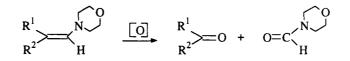


Tetrahedron Letters 39 (1998) 541-542

Solvent Free Oxidation of β , β -Disubstituted Enamines under Microwave Irradiation.

Hadj Benhaliliba^a, Aïcha Derdour^{a*}, Jean-Pierre Bazureau^b, Françoise Texier-Boullet^b and Jack Hamelin^{b*}

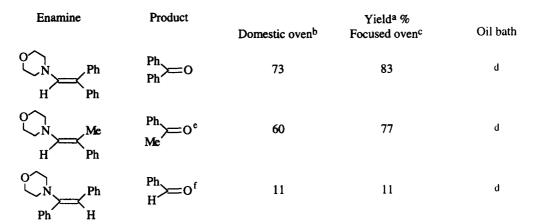

^a Laboratoire de Synthèse Organique, Université d'Oran es Senia, Algérie

^b Laboratoire de Synthèse et Electrosynthèse Organiques 3, CNRS et Université de Rennes I, Campus de Beaulieu. 35042 Rennes, France.

Received 22 October 1997; accepted 10 November 1997

Abstract : Ketones and formamides are formed by cleavage of $\beta_i\beta_j$ -disubstituted enamines over KMnO₄/Al₂O₃ without solvent under microwave irradiation. The comparison was made between, domestic oven, focused oven and classical heating. © 1998 Published by Elsevier Science Ltd. All rights reserved.

The oxidative cleavage of β , β -disubstituted enamines to ketones in homogeneous medium has been extensively studied with various reagents such as NaIO₄, K₂Cr₂O₇/H₂SO₄, m-ClC₆H₄CO₃H, HNO₂ and O₂ with copper ion systems¹. These procedures lead to moderate to good yields.



As part of our program related to organic synthesis without solvent under microwave irradiation² we studied this reaction using various solid supports under three means of activation : domestic microwave oven, focused microwave oven and oil bath.

Our first experiments realized with $K_2Cr_2O_7$, CrO_3 , MnO_2 and $NaIO_4$ over montmorillonite clay K_{10} under focused microwave irradiation in various conditions (temperature, power, time) led to the hydrolysis of the enamine. In order to avoid this, we tried MnO_2 over bentonite which was successfully applied to oxidation of alcohols³⁻⁶ but again hydrolysis was the main reaction although small yields of ketones were obtained. During the mean time, this cleavage over alumina supported potassium permanganate in acetone solution during 4 hours at room temperature was reported⁷. Accordingly we tried this reagent without solvent during 15 minutes under microwave or classical heating. The results are summarized in the following table.

* fax : 02-99-28-63-74 ; e-mail : Jack.Hamelin@univ-rennes1.fr

0040-4039/98/\$19.00 © 1998 Published by Elsevier Science Ltd. All rights reserved. *PII:* S0040-4039(97)10623-2

a) isolated yields. b) 255 W, 82°C. c) 300 W, 140°C. d) 140°C, no ketone. e) ref 7, 60% yield. f) in this case, hydrolysis is the major process.

These experiments clearly show a specific (non thermal) effect of microwaves⁸, as conventional heating only leads to hydrolysis products. Furthermore, homogeneous irradiation in the focused microwave oven⁹ is more efficient than heterogeneous irradiation in the domestic oven. The procedure is very simple : $KMnO_4/Al_2O_3$ is prepared according to the literature⁷ and dried 15 minutes in the domestic microwave oven (255 W). Then the mixture of enamine (3 mmol), 1.33g of $KMnO_4/Al_2O_3$ is irradiated or heated.

References

- 1. Harris, C.E.; Lee, L.Y.; Dorr, H.; Singaram, B. Tetrahedron Lett., 1995, 36, 2921-2924 and references cited.
- Laurent, A.; Jacquault, P.; Di Martino, J.L.; Hamelin, J. J.C.S. Chem. Commun., 1995, 1101. Jolivet, S.; Abdallah-El Ayoubi, S.; Mathé, D.; Texier-Boullet, F.; Hamelin, J. J. Chem. Res.(S), 1996, 300-301. Kerneur, G.; Lerestif, J.M.; Bazureau, J.P.; Hamelin, J. Synthesis, 1997, 287-289. Michaud, D.; Abdallah-El Ayoubi, S.; Dozias, M.J.; Toupet, L.; Texier-Boullet, F.; Hamelin, J. J.C.S. Chem. Commun., 1997, 1613-1614.
- 3. Martinez, L.A.; Garcia, O. Tetrahedron Lett., 1993, 34, 5293-5294.
- 4. Delgado, F.; Alvarez, C.; Garcia, O.; Penieres, G.; Marquez, C. Synth. Commun., 1991, 21, 2137-2141.
- 5. Delgado, F.; Alvarez, C.; Garcia, O.; Medina, S.; Marquez, C. Synth. Commun., 1991, 21, 619-624.
- 6. Delgado, F.; Garcia, O. Tetrahedron Lett., 1993, 34, 623-625.
- 7. Harris, C.E.; Chrisman, W.; Bickford, S.A.; Lee, L.Y.; Torreblanca, A.E.; Singaram, B. Tetrahedron Lett., 1997, 38, 981-984.
- 8. One of the referees brought to our attention a very recent paper with analogous conclusions for the oxidation of arenes in the same conditions. Oussaid, A.; Loupy, A. J. Chem. Res(S), 1997, 342-343.
- Commarnot, R.; Diderot, R.; Gardais, J.F. Fr. Demande 2, 560, 529 (Cl. B01J19/12), 06 Sept. 1985, Appl. 84/3, 496, 02 Mar 1984; Chem. Abstr. 1986, 105, 17442e. Apparatus commercialized by Prolabo (France) under the name Synthewave® 402. Temperature measured by an IR Captor : Prolabo, Patent 62241D, 1466 Fr, 23 Dec. 1991.