48 (ethyl acetate); v_{max} (film) 3040, 1590, 750, 690 cm⁻¹ (ArH); $\delta_{\rm H}$ 0.80, 0.91 [6H, 2d, J=6.5, (CH₃)₂CH], 1.52-1.67 (2H, m, NCH₂CH₂CH₂CHPh), 1.73-1.83, 1.96-2.05 (2H, 2 m, CH₂CHPh), 2.48 (1H, q, J=8.4, NCHH), 2.69 (1H, heptet, J=6.5, CHN), 2.95-3.01 (1H, m, NCHH), 3.53 (1H, t, J=7.5, NCHPh), 7.06-7.28 (5H, m, ArH); $\delta_{\rm C}$ 14.8 (NCH₂CH₂CH₂CHPh), 22.4, 22.8 [(CH₃)₂CH], 35.7 (CH₂CHPh), 46.1 (CH₂N), 48.5 (CHN), 65.0 (CHPh), 126.4, 127.2, 128.1, 145.6 (ArC); m/z 189 (M+, 9%), 175 (10), 174 (100), 131 (44), 112 (14), 91 (26), 70 (13) (Found: M+, 189.1514. C₁₃H₁₉N requires M, 189.1518).

Preparation of Compounds 3. General Procedure.- To a blue suspension of lithium powder (0.125g, 18.0 mmol) and a catalytic amount of 4,4'-di-tert-butylbiphenyl (0.047 g, 0.18 mmol) in THF (10 ml) at 20°C was added pyrrolidine 1 (0.380 ml, 2.0 mmol) under argon and the mixture was stirred for 0.5 h at the same temperature. Then, the mixture was cooled down at -78°C and the corresponding electrophile (3.0 mmol; 0.5 ml in the case of water or deuterium oxide; CO₂ was bubbled for 1.5 h) was added. The mixture was stirred at the same temperature for 0.5 h and hydrolysed with water (25 ml). The resulting mixture was extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) and/or recrystallised to yield pure products 3. When the electrophile was CO₂, after having hydrolysed the mixture with water at -78°C it was basified with 2.5 M sodium hydroxide (10 ml) and benzoyl chloride was added dropwise (1.15 ml, 10.0 mmol) at 0°C. The reaction mixture was acidified with 3 M hydrochloric acid (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting residue was treated with 1.6 M hexane solution of MeLi (3.1 ml, 5 mmol) in 5 ml of THF at -50°C for 2 h. After that, the organic solvent was removed (15 Torr) and then was hydrolysed with a 4 M ethanol solution of hydrogen chloride overnight. After having evaporated the solvent the residue was hydrolysed with water (20 ml), basified with 2.5 M sodium hydroxyde (20 ml), and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr) to yield pure compound 3i' [>95% pure (GLC and 300 MHz ¹H NMR)]. Yields and physical data (R_f or mp) are included in Table 1; analytical and spectroscopic data follow.

Isopropyl 4-Phenylbutyl Amine (**3a**): v_{max} (film) 3280 cm⁻¹ (NH); δ_{H} 0.95 [6H, d, J=6.2, (CH₃)₂CH], 1.15 (1H, br s, NH), 1.38-1.48 (2H, m, CH₂CH₂Ph), 1.52-1.62 (2H, m, NCH₂CH₂), 2.49-2.56 (4H, m, CH₂Ph, NCH₂), 2.68 (1H, heptet, J=6.2, CHN), 7.05-7.21 (5H, m, ArH); δ_{C} 22.9 [(CH₃)₂CH], 29.2, 30.0 (2xCH₂), 35.7 (CH₂Ph), 47.3 (CH₂N), 48.6 (CHN), 125.5, 128.1, 128.3, 142.3 (ArC); *m/z* 191 (M+, 16%), 176 (41), 91 (63), 72 (100), 44 (14) (Found: M+, 191.1673. C₁₃H₂₁N requires M, 191.1674).

4-Deuterio-4-phenylbutyl Isopropyl Amine (**3b**): v_{max} (film) 3280 cm⁻¹ (NH); $\delta_{\rm H}$ 0.94 [6H, d, J=6.2, (CH₃)₂CH], 1.00 (1H, br s, NH), 1.39-1.47 (2H, m, CH₂CHDPh), 1.51-1.59 (2H, m, NCH₂CH₂), 2.48-2.55 (3H, m, CHPh, NCH₂), 2.66 (1H, heptet, J=6.2, CHN), 7.04-7.19 (5H, m, ArH); $\delta_{\rm C}$ 22.8 [(CH₃)₂CH], 29.0, 29.9 (2xCH₂), 35.3 (t, J_{CD}=19.3), 47.2 (CH₂N), 48.5 (CHN), 125.4, 128.0, 128.1, 142.2 (ArC); *m*/z 192 (M+, 16%), 177 (44), 92 (44), 91 (28), 73 (13), 72 (100), 44 (13) (Found: M+, 192.1737. C₁₃H₂₀DN requires M, 192.1737).

Isopropyl Methyl 4-Methyl-4-phenylbutyl Amine (3c'): v_{max} (film) 3082, 3061, 3026, 761, 700 cm⁻¹ (Ar); δ_{H} 0.97 [6H, d, J=6.7, (CH₃)₂CH], 1.24 (3H, d, J=6.7, CH₃CHPh), 1.35-1.61 (4H, m, NCH₂CH₂CH₂), 2.15 (3H, s, CH₃N), 2.30-2.36 (2H, m, NCH₂), 2.60-2.72 (1H, m, CHPh), 2.81 (1H, heptet, J=6.7, CHN), 7.13-7.30 (5H, m, ArH); δ_{C} 17.6 [(CH₃)₂CH], 22.2 (CH₃CH), 25.8 (NCH₂CH₂), 36.2 (PhCHCH₂), 36.6 (CH₃N), 39.8 (PhCH), 53.1 (CHN), 53.2 (CH₂N), 125.7, 126.9, 128.2, 147.5 (ArC); *m*/z 219 (M+, 9%), 204 (32), 105 (16), 91 (33), 87 (14), 86 (100), 58 (34), 56 (11), 44 (73) 43 (18), 42 (19), 41 (19) (Found: M+, 219.1997. C₁₅H₂₅N requires M, 219.1987).

7-*Isopropylamino*-2,2-*dimethyl*-4-*phenyl*-3-*heptanol* (**3d**):¹⁴ v_{max} (film) 3700-3115 cm⁻¹ (NH, OH); δ_{H} 0.76, 0.86 [9H, 2s, (CH₃)₃C], 0.99, 1.00 [6H, 2d, *J*=6.1, (CH₃)₂CH], 1.17-2.03 (6H, m, CH₂CH₂CHPh, OH, NH), 2.46-2.84 (4H, m, CHN, CH₂N, PhC*H*), 3.44-3.46 (1H, m, CHOH), 7.14-7.32 (5H, m, ArH); δ_{C} 22.7, 22.8 [(CH₃)₂CH], 26.6 [(CH₃)₃C], 28.1, 28.5, 29.1, 34.0 (2xCH₂CH₂CHPh), 35.8, 36.3 [(CH₃)₃C], 47.2 (1xCH₂N), 47.4 (2xCHN), 47.5 (1xCH₂N), 48.5 (2xPhCH), 81.9, 82.7 (2xCHOH), 125.9, 126.2, 128.0, 128.1, 128.3, 129.5, 142.3, 146.1 (2xArC); tandem GLC/MS (first diastereoisomer): *m*/z 277 (M+, 0.8%), 220 (37), 202 (11), 131 (18), 91 (22), 85 (17), 72 (100), 70 (11), 58 (25), 57 (27), 56 (13), 44 (22), 43 (29), 42 (15), 41 (38); (second diastereoisomer): *m*/z 277 (M+, 0.5%), 220 (21), 131 (12), 91 (12), 85 (10), 72 (100), 58 (10), 57 (14), 44 (16), 43 (18), 41 (22).

5-Isopropylamino-1,2-diphenyl-1-pentanol (3e): v_{max} (film) 3600-3100 cm⁻¹ (OH, NH); δ_H 0.87, 0.91 [6H, 2d, J=6.2, (CH₃)₂CH], 0.94-1.39 (5H, m, CH₂CH₂CHPh, OH or NH), 2.25-2.50 (3H, m, CH₂NH or CH₂NH, OH), 2.54, 2.60 (1H, 2 heptet, J=6.2, CHN), 2.75-2.81 (1H, m, PhCHCH₂), 4.61, 4.64 (1H, 2d, J=7.7, 9.5, PhCHOH), 6.97-7.30 (10H, m, 2xArH); δ_C 22.4, 22.5, 27.6, 27.7 [2x(CH₃)₂CH], 29.3, 30.7 (2xCH₂CH₂CHPh), 46.8 (2xCH₂N), 48.2 (2xCHN), 53.6, 53.8 (PhCHCH₂), 77.7, 77.9 (2xPhCHOH), 125.9, 126.4, 126.5, 126.6, 126.8, 127.3, 127.5, 127.8, 127.9, 128.2, 128.6, 128.7, 141.3, 141.8, 143.0, 143.7 (4xArC); *m*/z 297 (M+, 2%), 264 (12), 191 (10), 190 (15), 176 (12), 131 (22), 107 (40), 105 (18), 98 (12), 91 (26), 85 (19), 79 (80), 78 (16), 77 (68), 72 (100), 70 (14), 58 (15), 56 (19), 51 (12), 44 (10), 43 (22), 42 (18), 41 (19) (Found: M+, 297.2100. C₂₀H₂₇NO requires M, 297.2093).

