

Tetrahedron Letters 42 (2001) 871-873

TETRAHEDRON LETTERS

Solid phase synthesis of enantiomerically pure polyhydroxyvalerolactams

Jordi Piró,^a Mario Rubiralta,^a Ernest Giralt^b and Anna Diez^{a,*}

^aLaboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028-Barcelona, Spain ^bDepartament de Química Orgànica, Facultat de Química, Universitat de Barcelona, 08028-Barcelona, Spain

Received 23 October 2000; accepted 21 November 2000

Abstract—A general method for the solid phase synthesis of type 2 3,4,5-trihydroxypiperidin-2-ones is described. Amination of D-ribonolactone 4 was accomplished using a Mitsunobu reaction, and type 7 aminolactone underwent direct lactamisation upon treatment with NaOAc. For the solid phase synthesis, the aminoacid was anchored directly to a TentaGel[®] resin, and the lactamisation step was concomitant with the cleavage from the resin. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

We recently reported the synthesis of pseudodipeptide **1** as a conformationally restricted Ser-Leu surrogate (Fig. 1),¹ in which a protected derivative of compound **2** ($\mathbf{R} = {}^{i}\mathbf{B}\mathbf{u}$) was obtained as an intermediate. Since polyhydroxylated lactams have been reported as having interesting biological activities, such as glycosidase inhibitors,² cancer cell metastasis inhibitors,³ and anti-inflammatories,⁴ we considered the possibility of synthesising a small collection of 3,4,5-trihydroxypipe-ridin-2-ones **2**, whose activity may be modulated by the side chain functionalisation of the aminoacid moiety.

For this purpose, we envisaged to apply the lactamisation strategy that we had established¹ to a solid phase synthesis in which the lactams would be released in the last step. In this way, we could perform their synthesis in parallel and obtain the products with a high degree of purity. Our strategy consisted of anchoring the terminal carboxyl of the aminoacid moiety to a TentaGel[®] resin,⁵ perform the condensation with D-ribonolactone **4**, and lactamise. Since lactamisation is performed using NaOAc/MeOH, the cleavage of the molecule from the resin would be concomitant with the cyclisation,⁶ and no linker would be necessary.⁷ However, the reaction conditions of some transformations had to be adapted to make them compatible with the solid support, and the reaction sequence was first established in solution.

2. Results and discussion

First, we explored the possibility of aminating ribonolactone **4** using a Mitsunobu reaction, which is mild and suitable for solid phase synthesis.⁸ This was satisfactorily achieved by *N*-alkylation of the sulphonamide derived from Leu (**5**) with **4** in the presence of DEAD and PPh₃, followed by cleavage of the arylsulfone group of compound **6**⁹ with PhSH (Scheme 1).¹⁰ Treat-

Figure 1.

Keywords: hydroxypiperidines; azasugars; hydroxylactams; solid phase synthesis.

* Corresponding author. Tel.: +34-934035849; fax: +34-934034539; e-mail: adiez@farmacia.far.ub.es

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)02146-8

Scheme 1. Reagents and conditions: i) Et_3N (1.5 equiv.), *o*-NBSCl (1.5 equiv.), CH_2Cl_2 , room temperature, 1.5 h (72%); ii) 4 (1.5 equiv.), PPh₃ (1.5 equiv.), DEAD (1.5 equiv.), CH_2Cl_2 , 0°C, 5 min, room temperature, 12 h (80%); iii) PhSH (1.1 equiv.), K_2CO_3 (3 equiv.), DMF (87%); iv) NaOAc (5 equiv.), MeOH, reflux, 15 h (96%).

ment of the resulting secondary amine 7^{11} with NaOAc/ MeOH yielded the expected lactam $8.^{12}$

