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Heterocyclisation via 1,3-Cyclic Sulfates. Asymmetric Synthesis of (+)-Sedridine
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Abstract.  1,3-Cyclic sulfates (1b-d) participate in heterocyclisation
reactions to give pyrrolidines (2b) and piperidines (2¢/d). Cyclic sulfate
activation, when coupled to the enantio- and diastereoselective generation

of 1,3-diols, provides a synthesis of (+)-sedridine (9).

The use of cyclic sulfates to activate diols towards nucleophilic attack
provides an efficient and versatile process offering potential in
heterocyclic synthesis.' While 1,2-cyclic sulfates (2,2-dioxide-1,3,2~
dioxathiolanes), like epoxides, undergo cyclisation reactions with
heteroatom nucleophiles,” the 1,3-homologues have yet to be fully
evaluated within this context’ In this communication we describe the
synthesis and cyclisation of 1,3-cyclic sulfates (2,2-dioxide-1,3,2-
dioxathianes) as a route to representative 2-(2-hydroxyethyl)pyrrolidines
and piperidines. In addition, we illustrate a more general feature of this
chemistry by a synthesis of (+)-sedridine.

A series of 1,3-cyclic sulfates (la-c), carrying a sulfonamide
moiety as the latent nucleophile, were prepared in 77-88 % yield from the
corresponding  1,3-diol using the two-step protocol developed by
Sharpless* (Scheme I). In order to proceed efficiently, the cyclisation step
required sulfonamide activation. This was achieved using NaH (in THF at
r.t.) and the heterocyclic products (2) were then isolated following an
anhydrous acidic work-up (to cleave the intermediate sulfate ester). The

results are shown in Table 1.
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Scheme 1. Reagents: i, SOCIL, then RuCl, (cat.), NalO,; ii, NaH, THF,
1.t. then concentrated HCI

Table 1
1,3-Cyclic sulfate (1) | Heterocyclic Product (2) (% yield)
(1a) complex mixture of products
OH
(1b) Q\/l (2b) 65 %
Ts
OH
(1c) I|\I (2¢) 99 %
Ts
OH
(1d) I|\I 2d) 61 %
Cbz

The 3-(2-aminoethyl) derivative (1a) did not give an identifiable
heterocyclic product (azetidine or piperidine) under these conditions. The
homologue (1b) did, however, undergo regioselective cyclisation and the
2-substituted pyrrolidine (2b) was isolated in 65 % yield. Cyclisation of
the 3-(4-aminobutyl) variant (lc¢) was very efficient and provided
piperidine (2¢) in almost quantitative yield. The N-Cbz substrate (1d) has
been evaluated as an alternative N-nucleophile but piperidine formation (to
give (2d)) was lower yielding and significantly slower when compared to
the cyclisation of the sulfonamide analogue (Lc).’

A very important feature associated with the use of 1,2-diol
activation via cyclic sulfates is the ability to couple a potent level of
electrophilic reactivity with highly efficient asymmetric dihydroxylation®
(to prepare the precursor 1,2-diol). While this has proved to be a powerful
combination, a related and equally potent synergy is available with
1,3-cyclic sulfates. This is based on asymmetric reduction of a
B-dicarbonyl to establish the absolute stereochemistry of the requisite

1,3-diol precursor. Exemplification of this strategy is presented in
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Scheme 2. Reagents: i, MeCOCH,CO,Me, NaH followed by n-BuLi, then (3); ii, [(R)-(BINAP)RuCl,],.NEt,, H, (200 psi),
aq. HCI (cat.), MeOH,; iii, CAN, MeCN/H,0; iv, LiCH,SO,Ph (5 eq.), THF; v, Bu,SnH, AIBN, PhMe; vi, Et, BOMe then
NaBH,; vii, SOC), then RuCl,, NalO,; viii, NaH, THF then H,0"; ix, Na, liq. NH,.

Scheme 2 by a stereocontrolled synthesis of (+)-sedridine (9), a piperidine
alkaloid originally isolated from Sedum acre.”

Regiospecific alkylation® of methyl acetoacetate with the
N-protected 3-bromopropylamine (3) gave (4) in 49 % yield. Efficient
asymmetric reduction of B-ketoester (4) was achieved using the method
reported by King’ to give the (3R)-hydroxyester (5) in 92 % yield and in
>95 %e.e.”’ Oxidative cleavage of the p-methoxybenzyl (PMB) moiety
from (5) followed by conversion of the methyl ester to the corresponding
B-hydroxyketone (6) was achieved in 3 steps and in 63 % overall yield.
Syn-selective' reduction of ketone (6) proceeded with complete control of
stereochemistry and conversion of the resulting 1,3-diol (7) to 1,3—cyclic
sulfate (8) was carried out in the usual way. Exposure of (8) to NaH
followed by an acidic work-up and subsequent reductive cleavage of the
sulfonamide residue gave (+)-sedridine (9)'” in 77 % overall yield from
(8).

In summary, 1,3-cyclic sulfates provide viable substrates for
N-heterocyclisation reactions leading to 5- and 6-membered rings. A more
important general feature of this methodology is an ability to harness this
electrophilic reactivity to the efficient methods now available for the
enantio- and diastereoselective synthesis of 1,3-diols. As a consequence, it
is clear that 1,3-cyclic sulfates, like their 1,2-diol counterparts, also offer

significant potential in asymmetric synthesis.
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