6-Isopropylamino-2-methyl-3-phenyl-2-hexanol (**3f**): ν_{max} (KBr) 3600-3100 cm⁻¹ (OH, NH); δ_H 0.99 [6H, d, J=6.3, (CH₃)₂CH], 1.16 [6H, s, (CH₃)₂COH], 1.22-1.96 (6H, m, PhCHCH₂CH₂, NH, OH), 2.45-2.74 (4H, m, PhCHCH₂, CHN, CH₂N), 7.19-7.32 (5H, m, ArH); δ_C 22.8, 22.9 [(CH₃)₂CH], 27.1 (PhCHCH₂), 27.6, 28.0 [(CH₃)₂COH], 28.9 (PhCHCH₂CH₂), 47.4 (CH₂N), 48.5 (CHN), 57.1 (PhCH), 72.6 (COH), 126.5, 128.0, 129.4, 141.2 (ArC); m/z 249 (M+, 0.1%), 98 (18), 91 (17), 85 (10), 72 (100), 59 (36), 58 (14),

44 (12), 43 (31), 42(11), 41 (17) (Found : C, 76.75; H, 10.32; N, 5.13. $C_{16}H_{27}NO$ requires: C, 77.06; H, 10.91; N, 5.62).

l-(*4-Isopropylamino-1-phenylbutyl)-1-cyclopentanol* (**3g**):¹⁴ v_{max} (film) 3715-3115 cm⁻¹ (OH, NH); δ_{H} 0.98, 0.99 [6H, 2d, *J*=6.4, 6.1, (CH₃)₂CH], 1.09-1.98 (14H, m, 4xringCH₂, OH, *H*NCH₂CH₂CH₂), 2.44-2.60 (3H, m, PhCH, CH₂N), 2.63-2.75 [1H, m, (CH₃)₂CH], 7.17-7.30 (5H, m, ArH); δ_{C} 22.7, 22.8 [(CH₃)₂CH], 23.1, 23.5 (HNCH₂CH₂CH₂), 27.9, 28.7, 38.3, 39.3 (4xringCH₂), 47.4 (CH₂N), 48.4 (CHN), 55.3 (PhCH), 84.4 (COH), 126.2, 128.0, 128.9, 142.0 (ArC); *m/z* 271 (M+-H₂O, 7%), 98 (38), 91 (15), 85 (29), 72 (100), 58 (34), 56 (14), 44 (29), 43 (24), 42 (14), 41 (23).

 $\label{eq:solution} \begin{array}{l} l-(4-Isopropylamino-1-phenylbutyl)-1-cyclohexanol~(3h): ^{14}v_{max}~(film)~3700-3115~cm^{-1}~(OH,~NH);~\delta_{H}~0.98,\\ 0.99~[6H,~2d,~J=6.4,~6.1,~(CH_3)_2CH],~1.02-1.96~(16H,~m,~5xringCH_2,~OH,~HNCH_2CH_2CH_2),~2.43-2.59\\ (3H,~m,~PhCH,~CH_2N),~2.63-2.75~[1H,~m,~(CH_3)_2CH],~7.16-7.30~(5H,~m,~ArH);~\delta_{C}~21.6,~21.7\\ (2xringCH_2),~22.6,~22.7~[(CH_3)_2CH],~25.5,~26.1,~28.8,~35.4,~35.5~(3xringCH_2,~HNCH_2CH_2CH_2),~47.3\\ (CH_2N),~48.4~(CHN),~56.4~(PhCH),~72.7~(COH),~126.1,~127.8,~129.4,~141.1~(ArC);~m/z~271~(M^++H_2O,~5\%),~176~(15),~99~(12),~98~(40),~91~(13),~85~(17),~81~(16),~72~(100),~58~(27),~56~(13),~55~(11),~44~(27),~43\\ (27),~42~(16),~41~(21). \end{array}$

Ethyl 5-Isopropylamino-2-phenylpentanoate (**3i**'): v_{max} (film) 3313 (NH), 1732 cm⁻¹ (C=O); $\delta_{\rm H}$ 1.02 [6H, d, J=6.1, (CH₃)₂CH], 1.17-1.22 (3H, m, CH₃CH₂O), 1.37-2.16 (5H, m, CH₂CH₂CHPh, NH), 2.75 (1H, heptet, J=6.1, CHN), 4.04-4.17 (2H, m, OCH₂CH₃), 7.23-7.31 (5H, m, ArH); $\delta_{\rm C}$ 14.0 (CH₃CH₂O), 22.8 [(CH₃)₂CH], 28.3, 31.3 (CH₂CH₂CHPh), 47.0 (CH₂N), 48.5 (CHN), 51.6 (PhCH), 60.6 (OCH₂CH₃), 127.1, 127.8, 128.5, 139.1 (ArC), 173.8 (C=O); m/z 263 (M+, 8%), 248 (14), 174 (10), 131 (15), 87 (11), 72 (100), 58 (13), 56 (13), 44 (22), 43 (17), 42 (12), 41 (12) (Found: M+, 263.1892. C₁₆H₂₅NO₂ requires M, 263.1885).

Preparation of 1-Phenyl-3-pyrroline (6).-15 To a cooled (-50°C) stirred THF solution (10 ml) of aniline (2.7 ml, 30 mmol) was added a 1.6 M hexane solution of BuⁿLi (20.6 ml, 33.0 mmol). After 0.5 h this solution was transfered *via cannula* to a precooled (-78°C) THF solution (40 ml) of *cis*-1,4-dichloro-2-butene and stirring was continued for 3 h at the same temperature. Then, another 1.6 M hexane solution of BuⁿLi (20.6 ml, 33.0 mmol) was added and the mixture was allowed to warm up to room temperature during 5 h. Then, it was hydrolysed with water (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting residue was then purified by column chromatography (silica gel; hexane) and recrystallised to yield pure product 5. Yield is given in the text; mp 82-83°C (pentane/dichloromethane) [lit.¹⁵ 101-102°C]; v_{max} (KBr) 3058, 3028, 1630, 1601, 1567, 1510, 746, 668 cm⁻¹ (Ar); $\delta_{\rm H}$ 4.06 (4H, s, 2xCH₂N), 5.90 (2H, s, CH=CH), 6.50 (2H, dd, *J*=8.5, 1.0, *o*-ArN), 6.67 (1H, tt, *J*=7.3, 1.0, *p*-ArN), 7.23 (2H, dd, *J*=8.5, 7.3, *m*-ArN); $\delta_{\rm C}$ 54.3 (2xCH₂N), 111.1, 115.5, 126.3, 129.2, 147.0 (ArC, CH=CH); *m/z* 146 (M⁺⁺1, 10%), 145 (M⁺, 100), 144 (68), 143 (20), 117 (13), 104 (70), 91 (13), 77 (77), 51 (41), 50 (18), 41 (19).

Preparation of Compounds 8 and 9. General Procedure.- To a blue suspension of lithium powder (0.125g, 18.0 mmol) and a catalytic amount of 4,4'-di-tert-butylbiphenyl (0.047 g, 0.18 mmol) in THF (10 ml) at 20°C was added pyrroline 6 (0.308 gr, 2 mmol) under argon and the mixture was stirred for 15 h at the same temperature. Then, the mixture was cooled down at -78°C and the corresponding electrophile (3 mmol; 0.5 ml in the case of water or deuterium oxide; CO₂ was bubbled for 1.5 h) was added. The mixture was stirred at the same temperature for 0.5 h and hydrolysed with water (20 ml) at -78°C to room temperature. The resulting

mixture was extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) and/or recrystallised to yield pure products 8 and 9. When the electrophile was CO₂, after having hydrolysed the mixture with ethanol (10 ml) at -78°C it was treated overnight with a 4 M ethanol solution of hydrogen chloride (15 ml). The solvent was evaporated (15 Torr) and the resulting residue was hydrolysed with water (15 ml), acidified with 3 M hydrochloric acid (10 ml) and extracted with ethyl acetate (3x25 ml). The aqueous layer was then basified with 2.5 M sodium hydroxide (20 ml) and extracted with ethyl acetate (3x25ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr) to yield compounds 8g' and 9g', which were separated by column chromatography (silica gel; hexane/ethyl acetate). Yields and physical data (R_f or mp) are included in Table 2; analytical and spectroscopic data follow.