For the solid phase synthesis we followed Sieber's¹³ and Liskamp's method⁶ since the TentaGel[®] resin also swells conveniently in MeOH, which was necessary for an efficient lactamisation/cleavage step. The reaction sequence was applied in parallel to obtain the Leu (**8a**), Val (**8b**), and Phe (**8c**) derivatives (Scheme 2). Anchoring of the Fmoc protected aminoacids to the TentaGel[®] resin was achieved using DIC/DMAP/HOBt and repeating the process 4 times to obtain compounds **10a–c** in >95% yield.¹⁴ After capping with Ac₂O, the Fmoc group was cleaved to obtain amines **11a–c**. Standard sulfonation of the amines gave the expected com-

pounds 3a-c.¹⁵ The formation of the primary amines 11 and the sulphonamides 3 was confirmed by a positive and a negative ninhydrine test, respectively. Condensation of 3a-c with 4, followed by cleavage of the arylsulfone using PhSH, led to the secondary amines 13a-c, which gave a positive chloranyl test. Subsequent lactamisation using NaOAc in MeOH resulted in the target lactams 8a-c. After removal of the resin, the MeOH solvent was replaced by CH₂Cl₂ and the products filtered to yield 8a-c in pure form.

Finally, hydrolysis of the acetal function of lactams **8a–c** using PPTS in MeOH yielded 3,4,5-trihydroxyp-iperidin-2-ones **2a–c** (Scheme 3), which were identified by their analytical data.¹⁶

Scheme 2. Reagents and conditions: i) Fmoc-Leu, Fmoc-Val, or Fmoc-Phe (5 equiv.), DIC (5 equiv.), DMAP (0.1 equiv.), HOBt (5 equiv.), DMF/CH₂Cl₂ (1:9, 6 ml/g of resin), 4 h, room temperature; ii) rinsing with CH₂Cl₂/MeOH/Et₂O (3 times each); iii) Ac₂O (1 equiv.), pyridine (2 equiv.), DMF (6 ml/g of resin), 1 h, room temperature; iv) rinsing with DMF/MeOH/Et₂O (3 times each); v) $3\times20\%$ piperidine–DMF (v/v, 6 ml/g of resin, 5–10–10 min), room temperature; vi) ninhydrine test; vii) Et₃N (5 equiv.), *o*-NBSCl (5 equiv.), DMF (6 ml/g of resin), room temperature, 1.5 h; viii) 4 (5 equiv.), PPh₃ (5 equiv.), DEAD (5 equiv.), THF (6 ml/g of resin), 0°C, 10 min, room temperature 12 h; ix) rinsing with THF/MeOH/Et₂O; x) PhSH (1.5 equiv.), K₂CO₃ (2 equiv.), DMF (6 ml/g of resin), room temperature, 40 min.; xi) chloranyl test; xii) NaOAc (5 equiv.), MeOH, reflux, 24 h; xiii) 1. filtration, 2. evaporation of the MeOH, 3. solution in CH₂Cl₂, 4. filtration, 5. evaporation of the solvent (40% total for **8a**; 27% total for **8b**, and 37% total for **8c**).

Acknowledgements

This work has been supported by grants PB97-0976 (MEC, Spain), 2FD97-0293 (MEC and EU), HF1999-0068 (MEC), and grant 1999SGR-00077 (CIRIT, Generalitat de Catalunya). We also thank the CIRIT for a PhD grant given to J.P.