(Z)-1-Anilino-2-butene (**8a**): v_{max} (film) 3407 cm⁻¹ (NH); δ_{H} 1.70 (3H, d, J=5.8, CH₃), 3.52 (1H, br s, NH), 3.74 (2H, d, J=6.1, CH₂NH), 5.50-5.67 (2H, m, CH=CH), 6.60 (2H, dd, J=8.5, 0.9, *o*-ArN), 6.70 (1H, tt, J=7.3, 0.9, *p*-ArN), 7.16 (2H, dd, J=8.5, 7.3, *m*-ArN); δ_{C} 13.1 (CH₃), 40.8 (CH₂NH), 112.9, 117.4, 127.0, 127.6, 129.1, 148.2 (ArC, CH=CH); *m*/z 147 (M+, 100%), 146 (13), 132 (78), 131 (12), 130 (20), 118 (15), 117 (17), 106 (45), 104 (13), 93 (87), 77 (36), 65 (15), 51 (14) (Found: M+, 147.0996. C₁₀H₁₃N requires M, 147.1048).

(Z)-N-(4-Deuterio-2-butenyl)aniline (**8b**): v_{max} (film) 3406 cm⁻¹ (NH); δ_{H} 1.25 (1H, br s, NH), 1.67-1.73 (2H, m, CH₂D), 3.76 (2H, d, J=6.7, CH₂NH), 5.51-5.71 (2H, m, CH=CH), 6.62 (2H, dd, J=8.7, 1.0, o-ArN), 6.71 (1H, tt, J=7.3, 1.0, p-ArN), 7.18 (2H, dd, J=8.7, 7.3, m-ArN); δ_{C} 12.9 (t, J_{CD} =19.5, CH₂D), 40.8 (CH₂NH), 112.9, 117.4, 127.1, 127.6, 129.2, 148.3 (ArC, CH=CH); m/z 148 (M+, 47%), 147 (28), 132 (61), 130 (24), 119 (13), 118 (26), 117 (20), 106 (57), 104 (25), 94 (19), 93 (86), 92 (27), 91 (19), 79 (14), 78 (19), 77 (80), 75 (11), 74 (10), 66 (19), 65 (67), 64 (18), 63 (27), 62 (12), 56 (66), 55 (39), 54 (24), 53 (19), 52 (42), 51 (100), 50 (55), 43 (10), 42 (76), 41 (64) (Found: M+, 148.1109. C₁₀H₁₂DN requires M, 148.1111).

(Z)-7-Anilino-2,2-dimethyl-5-hepten-3-ol (8c): v_{max} (film) 3690-3130 cm⁻¹ (OH, NH); $\delta_{\rm H}$ 0.93 [9H, s, (CH₃)₃C], 2.14-2.32 (2H, m, CH₂CHOH), 2.77 (2H, br s, OH, NH), 3.26 (1H, dd, *J*=10.0, 2.7, CHOH), 3.73-3.77 (2H, m, CH₂NH), 5.59-5.80 (2H, m, CH=CH), 6.63 (2H, dd, *J*=8.5, 0.9, o-ArN), 6.72 (1H, tt, *J*=7.3, 0.9, p-ArN), 7.17 (2H, dd, *J*=8.5, 7.3, *m*-ArN); $\delta_{\rm C}$ 25.7 [(CH₃)₃C], 30.0 (CH₂CHOH), 34.8 [(CH₃)₃C], 41.0 (CH₂NH), 78.9 (CHOH), 113.2, 117.7, 129.1, 129.2, 130.8, 148.1 (ArC, CH=CH); *m*/z 233 (M+, 19%), 158 (10), 132 (17), 106 (48), 104 (16), 94 (24), 93 (100), 87 (16), 77 (37), 69 (17), 65 (24), 57 (91), 55 (21), 53 (10), 51 (12), 45 (13), 43 (26), 41 (83) (Found: M+, 233.1786. C₁₅H₂₃NO requires M, 233.1780).

4-Anilinomethyl-2,2-dimethyl-5-hexen-3-ol (9c): (first diastereoisomer) v_{max} (film) 3720-3125 cm⁻¹ (OH, NH); $\delta_{\rm H}$ 0.95 [9H, s, (CH₃)₃C], 1.31 (2H, br s, OH, NH), 2.55-2.64 (1H, m, CHCHOH), 3.11-3.15 (1H, m, HCHNH), 3.42 (1H, d, J=6.4, CHOH), 3.48-3.54 (1H, m, HCHNH), 5.09-5.15 (2H, m, CH=CH₂), 5.76-5.88 (1H, m, CH=CH₂), 6.73-6.80 (3H, m, o-, p-ArN), 7.19 (2H, dd, J=8.5, 7.3, m-ArN); $\delta_{\rm C}$ 26.5 [(CH₃)₃C], 36.3 [(CH₃)₃C], 45.3 (CHCHOH), 46.8 (CH₂NH), 81.2 (CHOH), 114.6 (ArC), 116.4 (CH=CH₂), 118.9, 129.3, 140.3, 147.1 (ArC, CH=CH₂); m/z 233 (M+, 6%), 106 (100), 77 (35), 69 (14), 65 (11), 57 (74), 51 (12), 45 (11), 43 (13), 41 (72) (Found: M+, 233.1764. C₁₅H₂₃NO requires M, 233.1780). (second diastereoisomer) v_{max} (film) 3740-3130 cm⁻¹ (OH, NH); $\delta_{\rm H}$ 0.92 [9H, s, (CH₃)₃C], 1.31 (2H, br s, OH, NH), 2.66-2.74 (1H, m, CHCHOH), 3.13 (1H, dd, J=12.2, 7.9, HCHNH), 3.29 (1H, dd, J=12.2, 6.1, HCHNH), 3.41 (1H, d, J=1.5, CHOH), 5.14 (1H, dd, J=17.4, 1.8, CH=CHH), 5.22 (1H, dd, J=10.4, 1.8, CH=CHH), 5.22 (1H, dd,

CH=CH*H*), 5.98 (1H, ddd, *J*=17.4, 10.4, 9.4, CH=CH₂), 6.64 (2H, d, *J*=7.6, *o*-ArN), 6.72 (1H, t, *J*=7.3, *p*-ArN), 7.17 (2H, dd, *J*=7.6, 7.3, *m*-ArN); δ_{C} 26.6 [(CH₃)₃C], 35.9 [(CH₃)₃C], 44.4 (CHCHOH), 48.3 (CH₂NH), 80.0 (CHOH), 113.6, 117.9 (ArC), 118.0 (CH=CH₂), 129.2, 136.8, 147.6 (ArC, CH=CH₂); *m*/z 233 (M+, 5%), 106 (100), 77 (31), 57 (61), 41 (47) (Found: M+, 233.1778. C₁₅H₂₃NO requires M, 233.1780).

(Z)-6-Anilino-2-methyl-4-hexen-2-ol (8d): v_{max} (film) 3700-3125 cm⁻¹ (OH, NH); δ_H 1.25 (6H, s, 2xCH₃), 2.30 (2H, d, J=6.7, CH₂COH), 3.70 (2H, br s, OH, NH), 3.78 (2H, d, J=5.2, CH₂NH), 5.68-5.82 (2H, m, CH=CH), 6.75-6.82 (3H, m, o-, p-ArN), 7.18-7.23 (2H, m, m-ArN); δ_C 29.2 (2xCH₃), 41.2, 42.1 (2xCH₂), 70.9 (COH), 114.5, 119.2, 128.7, 129.2, 129.3, 146.3 (ArC, CH=CH); *m*/z 205 (M+, 65%), 106 (16), 93 (35), 77 (23), 65 (17), 59 (100), 43 (87), 41 (26) (Found: M+, 205.1329. C₁₃H₁₉NO requires M, 205.1467).

3-Anilinomethyl-2-methyl-4-penten-2-ol (9d): v_{max} (film) 3710-3130 cm⁻¹ (OH, NH); δ_{H} 1.23 (6H, s, 2xCH₃), 2.29-2.36 (1H, m, CHCH=CH₂), 2.97 (1H, dd, J=11.9, 9.1, HCHNH), 3.03 (2H, br s, OH, NH), 3.47 (1H, dd, J=11.9, 4.6, HCHNH), 5.17 (1H, dd, J=16.8, 1.8, CH=CHH), 5.24 (1H, dd, J=10.3, 1.8, CH=CHH), 5.70 (1H, ddd, J=16.8, 10.3, 9.4, CH=CH₂), 6.63 (2H, d, J=7.9, o-ArN), 6.71 (1H, t, J=7.3, p-ArN), 7.15-7.20 (2H, m, m-ArN); δ_{C} 26.4, 28.7 (2xCH₃), 43.8 (CH₂NH), 54.7 (CHCH=CH₂), 71.8 (COH), 113.4, 117.6 (ArC), 119.3 (CH=CH₂), 129.1, 137.1, 148.1 (ArC, CH=CH₂); m/z 206 (M++1, 15%), 205 (M+, 65), 146 (14), 132 (10), 130 (15), 118 (12), 107 (66), 106 (100), 105 (61), 104 (47), 94 (10), 93 (70), 92 (17), 91 (15), 82 (40), 79 (44), 78 (34), 77 (72), 69 (17), 67 (27), 66 (25), 65 (53), 59 (64), 55 (10), 54 (17), 53 (17), 52 (13), 51 (49), 50 (10), 43 (56), 41 (43) (Found: M+, 205.1424. C₁₃H₁₉NO requires M, 205.1467).

 $\begin{array}{l} \text{(Z)-}1\text{-}(4\text{-}Anilino\text{-}2\text{-}butenyl)cyclopentanol (8e): v_{max} (film) 3660-3130 cm^{-1}$ (OH, NH); δ_{H} 1.58-1.84 (8H, m, 4xringCH_2), 2.42 (2H, d, J=6.1, CH=CHCH_2COH), 2.63 (2H, br s, OH, NH); 3.76 (2H, d, J=5.2, CH_2NH), 5.67-5.82 (2H, m, CH=CH), 6.62 (2H, dd, J=8.6, 0.9, o-ArN), 6.72 (1H, tt, J=7.3, 0.9, p-ArN), 7.17 (2H, dd, J=8.6, 7.3, m-ArN); δ_{C} 23.7, 39.1, 39.5, 41.1 (6xCH_2), 81.8 (COH), 113.1, 117.6, 128.7, 129.2, 129.8, 148.1 (ArC, CH=CH); m/z 231 (M+, 8\%), 132 (10), 118 (11), 106 (22), 104 (15), 94 (10), 93 (90), 92 (14), 91 (12), 85 (39), 79 (12), 78 (13), 77 (54), 67 (42), 66 (13), 65 (36), 57 (28), 55 (68), 53 (17), 52 (10), 51 (21), 43 (41), 42 (39), 41 (100) (Found: M+, 231.1633. C_{15}H_{21}NO requires M, 231.1623). \end{array}$

l-[(2-Anilino-1-vinylethyl)]cyclopentanol (9e): v_{max} (film) 3660-3135 cm⁻¹ (OH, NH); δ_{H} 1.26-1.81 (8H, m, 4xringCH₂), 2.33-2.40 (1H, m, CHCH=CH₂), 2.90 (2H, br s, OH, NH), 3.09 (1H, dd, J=12.0, 8.8, HCHNH), 3.43 (1H, dd, J=12.0, 4.3, HCHNH), 5.15 (1H, dd, J=17.1, 1.7, CH=CHH), 5.21 (1H, dd, J=10.3, 1.7, CH=CHH), 5.80 (1H, ddd, J=17.1, 10.3, 9.4, CH=CH₂), 6.61 (2H, d, J=8.2, o-ArN), 6.67-6.72 (1H, m, p-ArN), 7.18-7.21 (2H, m, m-ArN); δ_{C} 23.3, 23.5, 38.2, 38.6, 44.2 (4xringCH₂, CH₂NH), 52.7 (CHCH=CH₂), 83.5 (COH), 113.3, 117.5 (ArC), 118.6 (CH=CH₂), 129.1, 137.3, 148.1 (ArC, CH=CH₂); m/z 231 (M+, 5%), 106 (100), 93 (13), 77 (17), 41 (11) (Found: M+, 231.1627. C₁₅H₂₁NO requires M, 231.1623).

(Z)-1-(4-Anilino-2-butenyl)cyclohexanol (**8f**): v_{max} (film) 3700-3130 cm⁻¹ (OH, NH); δ_{H} 1.19-1.65 (10H, m, 5xringCH₂), 2.27 (2H, d, J=6.7, CH=CHCH₂COH), 2.74 (2H, br s, OH, NH), 3.74 (2H, d, J=5.5, CH₂NH), 5.66-5.80 (2H, m, CH=CH), 6.62 (2H, dd, J=8.5, 0.9, o-ArN), 6.71 (1H, tt, J=7.3, 0.9, p-ArN), 7.16 (2H, dd, J=8.5, 7.3, m-ArN); δ_{C} 22.1, 25.6, 37.3, 40.1, 41.1 (7xCH₂), 71.5 (COH), 113.1, 117.6, 127.8, 129.1, 129.7, 148.0 (ArC, CH=CH₂); m/z 245 (M+, 22%), 146 (10), 132 (17), 119 (25), 106 (27),

104 (13), 99 (12), 94 (10), 93 (100), 81 (25), 77 (22), 65 (12), 55 (11) (Found: M+, 245.1763. $C_{16}H_{23}NO$ requires M, 245.1780).

I-[(2-Anilino-1-vinylethyl)]cyclohexanol (9f): v_{max} (KBr) 3715-3130 cm⁻¹ (OH, NH); δ_{H} 1.15-1.67 (11H, m, 5xringCH₂, NH or OH), 2.24-2.32 (1H, m, CHCH₂NH), 2.89 (1H, br s, OH or NH), 2.99 (1H, dd, *J*=11.8, 8.9, HCHNH), 3.46 (1H, dd, *J*=11.8, 4.3, HCHNH), 5.12 (1H, dd, *J*=17.0, 2.1, CH=CHH), 5.22 (1H, dd, *J*=10.0, 2.1, CH=CHH), 5.75 (1H, ddd, *J*=17.0, 10.0, 9.7, CH=CH₂), 6.61 (2H, dd, *J*=8.5, 0.9, *o*-ArN), 6.69 (1H, tt, *J*=7.3, 0.9, *p*-ArN), 7.15 (2H, dd, *J*=8.5, 7.3, *m*-ArN); δ_{C} 21.5, 21.6, 25.6, 34.6, 35.9, 42.8 (7xCH₂), 53.8 (CHCH₂NH), 72.3 (COH), 113.3, 117.5 (ArC), 119.0 (CH=CH₂), 129.1, 137.0, 148.1 (ArC); *m*/z 245 (M+, 18%), 122 (28), 107 (35), 106 (100), 105 (12), 104 (14), 93 (35), 81 (14), 79 (13), 77 (24) (Found : C, 77.65; H, 9.44; N, 5.41. C₁₆H₂₃NO requires: C, 78.32; H, 9.45; N, 5.71).

Ethyl (Z)-5-Anilino-3-pentenoate (8g'): v_{max} (film) 3396 (NH), 1734 cm⁻¹ (C=O); δ_{H} 1.27 (3H, t, J=7.3, CH₃), 1.33 (1H, br s, NH), 3.18 (2H, d, J=5.8, CH₂C=O), 3.77 (2H, d, J=4.9, CH₂NH), 4.16 (2H, q, J=7.3, OCH₂CH₃), 5.76-5.79 (2H, m, CH=CH), 6.62 (2H, dd, J=8.7, 1.0, *o*-ArN), 6.73 (1H, tt, J=7.3, 1.0, *p*-ArN), 7.18 (2H, dd, J=8.7, 7.3, *m*-ArN); δ_{C} 14.2 (CH₃), 33.2 (CHC=O), 41.2 (CH₂NH), 60.9 (OCH₂), 113.0, 117.7, 124.1, 129.2, 130.4, 147.9 (ArC, CH=CH), 171.4 (C=O); *m*/z 219 (M+, 22%), 133 (10), 132 (100), 130 (12), 117 (10), 106 (15), 104 (14), 93 (26), 81 (37), 77 (30), 66 (14), 65 (31), 53 (17), 51 (16), 44 (12), 43 (10), 41 (12), 40 (16) (Found: M+, 219.1261. C₁₃H₁₇NO₂ requires M, 219.1259).

Ethyl 2-Anilinomethyl-3-butenoate (9g'): v_{max} (film) 3408 (NH), 1730 cm⁻¹ (C=O); $\delta_{\rm H}$ 1.25 (3H, t, J=7.0, CH₃), 3.28 (1H, dd, J=12.2, 6.7, HCHNH), 3.34-3.41 (1H, m, CHC=O), 3.56 (1H, dd, J=12.2, 6.7, HCHNH), 3.91 (1H, br s, NH), 4.16 (2H, q, J=7.0, OCH₂CH₃), 5.22 (1H, dd, J=17.1, 1.2, CH=CHH), 5.25 (1H, dd, J=10.4, 1.2, CH=CHH), 5.87 (1H, ddd, J=17.1, 10.4, 8.2, CH=CH₂), 6.61 (2H, dd, J=8.5, 0.9, o-ArN), 6.72 (1H, t, J=7.3, p-ArN), 7.17 (2H, dd, J=8.5, 7.3, m-ArN); $\delta_{\rm C}$ 14.1 (CH₃), 45.2 (CH₂NH), 49.5 (CHC=O), 60.9 (OCH₂), 113.1, 117.7 (ArC), 118.9 (CH=CH₂), 129.3, 133.5, 147.4 (ArC, CH=CH₂), 172.6 (C=O); m/z 219 (M+, 28%), 146 (13), 107 (27), 106 (100), 104 (17), 79 (11), 77 (39), 65 (12) (Found: M+, 219.1261. C₁₃H₁₇NO₂ requires M, 219.1259).