References

- Piró, J.; Rubiralta, M.; Giralt, E.; Diez, A. Tetrahedron Lett. 1999, 40, 4865–4868.
- Fleet, G. W. J.; Ramsden, N. G.; Dwek, R. A.; Rademacher, T. W.; Fellows, L. E.; Nash, R. J.; Green, D. St. C.; Winchester, B. J. Chem. Soc., Chem. Commun. 1988, 483–485.
- (a) Tsuruoka, T.; Nakabayashi, S.; Fukuyasu, H.; Ishii, Y.; Tsuruoka, T.; Yamamoto, H.; Inouye, S.; Kondo, S. EP 328111 A2, **1989**;; (b) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. *Tetrahedron* **1990**, *45*, 319–326.
- Tsuruoka, T.; Yuda, Y.; Nakabayashi, A.; Katano, K.; Sezaki, M.; Kondo, S. JP 63216867 A2, 1988.
- NovaSyn[®] TG hydroxy resin, loading=0.27 mmol/g. Novabiochem (ref. No. 01-64-0096).
- 6. Reichwein, J. F.; Liskamp, R. M. J. *Tetrahedron Lett.* **1998**, *39*, 1243–1246.
- (a) Forns, P.; Fields, G. B. In Practical Solid-Phase Synthesis. A Book Companion; Kates, S. A.; Albericio, F., Eds. Solid Support. M. Dekker: New York, 2000; (b) Obrecht, D.; Villalgordo, J. M. In Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries Solid Support. Pergamon: Oxford, 1998.
- For a review, see: Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C., *Tetrahedron*, **1998**, *54*, 15385–15443.
- 9. Lactone 6: $[\alpha]_{D} = +40$ (c = 1.15, CHCl₃); IR (CHCl₃) 1793 (CO), 1743 (CO), 1547 (NO₂) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 0.75 and 0.88 (2d, J=7 Hz, 3H each, (CH₃)₂CH), 1.41 and 1.48 (2s, 3H each, (CH₃)₂C), 1.49-1.60 (m, 1H, (CH₃)₂CH), 1.74–1.84 (m, 2H, CH₂), 3.56 (dd, J=16 and 7 Hz, 1H, H-5), 3.71 (s, 3H, CO₂CH₃), 3.75 (dd, J=16 and 7 Hz, 1H, H-5'), 4.43 (dd, J=7 and 6 Hz, 1H, NCH), 4.83-4.87(m, 2H, H-3 and H-4), 4.85 (br s, 1H, H-2), 7.68 (dd, J=7 and 2 Hz, 1H, Ar-H3), 7.70–7.79 (m, 2H, Ar-H4 and Ar-H5), 8.09 (dd, J=6 and 3 Hz, 1H, Ar-H6). ¹³C NMR (CDCl₃, 75 MHz): δ 21.5 and 22.3 ((CH₃)₂CH), 24.4 ((CH₃)₂CH), 25.6 and 26.7 ((CH₃)₂C), 38.3 (CH₂), 46.3 (C5), 52.7 (CO₂CH₃), 58.0 (NCH), 74.1 (C2), 77.3 (C3), 79.9 (C4), 113.8 ((CH₃)₂C), 124.3 (Ar-C3), 131.5 (Ar-C6), 131.8 and 134.3 (Ar-C2, Ar-C4 and Ar-C5), 147.8 (Ar-C1), 171.1 and 173.4 (CO).