Preparation of N-*Phenylisoindoline* (10).- To a cooled (-80°C) stirred THF solution (30 ml) of aniline (0.46 ml, 5.0 mmol) and α,α'-*ortho*-dibromoxylene was added a 1.6 M hexane solution of Bu¤Li (3.4 ml, 6.5 mmol). After 0.75 h another 1.6 M hexane solution of Bu¤Li (3.4 ml, 6.5 mmol) was added and the mixture was allowed to reach room temperature for 2 h. Then it was hydrolysed with water (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane) and recrystallised to yield pure product 10. Yield is given in the text; mp 152°C (pentane/dichloromethane); v_{max} (KBr) 3060, 3040, 1602, 1505, 744, 690 cm⁻¹ (Ar); $\delta_{\rm H}$ 4.60 (4H, s, 2xCH₂N), 6.65 (2H, dd, J=8.8, 0.9, *o*-ArN), 6.73 (1H, tt, J=7.3, 0.9, *p*-ArN), 7.25-7.32 (6H, m, *m*-ArN, ArH); $\delta_{\rm C}$ 53.7 (2xCH₂N), 111.5, 116.1, 122.5, 127.1, 129.3, 137.9, 147.1 (ArC); *m*/z 195 (M+, 52%), 194 (100), 116 (12), 91 (11), 89 (12), 77 (46), 63 (10), 51 (28) (Found: C, 85.96; H, 6.80; N, 5.84. C₁₄H₁₃N requires: C, 86.12; H, 6.71; N, 5.98).

Preparation of Compounds 12. General Procedure.- To a blue suspension of lithium powder (0.125g, 18.0 mmol) and a catalytic amount of 4,4'-di-*tert*-butylbiphenyl (0.047 g, 0.18 mmol) in THF (10 ml) at 20°C was added isoindoline 10 (0.390 gr, 2.0 mmol) under argon and the mixture was stirred for 3 h at the same temperature. Then, the mixture was cooled down to -78°C and the corresponding electrophile (3.0 mmol; 0.5 ml in the case of water or deuterium oxide) was added. The reaction mixture was stirred at the same temperature

for 0.5 h and was hydrolysed with water (20 ml). The resulting mixture was extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) and/or recrystallised to yield pure products 12. Yields and physical data (R_f or mp) are included in Table 3; analytical and spectroscopic data follow.

 $N-\{[2-(Methyl)phenyl]methyl]aniline (12a): v_{max} (film) 3417 cm^{-1} (NH); \delta_H 2.34 (3H, s, CH_3), 3.77 (1H, br s, NH), 4.22 (2H, s, CH_2N), 6.59 (2H, dd, J=8.5, 1.0, o-ArN), 6.70 (1H, tt, J=7.3, 1.0, p-ArN), 7.13-7.31 (6H, m, m-ArN, ArH); <math>\delta_C$ 18.9 (CH_3), 46.3 (CH_2N), 112.6, 117.4, 126.1, 127.3, 128.2, 129.2, 130.3, 136.3, 137.0, 148.2 (ArC); m/z 197 (M+, 43%), 106 (14), 105 (100), 104 (51), 103 (12), 93 (17), 79 (16), 78 (11), 77 (40), 65 (17), 51 (14) (Found: M+, 197.1214. C_{14}H_{15}N requires M, 197.1205).

N-{[2-(Deuteriomethyl)phenyl]methyl]aniline (12b): v_{max} (film) 3416 cm⁻¹ (NH); δ_H 2.34 (2H, t, J=2.1, CH₂D), 3.74 (1H, br s, NH), 4.24 (2H, s, CH₂N), 6.61 (2H, dd, J=8.7, 0.9, o-ArN), 6.71 (1H, tt, J=7.3, 0.9, p-ArN), 7.15-7.32 (6H, m, m-ArN, ArH); δ_C 18.6 (t, J_{CD} =19.5, CH₂D), 46.3 (CH₂N), 112.6, 117.4, 126.1, 127.4, 128.2, 129.2, 130.4, 136.2, 137.0, 148.3 (ArC); m/z 198 (M+, 39%), 106 (100), 105 (45), 104 (29), 93 (12), 79 (10), 78 (16), 77 (29), 65 (10), 51 (12) (Found: M+, 198.1276. C₁₄H₁₄DN requires M, 198.1267).

l-(2-Anilinomethylphenyl)-3-methyl-2-butanol (12c): v_{max} (film) 3570-3140 cm⁻¹ (OH, NH); δ_{H} 0.97 [6H, d, J=6.7, (CH₃)₂CHOH], 1.75 [1H, heptet, J=6.7, 5.2, (CH₃)₂CHOH], 2.70 (1H, dd, J=14.0, 10.0, HCHCHOH), 2.86 (1H, dd, J=14.0, 3.0, HCHCHOH), 3.16 (2H, br s, OH, NH), 3.59 (1H, ddd, J=10.0, 5.2, 3.0, CHOH), 4.20 (1H, d, J=12.8, HCHNH), 4.32 (1H, d, J=12.8, HCHNH), 6.67 (2H, d, J=7.6, o-ArN), 6.74 (1H, t, J=7.3, p-ArN), 7.15-7.35 (6H, m, m-ArN, ArH); δ_{C} 17.6, 18.6 [(CH₃)₂CH], 34.0 [(CH₃)₂CH], 36.6 (CH₂CHOH), 46.7 (CH₂NH), 77.6 (CHOH), 113.6, 118.0, 126.6, 127.9, 129.2, 129.6, 130.3, 137.3, 138.5, 148.1 (ArC); *m*/z 269 (M⁺, 60%), 197 (15),), 196 (21), 194 (14), 182 (13), 159 (19), 143 (41), 133 (43), 118 (11), 117 (44), 116 (10), 115 (20), 106 (39), 105 (62), 104 (98), 103 (45), 94 (40), 93 (100), 92 (10), 91 (50), 89 (11), 79 (25), 78 (43), 77 (89), 73 (57), 71 (89), 65 (30), 63 (10), 57 (16), 55 (74), 51 (18), 45 (25), 43 (94), 41 (63) (Found: M⁺, 270.1839. C₁₈H₂₄NO requires M, 270.1858).

l-(2-Anilinomethylphenyl)-3,3-dimethyl-2-butanol (12d): v_{max} (KBr) 3640-3130 cm⁻¹ (OH, NH); δ_{H} 0.95 [9H, s, (CH₃)₃C], 2.63 (1H, dd, *J*=13.7, 10.9, *H*CHCHOH), 2.90 (1H, dd, *J*=13.7, 2.1, HCHCHOH), 3.18 (2H, br s, OH, NH), 3.43 (1H, dd, *J*=10.9, 2.1, CH₂CHOH), 4.17 (1H, d, *J*=12.5, *H*CHNH), 4.33 (1H, d, *J*=12.5, HCHNH), 6.68 (2H, dd, *J*=8.1, 0.9, *o*-ArN), 6.74 (1H, tt, *J*=7.3, 0.9, *p*-ArN), 7.15-7.33 (6H, m, *m*-ArN, ArH); δ_{C} 25.7 [(CH₃)₃C], 34.2 (CH₂CHOH), 35.1 [(CH₃)₃C], 46.8 (CH₂NH), 80.8 (CHOH), 113.4, 118.0, 126.6, 127.9, 129.2, 129.6, 130.3, 137.3, 139.1, 148.1 (ArC); *m*/z 283 [M+, 31%], 208 (12), 157 (10), 134 (33), 133 (18), 132 (11), 106 (18), 105 (40), 104 (44), 103 (16), 94 (24), 93 (58), 91 (19), 79 (12), 78 (16), 77 (42), 57 (100), 41 (26) (Found: C, 80.58; H, 8.88; N, 4.62. C₁₄H₁₃N requires: C, 80.52; H, 8.89; N, 4.94).

2-(2-Anilinomethylphenyl)-1-phenylethanol (12e): v_{max} (KBr) 3680-3100 cm⁻¹ (OH, NH); δ_{H} 3.03-3.05 (2H, m, CH₂CHOH), 3.42 (2H, br s, OH, NH), 4.12 (1H, d, J=12.8, HCHNH), 4.23 (1H, d, J=12.8, HCHNH), 4.88 (1H, dd, J=7.3, 5.8, CHOH), 6.64 (2H, dd, J=8.7, 1.0, o-ArN), 6.75 (1H, tt, J=7.3, 1.0, p-ArN), 7.15-7.32 (6H, m, m-ArN, ArH); δ_{C} 42.3 (CH₂CHOH), 46.5 (CH₂NH), 75.3 (CHOH), 113.3, 118.1, 125.7, 126.9, 127.5, 127.8, 128.4, 129.2, 129.5, 130.6, 137.1, 137.4, 144.2, 148.0 (ArC); m/z 303 (M⁺, 7%), 107 (34), 106 (11), 105 (84), 104 (43), 103 (14), 93 (18), 91 (13), 79 (75), 78 (22), 77 (100), 65

(12), 51 (22) (Found: C, 81.98; H, 6.92; N, 4.11. C₂₁H₂₁NO requires: C, 83.13; H, 6.98; N, 4.62).

I-(2-Anilinomethylphenyl)-2-methyl-2-propanol (12f): v_{max} (film) 3700-3135 cm⁻¹ (OH, NH); δ_{H} 1.26 [6H, s, (CH₃)₂COH], 2.88 (2H, s, CH₂COH), 3.10 (2H, br s, OH, NH), 4.30 (2H, s, CH₂N), 6.68 (2H, dd, *J*=8.5, 0.9, *o*-ArN), 6.74 (1H, tt, *J*=7.3, 0.9, *p*-ArN), 7.16-7.38 (6H, m, *m*-ArN, ArH); δ_{C} 29.9 [(CH₃)₂COH], 45.1 (CH₂COH), 46.8 (CH₂N), 70.9 (COH), 113.4, 118.1, 126.9, 127.2, 129.2, 129.6, 132.1, 136.5, 138.0, 148.0 (ArC); *m/z* 255 (M+, 33%), 147 (12), 145 (100), 129 (25), 119 (48), 117 (11), 106 (17), 105 (29), 104 (82), 103 (18), 93 (56), 91 (18), 78 (20), 77 (47), 65 (11), 59 (45), 51 (10), 43 (20) (Found: M+, 255.1622. C₁₇H₂₁NO requires M, 255.1623).