- Fukuyama, T.; Jow, C.-K.; Cheung, M. *Tetrahedron Lett.* 1995, *36*, 6373–6374.
- 11. Lactone 7: $[\alpha]_D = -42$ (c=1.10, CHCl₃); IR (CHCl₃) 3300 (NH), 1785 (CO), 1736 (CO) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 0.90 and 0.92 (2d, J=7 Hz, 3H each, CH(CH₃)₂), 1.39 and 1.47 (2s, 3H each, C(CH₃)₂), 1.41– 1.44 (m, 2H, CH₂CH), 1.64–1.72 (m, 1H, CH(CH₃)₂), 2.48 (dd, J=13 and 2 Hz, 1H, H-5), 3.22 (dd, J=8 and 7 Hz, NCH), 3.26 (dd, J=13 and 3 Hz, H-5), 3.72 (s, 3H, CO₂CH₃), 4.61 (dd, J=3 and 2 Hz, 1H, H-4), 4.65 (d, J=6 Hz, 1H, H-3), 4.82 (d, J=6 Hz, 1H, H-2). ¹³C NMR (CDCl₃, 75 MHz): δ 21.7 and 22.8 (CH(CH₃)₂), 24.9 ((CH₃)₂CH), 25.5 and 26.7 (C(CH₃)₂), 42.5 (CH₂CH), 48.6 (C5), 51.8 (CO₂CH₃), 60.8 (NCH), 75.6 (C2), 79.4 (C3), 82.8 (C4), 113.1 (C(CH₃)₂), 174.2 (CO), 175.1 (CO). Anal. Calcd for C₁₅H₂₅NO₆: C, 57.13; H, 7.99; N, 4.44. Found: C, 56.72; H, 7.86; N, 4.39.
- 12. Lactam **8a**: $[\alpha]_{D} = +5$ (c = 1.02, CHCl₃); IR (CHCl₃) 3400 (br, OH), 1742 (CO), 1650 (CO) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 0.94 and 0.96 (2d, J = 3 Hz, 3H each, CH(CH₃)₂), 1.41 and 1.52 (2s, 3H each, C(CH₃)₂),1.55– 1.75 (m, 3H, CH₂CH(CH₃)₂), 2.60 (br s, 1H, OH), 3.23 (dd, J = 12 and 4 Hz, 1H, H-6), 3.37 (dd, J = 12 and 9 Hz, 1H, H-6), 3.37 (dd, J = 10 and 9 Hz, 1H, H-6), 3.70 (s, 3H, CO₂CH₃), 4.10–4..15 (m, 1H, H-5), 4.56–4.63 (m, 2H, H-3 and H-4), 5.3 (dd, J = 10 and 6 Hz, 1H, NCH). ¹³C NMR (CDCl₃, 75 MHz): δ 21.3 and 23.2 (CH(CH₃)₂), 24.8 (CH(CH₃)₂), 24.8 and 26.0 (C(CH₃)₂), 37.5 (CH₂CH), 43.7 (C6), 52.3 (CO₂CH₃), 53.9 (NCH), 65.7 (C5), 74.4 and 74.8 (C3 and C4), 110.8 (C(CH₃)₂), 166.7 and 171.9 (CO). Anal. Calcd for C₁₅H₂₅NO₆: C, 57.13; H, 7.99; N, 4.44. Found: C, 57.28; H, 7.90; N, 4.46.
- 13. Sieber, P. Tetrahedron Lett. 1987, 28, 6147-6150.
- 14. Ma, Y.; Souveaux, E. Biopolymers 1989, 28, 965-973.
- 15. The synthesis of compound **3a** was described by a slightly different method in Ref. 6.
- 16. Lactam **2a**: $[\alpha]_D = +11$ (*c*=1.20, CHCl₃); IR (CHCl₃) 3450 (br, OH), 1740 (CO), 1648 (CO) cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ 0.95 (d, J = 7 Hz, 6H, CH(CH₃)₂), 1.48-1.61 (m, 1H, CH(CH₃)₂),1.67-1.83 (m, 2H, CH₂CH), 2.95 (br s, 1H, OH), 3.26 (br s, 1H, OH), 3.35 (dd, J=12 and 8 Hz, 1H, H-6), 3.45 (dd, J=12 and 6 Hz,1H, H-6), 3.72 (s, 3H, CO₂CH₃), 4.01 (br s, 1H, OH), 4.09 (d, J=3 Hz, 1H, H-3), 4.12–4.22 (m, 1H, H-5), 4.37 (t, J=3 Hz, 1H, H-4), 5.23 (dd, J=10 and 5 Hz, 1H, NCH);). ¹³C NMR (CDCl₃, 75 MHz): δ 21.3 and 23.3 (CH(CH₃)₂), 24.6 (CH(CH₃)₂), 37.0 (CH₂CH), 46.4 (C6), 52.4 (CO₂CH₃), 54.5 (NCH), 64.7 (C5), 68.9 (C4), 69.2 (C3), 170.5 and 171.6 (CO). Anal. Calcd for C₁₂H₂₁NO₆: C, 52.35; H, 7.69; N, 5.09. Found: C, 52.39; H, 7.57; N, 4.62. Lactams 2b and 2c show similar characteristic data. Lactam **2b**: $[\alpha]_{\rm D} = -36$ (c = 1, CHCl₃). Lactam **2c**: $[\alpha]_{\rm D} = -$ 33 (c = 1, CHCl₃).