1-(2-Anilinomethylphenyl)-2-phenyl-2-propanol (**12g**): v_{max} (film) 3640-3130 cm⁻¹ (OH, NH); δ_{H} 1.60 (3H, s, CH₃), 3.15 (2H, s, CH₂COH), 3.43 (2H, br s, OH, NH), 4.08 (2H, s, CH₂NH), 6.64 (2H, d, *J*=8.1, *o*-ArN), 6.76 (1H, t, *J*=7.3, *p*-ArN), 6.94-7.36 (11H, m, *m*-ArN, 2xArH); δ_{C} 29.9 (CH₃), 46.4 (*C*H₂COH), 46.7 (CH₂NH), 74.5 (COH), 113.6, 118.3, 124.9, 126.6, 126.9, 127.1, 128.0, 129.2, 129.4, 132.0, 135.7, 138.2, 147.9, 148.1 (ArC); *m/z* 317 (M+, 15%), 207 (14), 197 (25), 121 (32), 105 (23), 104 (67), 103 (15), 93 (21), 91 (11), 78 (19), 77 (46), 65 (10), 51 (10), 43 (100) (Found: M+, 317.1790. C₂₂H₂₃NO requires M, 317.1780).

Preparation of 1-Bromo-2-[2-(bromomethyl)phenyl]ethane (17).¹⁶ A mixture of isochromane (1.26 ml, 10 mmol), 0.5 g of Adogen (Aldrich), 45% hydrobromic acid (17 ml, 140 mmol) and sulfuric acid 96% (10 ml, 180 mmol) was placed in a sealed tube and was stirred at 115°C for 3 h. Then it was hydrolysed with water (40 ml) and extracted with ethyl ether (3x40 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The resulting brown oil was then purified by column chromatography (silica gel; hexane) to yield pure product 17. Yield is given in the text; R_{f} =0.21 (hexane); v_{max} (film) 3063, 3022, 1603, 1578, 762, 648 cm⁻¹ (Ar); δ_{H} 3.28 (2H, t, J=7.7, CH₂CH₂Br), 3.62 (2H, t, J=7.7, CH₂CH₂Br), 4.53 (2H, s, CH₂Br), 7.20-7.35 (4H, m, ArH); δ_{C} 31.2, 31.7, 35.6 (3xCH₂), 127.5, 129.2, 130.1, 130.8, 135.8, 137.7 (ArC); *m*/z 278 (M⁺, 5%), 199 (58), 197 (61), 118 (33), 117 (100), 116 (12), 115 (45), 104 (16), 91 (20), 78 (11), 77 (11), 65 (11), 63 (14), 58 (38), 51 (17), 50 (10).

Preparation of N-Phenyltetrahydroisoquinoline (13).-¹⁷ A stirred absolute ethanol solution (50 ml) of compound 17 (1.39 gr, 5.0 mmol), aniline (0.450 ml, 5.0 mmol) and K₂CO₃ (13.6 gr, 100 mmol) was refluxed for 3 h. The solvent was evaporated (15 Torr) and the resulting residue was hydrolysed with water (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane) to yield pure product 13. Yield is given in the text; $R_{f=0.50}$ (hexane/ethyl acetate, 10:1); v_{max} (film) 3061, 3023, 1599, 1577, 752, 692 cm⁻¹ (Ar); $\delta_{\rm H}$ 2.93-2.97 (2H, m, ArCH₂CH₂N), 3.51-3.54 (2H, m, ArCH₂CH₂N), 4.38 (2H, s, ArCH₂N), 6.59-7.29 (9H, m, ArH); $\delta_{\rm C}$ 29.1 (ArCH₂CH₂N), 46.4 (ArCH₂CH₂N), 50.7 (ArCH₂N), 115.1, 118.6, 126.0, 126.3, 126.5, 128.4, 129.1, 134.4, 134.8, 150.5 (ArC); *m*/z 210 (M⁺+1, 16%), 209 (M⁺, 88), 208 (100), 115 (11), 105 (17), 104 (75), 103 (21), 78 (34), 77 (47), 51 (28).

Preparation of Compounds 15. General Procedure.- To a blue suspension of lithium powder (0.125g, 18.0 mmol) and a catalytic amount of 4,4'-di-tert-butylbiphenyl (0.047 g, 0.18 mmol) in THF (10 ml) at 20°C was added isoquinoline 13 (0.210 ml, 1 mmol) under argon and the mixture was stirred for 0.5 h at the same temperature. Then, the mixture was cooled down to -78°C and the corresponding electrophile (3.0 mmol; 0.5 ml in the case of water or deuterium oxide; CO_2 was bubbled for 1.5 h) was added. The reaction mixture was stirred at the same temperature for 0.5 h and was hydrolysed with water (20 ml). The resulting mixture was

extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) to yield pure products 15. When the electrophile was CO₂, after having hydrolysed the mixture with ethanol (10 ml) at -78°C it was treated overnight with a 4 M ethanol solution of hydrogen chloride (15 ml). The solvent was evaporated (15 Torr) and the resulting residue was hydrolysed with water (15 ml), acidified with 3 M hydrochloric acid (10 ml) and extracted with ethyl acetate (3x25 ml). The aqueous layer was then basified with 2.5 M sodium hydroxide (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr) to yield compound 15h' [>95% pure (GLC and 300 Mhz ¹H NMR)]. Yields and physical data (R_f or mp) are included in Table 4; analytical and spectroscopic data follow.

l-Anilino-2-(2-methylphenyl)ethane (**15a**): v_{max} (film) 3408 cm⁻¹ (NH); δ_{H} 2.31 (3H, s, CH₃), 2.88 (2H, t, J=7.3, CH₂CH₂NH), 3.33 (2H, t, J=7.3, CH₂CH₂NH), 3.54 (1H, br s, NH), 6.59 (2H, dd, J=7.6, 1.2, o-ArNH), 6.69 (1H, tt, J=7.3, 1.2, p-ArNH), 7.12-7.19 (6H, m, m-ArNH, ArH); δ_{C} 19.3 (CH₃), 32.9 (CH₂CH₂NH), 43.8 (CH₂CH₂NH), 112.8, 117.3, 126.0, 126.5, 129.1, 129.2, 130.4, 136.2, 137.3, 148.0 (ArC); m/z 211 (M+, 32%), 107 (26), 106 (100), 105 (19), 104 (10), 79 (33), 78 (16), 77 (57), 51 (29) (Found: M+, 211.1355. C₁₅H₁₇N requires M, 211.1361).

l-Anilino-2-[2-(deuteriomethyl)phenyl]ethane (**15b**): v_{max} (film) 3408 cm⁻¹ (NH); δ_{H} 2.29-2.31 (2H, m, CH₂D), 2.89 (2H, t, J=7.3, CH₂CH₂NH), 3.34 (2H, t, J=7.3, CH₂CH₂NH), 3.54 (1H, br s, NH), 6.59-6.72 (3H, m, *o*- *p*-ArNH), 7.14-7.19 (6H, m, *m*-ArNH, ArH); δ_{C} 19.1 (t, J_{CD} =19.5, CH₂D), 32.8 (CH₂CH₂NH), 43.8 (CH₂CH₂NH), 112.8, 117.3, 126.0, 126.5, 129.1, 129.2, 130.4, 136.2, 137.4, 148.0 (ArC); *m*/z 212 (M+, 31%), 107 (32), 106 (100), 104 (13), 79 (35), 78 (21), 77 (55), 51 (30) (Found: M+, 212.1426. C₁₅H₁₆DN requires M, 212.1424).

 $\begin{array}{l} l-[2-(Anilinoethyl)phenyl]-3,3-dimethyl-2-butanol (15c): v_{max} (film) 3695-3150 \ cm^{-1} (OH, NH); \delta_{H} 0.89 \\ [9H, s, (CH_{3})_{3}C], 2.49 (1H, dd, J=13.7, 10.6, HCHCHOH), 2.55 (2H, br s, NH, OH), 2.79 (1H, dd, J=13.7, 2.1, HCHCHOH), 2.84-2.90 (2H, m, CH_{2}CH_{2}NH), 3.28-3.34 (3H, m, CH_{2}CH_{2}NH, CHOH), 6.53 (2H, dd, J=7.6, 0.9, o-ArNH), 6.61 (1H, tt, J=7.3, 0.9, p-ArNH), 7.06-7.15 (6H, m, m-ArNH, ArH); \\ \delta_{C} 25.7 [(CH_{3})_{3}C], 32.1, 34.5 (2xArCH_{2}), 35.0 [(CH_{3})_{3}C], 44.7 (CH_{2}NH), 80.2 (CHOH), 112.9, 117.4, 126.5, 126.6, 129.2, 129.8, 130.5, 138.0, 138.1, 148.0 (ArC); m/z 297 [M+, 20%], 107 (23), 106 (100), 79 (17), 77 (32), 57 (11), 41 (19) (Found: M+, 297.2093. C_{20}H_{27}NO requires M, 297.2093). \\ \end{array}$

2-[2-(2-Anilinoethyl)phenyl]-1-phenylethanol (15d): v_{max} (film) 3710-3130 cm⁻¹ (OH, NH); δ_{H} 2.84-3.08 (6H, m, CH₂CH₂NH, CH₂CHOH), 3.30 (2H, t, J=7.3, CH₂CH₂NH), 4.81 (1H, dd, J=8.0, 5.3, CHOH), 6.57 (2H, dd, J=8.5, 0.9, o-ArNH), 6.69 (1H, tt, J=7.3, 0.9, p-ArNH), 7.12-7.33 (11H, m, m-ArNH, ArH); δ_{C} 32.1, 42.4, 44.6 (CH₂CH₂NH, CH₂CHOH), 75.1 (CHOH), 112.9, 117.4, 125.7, 126.5, 126.8, 127.6, 128.4, 129.2, 129.7, 130.6, 136.4, 138.0, 143.9, 147.9 (ArC); m/z 317 (M+, 9%), 299 (13), 107 (14), 106 (100), 79 (17), 77 (30) (Found: M+, 317.1790. C₂₂H₂₃NO requires M, 317.1780).

$$\begin{split} &l-[2-(Anilinoethyl)phenyl]-2-methyl-2-propanol (15e): \nu_{max} (film) 3690-3140 \ cm^{-1} (OH, NH); \delta_{H} \ 1.21 \ [6H, s, (CH_3)_2COH], 2.60 (2H, br s, OH, NH), 2.81 (2H, s, CH_2COH), 3.01 (2H, t, J=7.3, CH_2CH_2NH), 3.32 (2H, t, J=7.3, CH_2CH_2NH), 6.59 (2H, dd, J=8.5, 0.9, o-ArNH), 6.69 (1H, t, J=7.3, p-ArN), 7.12-7.22 (6H, m, m-ArNH, ArH); <math>\delta_{C}$$
 29.5 [(CH_3)_2COH], 32.6 (CH_2CH_2NH), 44.8, 44.9 (CH_2CH_2NH, CH_2COH), 71.3 (COH), 112.9, 117.4, 126.1, 126.8, 129.2, 129.7, 131.8, 136.1, 138.6, 147.9 (ArC); m/z 269 (M+, 39\%), 107 (33), 106 (100), 104 (10), 91 (11), 79 (29), 78 (14), 77 (46), 59 (20), 51 (18), 43 (21) (Found: 10.11,

M+, 269.1769. C₁₈H₂₃NO requires M, 269.1780).

I-[2-(Anilinoethyl)phenyl]-2-methyl-2-pentanol (**15f**): v_{max} (film) 3700-3135 cm⁻¹ (OH, NH); δ_{H} 0.92 (3H, t, *J*=6.9, CH₃CH₂), 1.10 (3H, s, CH₃COH), 1.36-1.51 (4H, m, CH₃CH₂CH₂), 2.46 (2H, br s, OH, NH), 2.73 (1H, d, *J*=13.7, ArHCHCOH), 2.83 (1H, d, *J*=13.7, ArHCHCOH), 3.01 (2H, t, *J*=7.3, CH₂CH₂NH), 3.32 (2H, t, *J*=7.3, CH₂CH₂NH), 6.58 (2H, dd, *J*=8.5, 0.9, *o*-ArNH), 6.69 (1H, t, *J*=7.3, *p*-ArNH), 7.12-7.22 (6H, m, *m*-ArNH, ArH); δ_{C} 14.6 (CH₃CH₂), 17.2 (CH₃CH₂), 26.4 (CH₃COH), 32.6, 43.4, 44.7, 44.8 (CH₂CH₂NH, ArCH₂COHCH₂), 73.0 (COH), 112.9, 117.4, 126.0, 126.7, 129.2, 129.7, 131.9, 135.9, 138.9, 147.9 (ArC); *m*/z 297 (M+, 24%), 107 (28), 106 (100), 79 (21), 78 (10), 77 (37), 45 (28), 43 (28), 41 (14) (Found: M+, 297.2094. C₂₀H₂₇NO requires M, 297.2093).

 $\begin{array}{l} 1-\{[2-(2-Anilinoethyl)phenyl]methyl]-1-cyclopentanol (15g): v_{max} (film) 3715-3145 \ cm^{-1} (OH, NH); \delta_{H} \\ 1.54-1.80 (8H, m, 4xringCH_{2}), 2.60 (2H, br s, OH, NH), 2.91 (2H, s, CH_{2}COH), 3.00 (2H, t, J=7.3, CH_{2}CH_{2}NH), 3.31 (2H, t, J=7.3, CH_{2}CH_{2}NH), 6.57 (2H, dd, J=8.5, 0.9, o-ArNH), 6.68 (1H, tt, J=7.3, 0.9, p-ArNH), 7.11-7.25 (6H, m, m-ArNH, ArH); <math>\delta_{C}$ 23.1, 32.5, 39.3, 42.3, 44.7 (7xCH₂), 82.6 (COH), 112.6, 117.3, 126.1, 126.6, 129.1, 129.6, 131.3, 136.7, 138.5, 147.9 (ArC); m/z 295 (M+, 14\%), 107 (18), 106 (100), 79 (14), 77 (26) (Found: M+, 295.1938. C₂₀H₂₅NO requires M, 295.1936). \end{array}

Ethyl 2-[2-(Anilinoethyl)phenyl]acetate (15h'): v_{max} (film) 3398 (NH), 1727 cm⁻¹ (C=O); δ_{H} 1.22 (3H, t, J=7.0, CH₃CH₂O), 2.94 (2H, t, J=7.3, CH₂CH₂NH), 3.36 (2H, t, J=7.3, CH₂CH₂NH), 3.65 (2H, s, CH₂C=O), 3.80 (1H, br s, NH), 4.12 (2H, q, J=7.0, OCH₂), 6.59 (2H, d, J=8.0, o-ArNH), 6.68 (1H, t, J=7.3, p-ArNH), 7.13-7.26 (6H, m, m-ArNH, ArH); δ_{C} 14.1 (CH₃), 32.3, 38.6, 44.2 (CH₂CH₂NH, CH₂C=O), 60.9 (OCH₂), 112.7, 117.3, 126.7, 127.5, 129.2, 129.7, 130.7, 132.8, 137.8, 147.9 (ArC), 171.6 (C=O); m/z 283 (M+, 11%), 107 (10), 106 (100), 77 (19) (Found: M+, 283.1570. C₁₈H₂₁NO₂ requires M, 283.1572).

Preparation of N-Methyltetrahydroisoquinoline (18).-¹¹ To a cooled (-50°C) stirred THF solution (15 ml) of tetrahydroisoquinoline hydrochloride (0.848 ml, 5.0 mmol) was added a 1.6 M hexane solution of BuⁿLi (6.6 ml, 10.5 mmol). After 0.5 h, MeI (0.342 ml, 5.5 mmol) was added at -50°C and the mixture was allowed to reach the room temperature during 3 h. Then it was hydrolysed with water (20 ml), acidified with 3 M hydrochloric acid (10 ml) and extracted with ethyl acetate (3x25 ml). The aqueous layer was basified with 2.5 M sodium hydroxide (20 ml) and extracted with ethyl acetate (3x25 ml). The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was pure product 18. Yield is given in the text; R_f =0.17 (ethyl acetate); v_{max} (film) 3064, 3044, 3021, 1650, 1608, 1583, 740 cm⁻¹ (Ar); $\delta_H 2.44$ (3H, s, CH₃N), 2.67 (2H, t, J=5.8, ArCH₂CH₂N), 2.91 (2H, t, J=5.8, ArCH₂CH₂N), 3.56 (2H, s, ArCH₂N), 6.98-7.13 (4H, m, ArH); $\delta_C 29.2$ (ArCH₂CH₂N), 46.1 (CH₃), 52.9 (ArCH₂CH₂N), 57.9 (ArCH₂N), 125.5, 126.3, 128.5, 133.7, 134.7 (ArC); m/z 147 (M+, 69%), 146 (100), 144 (25), 131 (18), 130 (12), 118 (11), 115 (14), 105 (17), 104 (69), 103 (38), 78 (44), 77 (37), 74 (12), 72 (49), 65 (16), 63 (11), 52 (10), 51 (30), 50 (14), 42 (64) (Found: M+, 147.1046. C₁₀H₁₃N requires M, 147.1048).

Preparation of Compounds 19. General Procedure.- To a blue suspension of lithium powder (0.125g, 18.0 mmol) and a catalytic amount of 4,4'-di-tert-butylbiphenyl (0.047 g, 0.18 mmol) in THF (10 ml) at 20°C was added isoquinoline 18 (0.200, 1.47 mmol) under argon and the mixture was stirred for 0.5 h at the same temperature. Then, the mixture was cooled down at -78°C and the corresponding electrophile (3.0 mmol; 0.5 ml in the case of water or deuterium oxide) was added. The mixture was stirred at the same temperature for 0.5 h and was hydrolysed with water (20 ml). The resulting mixture was extracted with ethyl acetate (3x25 ml).

The organic layer was dried over anhydrous sodium sulfate and evaporated (15 Torr). The residue was then purified by column chromatography (silica gel; hexane/ethyl acetate) and/or recrystallised to yield pure products 19. Yields and physical data (R_f or mp) are included in Table 5; analytical and spectroscopic data follow.

(2-Ethylphenyl)methyl methyl amine (19a): v_{max} (KBr) 3323 cm⁻¹ (NH); δ_{H} 1.21 (3H, t, J=7.6, CH₃CH₂), 1.25 (1H, br s, NH), 2.48 (3H, s, CH₃N), 2.70 (2H, q, J=7.6, CH₃CH₂), 3.74 (2H, s, CH₂N), 7.14-7.30 (4H, m, ArH); δ_{C} 15.3 (CH₃CH₂), 25.2 (CH₃CH₂), 36.4 (CH₃N), 53.1 (CH₂N), 125.8, 127.0, 128.3, 128.6, 137.5, 142.2 (ArC); m/z 149 (M+, 8%), 134 (37), 119 (20), 118 (87), 117 (100), 115 (16), 103 (10), 91 (40), 77 (20), 65 (20), 51 (19), 44 (89), 42 (59), 41 (14) (Found : C, 79.81; H, 10.76; N, 9.31. C₁₀H₁₅N requires: C, 80.47; H, 10.14; N, 9.39).

[2-(1-Deuterioethyl)phenyl]methyl methyl amine (19b): v_{max} (KBr) 3323 cm⁻¹ (NH); δ_{H} 1.21 (3H, d, J=7.4, CH₃CHD), 1.32-1.42 (1H, br s, NH), 2.47 (3H, s, CH₃N), 2.63-2.73 (1H, m, CHD), 3.73 (2H, s, CH₂N), 7.12-7.29 (4H, m, ArH); δ_{C} 15.1 (CH₃CHD), 24.8 (t, J_{CD} =19.2, CHD), 36.3 (CH₃N), 53.0 (CH₂N), 125.7, 127.0, 128.3, 128.6, 137.4, 142.1 (ArC); m/z 150 (M+, 6%), 135 (23), 134 (21), 120 (14), 119 (48), 118 (100), 117 (92), 115 (12), 92 (14), 91 (31), 78 (11), 77 (16), 65 (18), 51 (18), 44 (88), 42 (70) (Found : C, 78.96; H, 11.02; N, 9.24. C₁₀H₁₄DN requires: C, 79.94; H, 10.73; N, 9.32).

Allyl Methyl [2-(1-Methyl-3-butenyl)phenyl]methyl Amine (19c'):14 v_{max} (film) 1641, 1026, 994, 915 cm⁻¹ (CH=CH₂); δ_{H} 1.21 (3H, d, J=7.0, CH₃CH), 2.14 (3H, s, CH₃N), 2.26-2.43 (2H, m, CH₂CH), 2.99 (2H, ddd, J=6.4, 3.0, 1.5, NCH₂CH=CH₂) 3.25-3.37 (1H, m, CH₃CH), 3.44 (1H, d, J=13.1, ArHCHN), 3.50 (1H, d, J=13.1, ArHCHN), 4.91-5.22 (4H, m, 2xCH=CH₂), 5.67-5.94 (2H, m, 2xCH=CH₂), 7.09-7.25 (4H, m, ArH); δ_{C} 21.4 (CH₃CH₂), 33.5 (CH₃CH), 42.0 (CH₃N), 42.5 (CHCH₂), 59.7, 60.7 (2xCH₂N), 105.6, 117.1 (2xCH=CH₂), 125.2, 125.8, 127.3, 130.4, 136.1 (ArC), 136.3, 137.6 (2xCH=CH₂), 146.7 (ArC); *m*/z 229 (M+, 0.6%), 144 (20), 143 (93), 131 (12), 130 (36), 129 (24), 128 (23), 117 (36), 115 (21), 91 (19), 84 (16), 72 (11), 70 (18), 44 (43), 42 (25), 41 (36), 40 (100).

 $\begin{array}{l} \textit{(1-[2-(Methylaminomethyl)phenyl]ethyl]-1-cyclopentanol (19d):} ^{14} v_{max} (film) 3720-3120 \ cm^{-1} (OH, NH); \delta_{H} \\ \textit{(1.31 (3H, d, J=7.0, CH_{3}CH), 1.38-1.99 (10H, m, 4xringCH_2, OH, NH), 2.43 (3H, s, CH_3N), 3.43 (2H, q, J=7.0, CH_{3}CH), 3.52 (1H, d, J=12.2, HCHNCH_{3}), 3.95 (1H, d, J=12.2, HCHNCH_{3}), 7.10-7.40 (4H, m, ArH); \delta_{C} 18.0 (CH_{3}CH_{2}), 23.4, 24.2, 33.3 (3xringCH_{2}), 35.3 (CH_{3}CH), 40.2 (1xringCH_{2}), 41.2 (CH_{3}N), 54.2 (CH_{2}N), 83.7 (COH), 125.6, 127.7, 127.9, 130.1, 136.8, 144.7 (ArC);$ *m/z* $215 (M+-H_{2}O, 9%), 184 (39), 170 (16), 169 (100), 156 (12), 155 (25), 143 (15), 142 (12), 141 (43), 132 (14), 129 (13), 128 (13), 118 (48), 117 (39), 115 (20), 91 (18), 67 (10), 55 (13), 44 (48), 43 (12), 42 (19), 41 (19), 40 (31). \end{array}$

ACKNOWLEDGEMENTS

This work was supported by DGICYT (no. PB94-1514). J. A. thanks the Ministerio de Educación y Ciencia of Spain for a fellowship.

REFERENCES AND NOTES

- For a review, see for instace: Comprehensive Organic Chemistry, Barton, D. H. R.; Ollia, W. D., Eds.; Pergamon Press; Oxford, 1979; Vol. 4 Part 16.
- (a) Yus, M.; Ramón, D. J. J. Chem. Soc., Chem. Commun. 1991, 398-400. (b) For a review, see: Yus, M. Chem. Soc. Rev., submitted.

- For the last paper on this topic from our laboratory, see: Alonso, E.; Guijarro, D.; Yus, M. Tetrahedron 1995, 51, 2699-2708.
- For the last paper on this topic from our laboratory, see: Guijarro, A.; Yus, M. Tetrahedron 1996, 52, 1797-1810.
- 5. For a review, see: Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181.
- For the last paper on this topic from our laboratory, see: Guijarro, A.; Ortiz, J.; Yus, M. Tetrahedron 1996, 52, 1643-1650.
- For the last paper on this topic from our laboratory, see: Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3365-3374.
- (a) Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 1995, 6, 1907-1910. (b) Mudryk, K.
 B.; Cohen, T. J. Org. Chem. 1989, 54, 5657-5659. (c) Ramón, D. J.; Yus, M. Tetrahedron 1992, 48, 3585-3588. (d) Gil, J. F.; Ramón, D. J.; Yus, M. Tetrahedron 1993, 49, 9535-9546. (e) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3351-3364.
- 9. Almena, J.; Foubelo, F.; Yus, M. J. Org. Chem. 1996, 61, 1859-1862.
- (a) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1993, 34, 1649-1652. (b) Almena, J.; Foubelo,
 F; Yus, M. J. Org. Chem. 1994, 59, 3210-3215. (c) Almena, J.; Foubelo, F.; Yus, M. Tetrahedron
 1994, 50, 5775-3782.
- Compounds 18 undergoes this type of lithiation by treatment with BunLi in THF at -78°C: Ebden, M.
 R.; Simpkins, N. S.; Fox, D. N. A. Tetrahedron Lett. 1995, 36, 8697-8700.
- β-Functionalised organolithium compounds are prone to β-eliminate, even at very low temperatures, giving olefins. See, for instance: Barluenga, J.; Yus, M.; Concellón, J. M.; Bernad, P. J. Org. Chem. 1983, 48, 3116-3118.
- The reduction of conjugated double bonds with active metals, through the correspoding radical-anion intermediate, is a well-documented reaction. See, for instance: Luche, J. -L.; Cintas, P. In Active Metals, Fürstner, A., Ed.; VCH: Weinheim, 1995; pp. 146-147.
- 14. For compounds 3d, 3g, 3h, 19c', 19d it was not possible to obtain the corresponding HRMS due to the low intensity of the M+ signal.
- 15. Bobbitt, J. M.; Amundsen, L. H.; Steiner, R. I. J. Org. Chem. 1960, 25, 2230-2231.
- 16. Hori, M.; Kataoka, T.; Shimizu, H.; Tsutsumi, K.; Hu, Y.-Z.; Nishigiri, M. J. Chem. Soc., Perkin Trans. 1 1990, 1, 39-45.
- 17. Bijan Prasum Das; Basu, U. P. Indian J. Chem. 1965, 3, 268-270; Chem. Abstr. 1965, 63, 11494b.

(Received in UK 18 March 1996; accepted 25 April 1996)